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Abstract—We present a linear-time subspace clustering ap-
proach that combines sparse representations and bipartite graph
modeling. The signals are modeled as drawn from a union of
low dimensional subspaces, and each signal is represented by
a sparse combination of basis elements, termed atoms, which
form the columns of a dictionary matrix. The sparse repre-
sentation coefficients are arranged in a sparse affinity matrix,
which defines a bipartite graph of two disjoint sets: atoms
and signals. Subspace clustering is obtained by applying low-
complexity spectral bipartite graph clustering that exploits the
small number of atoms for complexity reduction. The complexity
of the proposed approach is linear in the number of signals, thus,
it can rapidly cluster very large data collections. Performance
evaluation of face clustering and temporal video segmentation
demonstrate comparable clustering accuracies to state-of-the-art
at a significantly lower computational load.

Index Terms—subspace clustering, dictionary, sparse represen-
tation, bipartite graph, face clustering, temporal video segmen-
tation.

I. INTRODUCTION

Dimensionality reduction is a powerful tool for processing
high dimensional data such as video, image, audio and bio-
medical signals. The simplest of such techniques is Principal
Component Analysis (PCA) that models the data as spanned
by a single low-dimensional subspace, however, in many cases
a union-of-subspaces model can represent more accurately the
data: for example [1] proposed to generalize PCA to identify
multiple subspaces for computer vision applications, [2]
proposed to generalize k-means to cluster facial images and
[3] proposed efficient sampling techniques for practical signal
types that emerge from a union-of-subspaces model. Subspace
clustering is the problem of clustering a collection of signals
drawn from a union-of-subspaces, according to their spanning
subspaces. Subspace clustering algorithms can be divided
into four approaches: statistical, algebraic, iterative and
spectral clustering-based; see [4] for a review. State-of-the-art
approaches such as Sparse Subspace Clustering [5], [6],
Low-Rank Representation [7], [8] and Low-Rank Subspace
Clustering [9] are spectral-clustering based. These methods
provide excellent performance, however, their complexity
limits the size of the data sets to ≈ 104 signals. K-subspaces
[2] is a generalization of the K-means algorithm to subspace
clustering that can handle large data sets, however, it requires
explicit knowledge of the dimensions of all subspaces and its
performance is inferior compared to state-of-the-art. In this
paper we address the problem of applying subspace clustering
to very large data collections. This problem is important due
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to the following reasons: 1) Existing subspace clustering
tasks are required to handle the ever-increasing amounts
of data such as image and video streams. 2) Subspace
clustering based solutions could be applied to applications
that traditionally could not employ subspace clustering, and
require large data processing.
In the following we formulate the subspace clustering
problem, review previous works based on sparse and low-
rank modeling and highlight the properties of our approach.

A. Problem Formulation

Let Y ∈ RN×L be a collection of L signals {yl ∈ RN}L
l=1,

drawn from a union of K > 1 linear subspaces {Si}K
i=1.

The bases of the subspaces are {Bi ∈ RN×di}K
i=1 and {di}K

i=1
are their dimensions. The task of subspace clustering is to
cluster the signals according to their subspaces. The number
of subspaces K is either assumed known or estimated during
the clustering process. The difficulty of the problem depends
on the following parameters:
1) Subspaces separation: the subspaces may be independent

(as defined in Appendix A), disjoint or some of them may
intersect, which is considered the most difficult case.

2) Signal quality: the collection of signals Y may be cor-
rupted by noise, missing entries or outliers, thus, distorting
the true subspaces structure.

3) Model Accuracy: the union-of-subspaces model is often
only an approximation of a more complex and unknown
data generation model, and the magnitude of the error it
induces affects the overall performance.

B. Prior Art: Sparse and Low Rank Modeling

Sparse Subspace Clustering (SSC) and Low-Rank Repre-
sentation (LRR) reveal the relations among signals by finding
a self-expressive representation matrix W ∈ RL×L such that
Y ≃ YW, and obtain subspace clustering by applying spectral
clustering [10] to the graph induced by W. SSC forces W to be
sparse by solving the following set of optimization problems,
for the case of signals contaminated by noise with standard
deviation ε (section 3.3 in [5]):

min
wi

∥wi∥1 s.t. ∥Yîwi −yi∥2 ≤ ε (for i=1 · · · L), (1)

where wi ∈RL−1 is the sparse representation vector, yi is the i-
th signal and Yî is the signal matrix Y excluding the i-th signal.
By inserting a zero at the i-th entry of wi and augmenting the
dimension of wi to L, the vector ŵi ∈ RL is obtained, which
defines the i-th column of W ∈ RL×L, such that diag(W)=0.
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For the case of signals with sparse outlying entries, SSC forces
W to be sparse by solving the following optimization problem:

min
W,E

∥W∥1 +λ∥E∥1 s.t. Y = YW+E and diag(W) = 0, (2)

where E is a sparse matrix representing the sparse errors in the
data and λ > 0. LRR forces W to be low-rank by minimizing
its nuclear norm (sum of singular values), and solves the
following optimization problem for clustering signals contam-
inated by noise and outliers:

min
W,E

∥W∥∗+λ∥E∥2,1 s.t. Y = YW+E. (3)

SSC was reported to outperform Agglomerative Lossy Com-
pression [11] and RANSAC [12], whereas LRR was reported
to outperform Local Subspace Affinity [13] and Generalized-
PCA [1]. LRR and SSC provide excellent performance, how-
ever, they are restricted to relatively moderate-sized data sets
due the following reasons:
1) Polynomial complexity affinity calculation - SSC solves

L sparse coding problems with a dictionary of L − 1
columns, leading to approximate complexity of O(L2).
The complexity of LRR is higher as its Augmented
Lagrangian-based solution involves repeated SVD compu-
tations of an L×L matrix during the convergence to W ,
leading to complexity of O(L3) multiplied by the number
of iterations (which can exceed 100).

