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This Lecture is About ...

A Proposed Theory for Deep-Learning (DL)

Explanation: _

o DL has been extremely successful in /\L\to—,&%\‘;\g})\ge“
solving a variety of learning problems e ;&;&w