2) Polynomial complexity spectral clustering - both LRR and
SSC require eigenvalue decomposition (EVD) of an L×L
Laplacian matrix, leading to polynomial complexity of the
spectral clustering stage1. In addition, the memory space
required to store the entries of the graph Laplacian is
O(L2), which becomes prohibitively large for L ≫ 1.

In addition, whenever the entire data set is contaminated by
noise, both LRR and SSC suffer from degraded performance
since each signal in Y is represented by a linear combination
of other noisy signals. Low-rank subspace clustering (LR-SC)
[9] provides closed-form solutions for noisy data and iterative
algorithms for data with outliers. LR-SC provides solutions for
noisy data by introducing the clean data matrix Q and solving
relaxations of the following problem:

min
W,E,Q

∥W∥∗+λ∥E∥F s.t. Q = QW and Y = Q+E. (4)

Note that the computational load of the spectral clustering
stage remains the same as that of LRR and SSC, since
the dimensions of the affinity matrix remains L × L. The
clustering accuracy of LR-SC was reported as comparable to
SSC and LRR, while better than Shape Interaction Matrix [14],
Agglomerative Lossy Compression [11] and Local Subspace
Affinity [13]. The work of [15] proposed a dictionary-based
approach that learns a set of K sub-dictionaries (for K data
classes) using a Lloyd’s-type algorithm that is initialized by
applying spectral clustering to a graph of atoms or a graph
of signals. Each signal is assigned to a class according to
the sub-dictionary that best represents it, using a novel metric

1Note that a full EVD of the Laplacian has complexity of O(L3), however,
a complexity of O(L2) is required for computing only several eigenvectors.

defined in this work. The work of [16] proposed a dictionary-
based approach, which employs a probabilistic mixture model
to compute signals likelihoods and obtains subspace clustering
using a maximum-likelihood rule.

C. Paper Contributions

This paper presents a new spectral clustering-based ap-
proach that is built on sparsely representing the given signals
using a dictionary, which is either learned or known a-priori2.
The contributions of this paper are as follows:

1) Bipartite graph modeling: a novel solution to the subspace
clustering problem is obtained by mapping the sparse
representation matrix to an affinity matrix that defines a
bipartite graph with two disjoint sets of vertices: dictionary
atoms and signals.

2) Linear-time complexity: the proposed approach exploits
the small number of atoms M for complexity reduction,
leading to an overall complexity that depends only linearly
on the number of signals L.

3) Theoretical study: the conditions for correct clustering of
independent subspaces are proved for the cases of minimal
and redundant dictionaries.

This paper is organized as follows: Section II overviews
sparse representations modeling, which forms the core for
learning the relations between signals and atoms. Section III
presents bipartite graphs and the proposed approach. Section
IV provides performance evaluation of the proposed approach
and compares it to leading subspace clustering algorithms.

II. SPARSE REPRESENTATIONS MODELING

Sparse representations provide a natural model for signals
that live in a union of low dimensional subspaces. This
modeling assumes that a signal y ∈ RN can be described as
y ≃ Dc, where D ∈ RN×M is a dictionary matrix and c ∈ RM

is sparse. Therefore, y is represented by a linear combination
of a few columns (atoms) of D. The recovery of c can be cast
as an optimization problem:

ĉ = argmin
c

∥c∥0 s.t. ∥y−Dc∥2 ≤ ε, (5)

for some approximation error threshold ε. The l0 norm ∥c∥0
counts the non-zeros components of c, leading to a NP-hard
problem. Therefore, a direct solution of (5) is infeasible. An
approximate solution is given by applying the OMP algorithm
[19], which successively approximates the sparsest solution.
The recovery of c can be cast also by an alternative optimiza-
tion problem that limits the cardinality of c:

ĉ = argmin
c

∥y−Dc∥2 s.t. ∥c∥0 ≤ T0, (6)

where T0 is the maximum cardinality. The dictionary D can
be either predefined or learned from the given set of signals,
see [20] for a review. For example, the K-SVD algorithm

2For example over-complete DCT-based dictionaries are well suited for
sparsely representing image patches [17] or audio frames [18].
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[21] learns a dictionary by solving the following optimization
problem:

{D,C}= argmin
D,C

∥Y−DC∥2
F s.t. ∀i∥ci∥0 ≤ T0, (7)

where Y ∈ RN×L is the signals matrix, containing yi in it’s
i-th column. C ∈ RM×L is the sparse representation matrix,
containing the sparse representation vector ci in it’s i-th
column. Once the dictionary is learned, each one of the
signals {yi}L

i=1 is represented by a linear combination of few
atoms. Each combination of atoms defines a low dimensional
subspace, thus, our subspace clustering approach exploits the
fact that signals spanned by the same subspace are represented
by similar groups of atoms. In the following, we demonstrate
this property for signals that are drawn from a union of
independent or disjoint subspaces. Consider data points drawn
from a union of two independent subspaces in R3: a plane and
a line, as illustrated in Fig. 1(a). A dictionary with 3 atoms was
learned from few hundreds of such points, using the K-SVD
algorithm, and as illustrated in Fig. 1(a) the learned atoms
coincide with the correct bases of the two subspaces. Next,
consider data points drawn from a union of three disjoint
subspaces in R3: a plane and two lines, as illustrated in
Fig. 1(b). A dictionary with 4 atoms was learned from few
hundreds of such points, using the K-SVD algorithm, and
as depicted in Fig. 1(b) the learned atoms coincide with the
correct bases of the three subspaces.

III. THE PROPOSED APPROACH

A. From Bipartite Graphs to Subspace Clustering
The sparse representations matrix C provides explicit infor-

mation on the relations between signals and atoms, which we
leverage to quantify the latent relations among the signals: the
locations of non-zero coefficients in C determine the atoms that
represent each signal and their absolute values determine the
respective weights of the atoms in each representation. There-
fore, subspace clustering can be obtained by a bi-clustering
approach: simultaneously grouping signals with the atoms that
represent them, such that a cluster label is assigned to every
signal and every atom, and the labels of the signals provide
the subspace clustering result. In cases where a partition
into disjoint groups does not exist (as a result of intersect-
ing subspaces, errors in the sparse coding stage or noise),
a possible approach is to group together signals with the
most significant atoms that represent them. This bi-clustering
problem can be solved by bipartite graph partitioning [22]: let
G = (D,Y ,E) be an undirected bipartite graph consisting of
two disjoint sets of vertices: atoms D = {d1,d2, ...,dM} and
signals Y = {y1,y2, ...,yL}, connected by the corresponding
set of edges E. An edge between an atom and a signal exists
only if the atom is part of the representation of the signal. The
two disjoint sets of vertices are enumerated from 1 to M+L:
the leading M vertices are atoms and the tailing L vertices
are signals, as illustrated in Fig. 2(a). Let W = {wi j} be a
non-negative affinity matrix, such that every pair of vertices
is assigned a weight wi j. The affinity matrix is defined by:

W =

[
0 A

AT 0

]
∈ R(M+L)×(M+L), (8)
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Fig. 1: Dictionary learning of (a) independent and (b) disjoint
subspaces’ bases.

where A = |C|. Note that the structure of W implies that
only signal-atom pairs can be assigned a positive weight (in
cases the atom is part of the representation of the signal). The
matrix W is used to define the set of edges, such that an edge
between the i-th and j-th vertices exists in the graph only if
wi j > 0 and the weight of this edge is ei j = wi j. Thus, the
unique structure of W imposes only one type of connected
components: bipartite components that are composed of at
least one atom and one signal. This type of graph modeling
differs from the modeling employed by LRR, SSC and LR-
SC, since these methods construct a graph with only a single
type of vertices (which are signals) and seek for groups of
connected signals. In addition, bipartite graph modeling differs
from the method of [15] that partitions either a graph of atoms
or a graph signals (each graph with only a single type of
vertices), as an initialization stage of the K sub-dictionaries
learning algorithm.

A reasonable criterion for partitioning the bipartite graph is
the Normalized-Cut [10], which seeks well separated groups
while balancing the size of each group, as illustrated in Fig.
2(b). Let V1,V2 be a partition of the graph such that V1 =D1∪
Y1 and V2 = D2 ∪Y2, where D1 ∪D2 = D and Y1 ∪Y2 = Y .
The Normalized-Cut partition is obtained by minimizing the
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Fig. 2: a) A bipartite graph consisting of 12 vertices: 4 atoms
(squares) and 8 signals (circles). b) The signals were drawn from
a union of two subspaces, however, the sparse coding stage (OMP)
produced inseparable groups in the graph. The Normalized Cut
approach attempts to resolve this by grouping together signals with
the atoms that are the most significant in the signals’ representations.
The edges that correspond to the least significant links between atoms
to signals are neglected (dashed edges in the figure). The graph
partitioning solution is illustrated by the bold line: the vertices of the
first group are {1,2,5,6,7,8,9} and the vertices of the second group
are {3,4,10,11,12}.

following expression:

Ncut(V1,V2) =
cut(V1,V2)

weight(V1)
+

cut(V1,V2)

weight(V2)
, (9)

where cut(V1,V2) = ∑i∈V1, j∈V2
Wi j quantifies the accumu-

lated edge weights between the groups and weight(V ) =

∑i∈V ∑k Wik quantifies the accumulated edge weights within
a group. Therefore, we propose to partition the bipartite
graph using the Normalized-Cut criterion, and obtain subspace
clustering from the signals’ cluster labels.

Direct minimization of (9) leads to an NP-hard problem,
therefore, spectral clustering [10] is often employed as an ap-
proximate solution to this problem. A low complexity bipartite
spectral clustering algorithm was derived in [22] for natural
language processing applications. This algorithm is detailed in
Appendix B, and requires the SVD of an M×L matrix which
has complexity of O(M2L) [23]. Note that in our modeling the
number of atoms is fixed and obeys M ≪ L, leading to com-
plexity that depends linearly in L (compared to the complexity
of the spectral clustering stage of state-of-the-art approaches
[6], [8], [9] that is polynomial is L). We leverage the SVD-
based algorithm to our problem and incorporate it into the
proposed algorithm, as detailed in Algorithm 1. The overall
complexity of the proposed approach depends only linearly
on L, and is given by O(qJNML) +O(qNML) +O(M2L) +
O(T NKL), where the first term is K-SVD complexity (with

Algorithm 1 Subspace Bi-Clustering (SBC)

Input: data Y ∈ RN×L, # of clusters K, # of atoms M.
1. Dictionary Learning: Employ K-SVD to learn a dic-

tionary D ∈ RN×M from Y.
2. Sparse Coding: Construct the sparse matrix C ∈RM×L

by the OMP algorithm, such that Y ≃ DC.
3. Bi-Clustering:

I. Construct the matrix A = |C|.
II. Compute the rank-M SVD of A = D− 1

2
1 AD− 1

2
2 ,

where D1 and D2 as in equation (11).

III. Construct the matrix Z =

[
D− 1

2
1 U

D− 1
2

2 V

]
, where U =

[u2...uK ] and V = [v2...vK ] as in equation (17). The
M leading rows of Z correspond the atoms and the
L tailing rows correspond the signals.

IV. Cluster the rows of Z using k-means.
Output: cluster labels for all signals k̂(y j), j = 1..L.

J iterations and assuming L ≫ 1), the second term is OMP
complexity, the third (SVD complexity) and forth (k-means
complexity with T iterations) terms compose the bipartite
spectral clustering stage complexity.

B. Theoretical Study

In the following we provide two theorems that pose condi-
tions for correct segmentation of independent subspaces using
the proposed approach. Our analysis proves that given a correct
dictionary, OMP will always recover successfully the bipartite
affinity matrix3. Further segmentation of the bipartite graph
using the normalized-cut criterion leads to correct subspace
clustering. The following theorem addresses the case of a
dictionary D that contains the set of minimal bases for all
subspaces:

Theorem 1. Let Y = [Y1,Y2, · · · ,YK ] be a collection of
L= L1+L2+ · · ·+LK signals from K independent subspaces of
dimensions {di}K

i=1. Given a dictionary D = [D1,D2, · · · ,DK ]
such that Di ∈ RN×di spans Si and di = dim(Si), OMP is
guaranteed to recover the correct and unique sparse represen-
tations matrix C such that Y = DC, and minimization of the
Normalized-Cut criterion for partitioning the bipartite graph
defined by (8) will yield correct subspace clustering.

The proof is provided in Appendix C.

We now address the more general case of a redundant dictio-
nary in which the sub-dictionaries are redundant Di ∈ RN×ti

and ti > di. This situation is realistic in dictionary learning,
whenever the number of allocated atoms is higher than neces-
sary. Note that for a redundant dictionary, there is an infinite
number of exact representations for each signal yi ∈ Si, and

3Note that this statement is far stronger than a successful OMP conditioned
on RIP [24] or mutual-coherence [25], since (1) we address the case of
independent subspaces; and (2) our goal is segmentation and not signal
recovery.
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Fig. 3: Sparse representation recovery using OMP with a redundant
dictionary and a data collection Y= [Y1,Y2]∈R4×2000, where Y1,2 ∈
R4×1000 are drawn from two independent subspaces of dimension 2
each. A redundant dictionary D = [D1,D2] ∈ R4×8, with 4 atoms
per subspace was used to compute the sparse representation of each
data point: (a) the recovered support set often contains atoms of the
wrong subspace. (b) The cardinality of the support set often exceeds
the correct dimension of 2. Owing to the pseudo-inverse in the OMP
operation, the wrong coefficients are effectively nulled, thus leading
to (c) perfectly correct supports, and (d) correct cardinalities.

OMP is prone to select wrong atoms (that represent subspaces
S j ̸= Si) during its operation. However, the following theorem
proves that the support of the OMP solution is guaranteed to
include atoms only from the correct subspace basis (although
the accumulated support-set might contain atoms that represent
other subspaces). Figure 3 demonstrate this in practice.

Theorem 2. Let Y = [Y1,Y2, · · · ,YK ] be a collection of
L= L1+L2+ · · ·+LK signals from K independent subspaces of
dimensions {di}K

i=1. Given a dictionary D = [D1,D2, · · · ,DK ]
such that Di ∈ RN×di spans Si and di > dim(Si), OMP is
guaranteed to recover a correct sparse representations matrix
C such that Y = DC, C include only atoms from the correct
subspace basis for each signal, and minimization of the
Normalized-Cut criterion for partitioning the bipartite graph
defined by (8) will yield correct subspace clustering.

The proof is provided in Appendix C.

The next natural steps in studying the theoretical properties
and limitations of our proposed scheme are to explore more
general cases of disjoint subspaces instead of independent
ones, and also explore the sensitivity to a wrong dictionary.
We choose to leave these important questions for future work.

IV. PERFORMANCE EVALUATION

This section evaluates4 the performance of the proposed
approach for synthetic data clustering, face clustering and
temporal video segmentation. In addition, the performance of

4All the results presented in the paper are reproducible using a MATLAB
package that is freely available for distribution.

SSC, LRR, LR-SC, PSSC [16] and K-subspaces are compared,
using code packages that were provided by their authors (the
parameters of all methods were optimized for best perfo-
mance). The objective of this section is to demonstrate that as
long as the collection size L is sufficiently large for training
the dictionary, then the clustering accuracy of the proposed
approach is comparable to state-of-the-art algorithms. The
correct number of clusters was supplied to all algorithms in
every experiment. All experiments were conducted using a
computer with Intel i7 Quad Core 2.2GHz and 8GB RAM.

A. Computation Time

Computation time comparison of clustering L signals (up-
to L = 1,048,576) in R64 is provided in Fig. 4. The reported
durations for the proposed approach include a dictionary
D ∈ R64×64 learning stage from the L signals if L < 215

or 215 signals if L ≥ 215. The results indicate polynomial
complexity in L of state-of-the-art approaches compared to
linear complexity in L of K-subspaces and the proposed
approach.
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Fig. 4: Computation time vs. number of data samples L, for K = 32
subspaces, data samples dimension N = 64 and M = 64 learned atoms.

B. Synthetic Data Clustering

Clustering accuracy5 was evaluated for signals contaminated
by zero mean white Gaussian noise, in the Signal-to-Noise
(SNR) range of 5dB to 20dB. Per each experiment we gen-
erated a set of 800 signals in R100 drawn from a union of 8
subspaces of dimensions 10, with equal number of signals
per subspace. The bases of all subspaces were chosen as
random combinations (non-overlapping for disjoint subspaces)
of the columns of a 100×200 Over-complete Discrete Cosine
Transform (ODCT) matrix [21]. The coefficients of each signal
were randomly sampled from a Gaussian distribution of zero
mean and unit variance. Clustering accuracy results, averaged
over 10 noise realizations per SNR point, are presented in

5Accuracy was computed by considering all possible permutations and

define by: 1− number of miss-classified signals
total number of signals

.
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Table I. The results of the proposed approach (SBC) are based
on a learned dictionary D ∈ R100×100 per every noise realiza-
tion. The results demonstrate comparable clustering accuracies
of the proposed approach and state-of-the-art6, and superior
performance compared to K-Subspaces. Note that (only) the
results of K-Subspaces are based on explicit knowledge of the
true dimensions (d = 10) of all subspaces, as this parameter
is required by K-Subspaces. For the proposed approach we
employed OMP to approximate the solution of equation (5)
and set the sparse representation target error ε to the noise
standard deviation (the target error used for SSC was also
close to the noise standard deviation).

TABLE I: Clustering accuracy (%) for L=800 signals in R100 drawn
from 8 disjoint subspaces with dimension 10: mean, median, standard
deviation with respect to mean (σMean) and to median (σMedian).

SNR Params. SBC LR-SC SSC LRR K-Sub.

5dB

Mean 99.9 97.64 85.47 89.03 82.96
Median 100 99.19 82.00 82.13 87.12
σMean 0.04 1.47 2.30 2.82 5.01
σMedian 0.05 1.55 2.55 3.57 5.18

10dB

Mean 99.97 99.00 85.53 89.29 87.38
Median 100 99.38 82.13 83.00 92.37
σMean 0.02 0.29 4.26 2.77 5.06
σMedian 0.02 0.32 4.39 3.41 5.24

15dB

Mean 98.65 99.01 87.42 89.44 97.08
Median 100 99.19 82.44 83.13 100
σMean 1.25 0.25 2.61 2.73 1.61
σMedian 1.33 0.25 3.05 3.38 1.86

20dB

Mean 99.93 99.06 89.24 90.90 96.02
Median 99.94 99.25 82.50 91.31 100
σMean 0.03 0.23 2.78 2.88 1.93
σMedian 0.03 0.24 3.50 2.88 2.30

C. Face Clustering

Face clustering is the problem of clustering a collection
of facial images according to their human identity. Facial
images taken from the same view-point and under varying
illumination conditions are well approximated as spanned by
a subspace of dimension < 10 [26], [27], where a unique
subspace is associated with each view point and human
subject. Subspace clustering was applied successfully to this
problem for example in [2], [7]. Face clustering accuracy was
evaluated using the Extended Yale B database [28], which
contains 16128 images of 28 human subjects under 9 view-
points and 64 illumination conditions (per view-point). In
our experiments we allocated 10 atoms per human subject
(assuming each subspace dimension < 10), and in order to
enable efficient dictionary training we found that a minimum
ratio of L/M > 10 is required for good clustering results
(i.e. at least a hundred facial images per subject). Therefore,
we generated from the complete collection a subset of 1280
images containing the first 10 human subjects, with 128
images per subject, by merging the 4th and 5th view-points
which are of similar angles. We further verified that the 4th and

6SSC was evaluated using the code that solves equation (1) with ε =
noise standard deviation (as defined in section 3.3 of [5]), LRR (λ = 0.15)
was evaluated using the code that solves equation (3) and LR-SC (τ = 0.01)
was evaluated using the code that solves Lemma 1 in [9].

5th view-points (of each human subject) can be modeled using
a single subspace, by reconstructing all 128 images from their
projections onto their 9 leading PCA basis vectors (obtained by
the PCA of each merged class of 128 images). Visual results
of this procedure are provided for the third human subject
in Fig. 5, demonstrating excellent quality of the reconstructed
images. All images were cropped, resized to 48×42 pixels and
column-stacked to vectors in R2016. Clustering accuracy was
evaluated for K = 2..8 classes, by averaging clustering results
over 40 different subsets of human subjects, for each value of
K, by choosing 40 different combinations of human subjects
out of the 10 classes. Clustering results, provided in Table II,
indicate comparable accuracies of the proposed approach to
state-of-the-art7 and consistent advantage compared to PSSC
[16] and K-Subspaces. The parameters of each method were
optimized for best performance and summarized in Table III.
For the proposed approach we employed OMP to approximate
the solution of equation (6) and set T0 = 9. We also noticed
that many entries of |C| are below 1 whereas few are above 1,
and a small clustering accuracy advantage can be obtained
by computing the affinity matrix (8) using A = |C|p with
0 < p < 1 (rather than p = 1). This balances edges’ weights
by increasing values below 1 and decreasing values above
1 (p = 0.4 provided the best results). Note that a similar
approach was suggested by [8] in section 5.4 with p > 1.

Fig. 5: Reconstruction of facial images from the 3rd merged class
of the Extended Yale B collection (the 5 leftmost columns are from
the 4th view point and the 5 rightmost columns are from the 5th
view point): the first row displays the original images and the second
row displays the reconstructed images from their projections onto the
9 leading PCA basis vectors, as obtained from the PCA of the 128
images in the merged class (the union of the 4th and 5th view points).

TABLE II: Face clustering accuracy (%), averaged over 40 different
human subjects combinations per each number of clusters (K).

K = 2 3 4 5 6 7 8
Proposed 92.26 91.03 89.13 83.42 72.15 67.07 64.19

LRR 93.75 85.94 65.47 57.02 51.34 52.86 54.88
LRR-H 91.88 72.36 76.36 74.91 72.49 68.19 66.29

SSC 95.57 89.11 85.44 78.98 73.16 72.59 73.36
LR-SC 94.51 80.98 72.86 67.11 59.08 58.82 55.53
PSSC 92.19 82.07 78.26 68.77 61.97 56.96 50.58

K-Subs. 67.60 59.17 50.24 51.34 48.81 48.32 45.35

7State-of-the-art methods were evaluated with sparse outliers support: SSC
with the ADMM-based version that solves equation (2), LRR with the version
that solves equation (3), LRR-H same as LRR but with post-processing of
the affinity matrix [8] and LR-SC with the version that solves equation (4).
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TABLE III: Face clustering: algorithms parameters settings.

K = 2 3 4 5 6 7 8
Proposed, M = 20 30 40 50 60 70 80
LRR, λ = 0.25 0.25 0.25 0.3 0.3 0.35 0.35
LR-SC, (τ,γ)= (5,5) (6,3) (6,4) (6,4) (6,4) (6,4) (6,4)
SSC, (ρ,α)= (1,10) (1,10) (1,10) (1,10) (1,10) (1,10) (1,10)
K-Subs., d = 8 8 8 8 8 8 8

D. Temporal Video Segmentation

Temporal video segmentation is the problem of clustering
the frames of a video sequence according to the scene each
belongs to (the same scene may repeat several times). By
modeling each frame as a point in a high-dimensional linear
space, and each scene as spanned by a low-dimensional sub-
space, temporal video segmentation was successfully solved
using subspace clustering in [1]. This work employed GPCA
to segment short video sequences of up to 60 frames. In our
experiments we evaluated segmentation accuray and compu-
tational load for two video sequences. The first sequence V1
contained 6 scenes and 1190 frames (30 frames-per-second)
of dimensions 360 x 640 pixels in RGB format. The frames
of V1 were converted to gray-scale, down-sampled to 90 x
160 pixels and column stacked to vectors in R14400. The
second sequence V2 contained 3 scenes and 12000 frames (25
frames-per-second) of dimensions 288 x 512 pixels in RGB
format. The frames of V2 were converted to gray-scale, down-
sampled to 72 x 128 pixels and column stacked to vectors in
R9216. In order to determine the number of dictionary atoms,
we computed the PCA basis of several scenes (for each one
separately) and found that ∼ 80% of the energy of each scene
is represented by its 9 leading PCA basis vectors. Therefore,
we allocated 9×K atoms (K is the number of scenes) for the
dictionary of each video sequence. The correct segmentation
of both sequences was obtained manually, and segmentation
accuracy was evaluated using the proposed approach (using
A = |C|), SSC (ρ = 1,α = 10), LRR-H (λ = 0.1) and LR-SC
(τ = 0.1). The parameters of all methods were optimized for
best results8, and for SSC we also projected9 the column-
stacked frames onto their PCA subspace of dimension 9 and
segmented the projected frames (excluding this step SSC
performance was worse). The results are provided in Table IV,
and demonstrate almost perfect segmentation of V1 (see Fig. 6)
using all methods. The segmentation of V2 was possible only
with the proposed approach, while the other methods were
unable to segment the 12000 frames due to their complexity.

V. CONCLUSIONS

Subspace clustering is a powerful tool for processing and
analyzing high dimensional data. This paper presented a low-
complexity subspace clustering approach that utilizes sparse
representations in conjunction with bipartite graph partition-
ing. By modeling the relations between the signals according

8SSC was evaluated with the ADMM-based version without outlier support,
LRR-H was evaluated with the version that solves equation (3) with post-
processing of the affinity matrix, and LR-SC was evaluated with the version
that solves Lemma 1 in [9].

9The ADMM-based SSC code provides the projection option.

TABLE IV: Temporal video segmentation accuracy (%) for two
sequences: V1 (1190 frames from ABC’s TV show ”Wheel Of
Fortune”) and V2 (12000 frames from ABC’s TV show ”One Plus
One”).

Method Accuracy (V1) Accuracy (V2)
Proposed 98.99 99.41

SSC 97.82 N/A
LRR-H 99.16 N/A
LR-SC 98.91 N/A

to the atoms that represent them and by exploiting the small
number of atoms, the complexity of the proposed approach
depends only linearly in the number of signals. Therefore,
it is suitable for clustering very large signal collections.
Performance evaluation for synthetic data, face clustering and
temporal video segmentation demonstrate comparable perfor-
mance to state-of-the-art at a fraction of the computational
load. We further plan to explore the relation between the
number of atoms to clustering accuracy, estimation methods
for the number of clusters and applications to data corrupted
by missing entries and outliers.

APPENDIX A
INDEPENDENT AND DISJOINT SUBSPACES

Independent [29] and disjoint subspaces are defined using
the sum and the direct sum of a union of subspaces:

Definition 1. The sum of subspaces {Si}K
i=1 is denoted by

V = S1 +S2 + · · ·+SK , such that every v ∈ V equals to v =
s1 + s2 + · · ·+ sK and si ∈ Si.

Definition 2. The sum of subspaces V = S1 + S2 + · · ·+ SK
is direct if every v ∈ V has a unique representation v = s1 +
s2 + · · ·+ sK , where si ∈ Si. The direct sum is denoted by V =
S1 ⊕S2 ⊕·· ·⊕SK .

Given the above definitions, we turn now to define indepen-
dent and disjoint subspaces:

Definition 3. The subspaces {Si}K
i=1 are independent if their

sum is direct. As a consequence, no nonzero vector from any
S j is a linear combination of vectors from the other subspaces
S1, · · · ,S j−1,S j+1, · · · ,SK .

Definition 4. The subspaces {Si}K
i=1 are disjoint if Si ∩S j =

{0} ∀i ̸= j. Note that independent subspaces are disjoint,
however, disjoint subspaces are not necessarily independent.

APPENDIX B
SPECTRAL BIPARTITE GRAPH CLUSTERING

This appendix provides the derivation of the spectral clus-
tering algorithm for bipartite graphs [22]. Spectral clustering
[10] provides an approximate solution to the NP-hard problem
of minimizing the normalized-cut criterion. This approach
requires the solution of the generalized eigenvalue problem
L z = λDz, where L = D −W is the Laplacian and D is
diagonal such that D(i, i) =∑M+L

k=1 W (i,k). In the bipartite case,
the affinity matrix is given by:

W =

[
0 A

AT 0

]
∈ R(M+L)×(M+L),
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Fig. 6: Temporal video segmentation of V1 using the proposed approach (98.99% accuracy).

and the Laplacian is given by:

L =

[
D1 −A
−AT D2

]
∈ R(M+L)×(M+L), (10)

where D1 ∈ RM×M and D2 ∈ RL×L are diagonal such that

D1(i, i) =
L

∑
j=1

A(i, j) and D2( j, j) =
M

∑
i=1

A(i, j). (11)

The generalized eigenvalue problem can be rewritten as:[
D1 −A
−AT D2

][
z1
z2

]
= λ

[
D1 0
0 D2

][
z1
z2

]
, (12)

where z =

[
z1
z2

]
. Equation (12) can be further expanded as

follows:

D1z1 −Az2 = λD1z1 (13)

−AT z1 +D2z2 = λD2z2. (14)

By setting u = D
1
2
1 z1 and v = D

1
2
2 z2 the following equations

are obtained (assuming non-singularity of D1 and Dict22):

D− 1
2

1 AD− 1
2

2 v = (1−λ)u (15)

D− 1
2

2 AT D− 1
2

1 u = (1−λ)v, (16)

which define the SVD equations of A = D− 1
2

1 AD− 1
2

2 :

Avi = σiui and AT ui = σivi, (17)

where vi is the i-th right singular vector, ui is the i-th left
singular vector and σi = 1 − λi is the i-th singular value.
Therefore, spectral bipartite graph clustering can be obtained
from the SVD of A, as summarized in algorithm 2, which has
a significant complexity advantage over explicit decomposition
of the Laplacian, whenever M ≪ L, since the complexity of
the SVD of A is O(M2L).

Algorithm 2 Spectral Bipartite Graph Clustering

Input: Affinity matrix W =

[
0 A

AT 0

]
and number of

clusters K.

1) Compute the SVD of A = D− 1
2

1 AD− 1
2

2 .

2) Construct the matrix Z=

[
D− 1

2
1 U

D− 1
2

2 V

]
, where U= [u2...uK ]

and V = [v2...vK ].
3) Cluster the rows of Z using the k-means algorithm.

Output: cluster labels for all graph nodes.

APPENDIX C
PROOF OF THEOREMS

The proof of Theorem 1 is composed of two parts: the first
part addresses the correctness and uniqueness of the recovery
of C by OMP (as detailed in Algorithm 3), and the second part
addresses the correctness of the subspace clustering result by
bipartite graph partitioning. The proof relies on the following
Lemma:

Lemma 1. Let D ∈ RN×M contain K minimal bases for K
independent subspaces, then the null-space N (D) = {0}.

Proof: Let {Si}K
i=1 be a collection of K independent

subspaces of dimensions {di}K
i=1, respectively, and let D =

[D1,D2, · · · ,DK ] such that Di ∈ RN×di is a basis of the i-th
subspace and ∑i di = M ≤ N. Since the subspaces are indepen-
dent their sum is direct, and every vector v in their direct sum
has a unique representation v = ∑K

i=1 Diαi. Equivalently, the
solution to the linear system of equations Dα = v is unique,
which leads to rank([D|v]) = rank(D) = M. Therefore, D is
full rank and N (D) = {0}.

Theorem 1. Let Y = [Y1,Y2, · · · ,YK ] be a collection of
L= L1+L2+ · · ·+LK signals from K independent subspaces of
dimensions {di}K

i=1. Given a dictionary D = [D1,D2, · · · ,DK ]
such that Di ∈ RN×di spans Si and di = dim(Si), OMP is
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guaranteed to recover the correct and unique sparse represen-
tations matrix C such that Y = DC, and minimization of the
Normalized-Cut criterion for partitioning the bipartite graph
defined by (8) will yield correct subspace clustering.

Proof: Part I: The matrix C is computed column-by-
column using OMP, therefore, correctness is proved for one
column ci = xk that represents a signal yi ̸= 0 from subspace
Si. OMP terminates either if the residual rk = 0 or the iteration
counter k =Kmax =M. The proof is provided for each possible
termination state of OMP:

i) The residual rk = 0 and the columns of D selected by
the support set Ωk form exactly Di (Si = Span(DΩk)):

in this case we have yi = Dxk = [Di Dic ]

[
xi
0

]
, where

Dic equals to D excluding the i-th basis Di. On the
other hand yi has a unique representation using Di that

is given by yi = Dic∗ = [Di Dic ]

[
c∗
0

]
. Therefore, we

can write D
[

xi
0

]
= D

[
c∗
0

]
, which can be re-written

as: D(

[
xi
0

]
−
[

c∗
0

]
) = 0. Since N (D) = {0}, the only

solution to this equation is xi = c∗. Therefore, OMP
recovers exactly and uniquely the representation of yi.

ii) The residual rk = 0 and the columns of D selected
by Ωk include Di (Si ⊂ Span(DΩk)): in this case we

have yi = Dxk = [Di Dic ]

[
xi
xic

]
. By using the unique

representation of yi, we obtain D
[

xi
xic

]
= D

[
c∗
0

]
,

which can be re-written as: D(

[
xi
xic

]
−
[

c∗
0

]
) = 0. Since

N (D) = {0}, the only solution to this equation is
xi = c∗ and xic = 0. Therefore, OMP recovers exactly
and uniquely the representation of yi.

iii) OMP reached the maximum number of iterations Kmax =
M and the residual rk ̸= 0: This scenario is impossible
as proved in the following. In this case xk is the solution
of the convex least-squares problem argminx ∥yi −Dx∥2,
therefore, the gradient of the least-squares objective
equals zero at the global minimum: DT (yi −Dxk) = 0.

By replacing yi with its unique representation D
[

c∗
0

]
we

obtain DT D(

[
c∗
0

]
−xk) = 0. Since rank(DT D) = M then

N (DT D) = {0}, and the only solution to this equation

is xk =

[
c∗
0

]
, which results in rk = 0. Therefore, OMP

recovers exactly and uniquely the representation of yi.

Part II: Given the correct recovery of C, the collection Y is
decomposed as follows10:

10This part of the theorem is proved for the case of two subspaces, in order
to focus on the essence of the method and avoid cumbersome notations.

Algorithm 3 Orthogonal Matching Pursuit (OMP)

Input: y, D = [d1,d2, ...,dM] ∈ RN×M.
Initialize:

1) Iteration counter k = 0.
2) Maximum number of iterations Kmax = M.
3) Support set Ω0 = /0.
4) Residual r0 = y.

Repeat until rk = 0 or k = Kmax

1) Increment iteration counter k = k+1.
2) Select atom: find j = argmax j |< rk−1,dj > |.
3) Ωk = Ωk−1 ∪ j.
4) solution xk = argminu ∥y−Du∥2 s.t. Support{u}=Ωk.
5) rk = y−Dxk

Output: xk.

Y = [Y1 Y2] = DC = [D1 D2]

[
C1 0
0 C2

]
. (18)

By defining A1 = |C1| ∈ Rd1×L1 and A2 = |C2| ∈ Rd2×L2 ,
the affinity matrix is given by:

W =

 0 A1 0
0 A2

AT
1 0

0 AT
2

0

 .

The optimal partition is V1 = {d1 atoms o f D1 ∪
L1 signals spanned by D1} and V2 = {d2 atoms o f D2 ∪
L2 signals spanned by D2}. W.l.o.g. we rearrange the rows and
columns of W such that the vertices associated with V1 are
the leading vertices and the vertices associated with V2 are
the tailing vertices. The rearranged affinity is given by:

W =


0 A1

AT
1 0 0

0 0 A2
AT

2 0

 .

The cut of the optimal partition is given by:

cut(V1,V2) = ∑
i∈V1, j∈V2

Wi j = 0, (19)

and the weight of each group is given by:

weight(V1,2) = ∑i∈V1,2 ∑k W ik = 2S(A1,2)> 0, (20)

where S(Q) = ∑n,m Qnm is the sum of matrix entries. There-
fore, the normalized-cut metric equals zero for the optimal
partition.

Theorem 2. Let Y = [Y1,Y2, · · · ,YK ] be a collection of
L= L1+L2+ · · ·+LK signals from K independent subspaces of
dimensions {di}K

i=1. Given a dictionary D = [D1,D2, · · · ,DK ]
such that Di ∈ RN×di spans Si and di > dim(Si), OMP is
guaranteed to recover a correct sparse representations matrix
C such that Y = DC, C include only atoms from the correct
subspace basis for each signal, and minimization of the
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Normalized-Cut criterion for partitioning the bipartite graph
defined by (8) will yield correct subspace clustering.

Proof: The matrix C is computed column-by-column
using OMP, therefore, correctness is proved for one column
ci = xk that represents a signal yi ̸= 0 from subspace Si.
OMP terminates either if the residual rk = 0 or the iteration
counter k =Kmax =M. The proof is provided for each possible
termination state of OMP:

i) rk = 0 and Si = Span(DΩk): in this case we have

yi = Dxk = [Di Dic ]

[
xi
0

]
= Dixi, and xi ̸= 0. Therefore,

yi is correctly and exclusively represented by atoms that
span Si.

ii) rk = 0 and Si ⊂ Span(DΩk): in this case we have

yi = Dxk = [Di Dic ]

[
xi
xic

]
. On the other hand, xk is the

solution to the least-squares problem 4) of Algorithm 3,
which is computed using the pseudo-inverse xk = D†

Ωk yi.
Therefore, this solution is guaranteed to have the
smallest l2-norm among all feasible solutions to the
equation yi = Du (s.t. support(u)=Ωk). Since yi ∈ Si it

can be represented by yi = Dic∗ = [Di Dic ]

[
c∗
0

]
, which

leads to Dic∗ = Dixi + Dicxic . Note that this equation
can be rewritten as11 Di(c∗−xi) = Dicxic , in which the
left-hand side is a vector in Si and the right-hand side is
a vector in ⊕K

j=1, j ̸=iS j. The subspaces Si and ⊕K
j=1, j ̸=iS j

are independent, therefore their intersection contains
only the null vector. The implications of this result are
that Dicxic = 0 and that xi is a feasible solution (namely
yi = Dixi). Since the pseudo inverse-based solution
provides the solution with the smallest l2-norm, we

obtain that
∥∥∥∥[xi

0

]∥∥∥∥
2
<

∥∥∥∥[ xi
xic

]∥∥∥∥
2

∀ xic ̸= 0). Therefore,

this solution must lead to xic = 0 and thus yi is correctly
and exclusively represented by atoms that span Si.

iii) OMP reached the maximum number of
iterations Kmax = M: In this case there is an
infinite number of solutions to the equation
yi = DΩM xk = Dxk = Dixi +Dicxic , such that Dicxic = 0.
Therefore, the minimizer of the convex least-squares
problem argminx ∥yi −Dx∥2 must reach its global
minimum, which is rk = 0, and following case ii) above,
yi is correctly and exclusively represented by atoms that
span Si.

The second part of the theorem follows exactly from part
II of therom I.
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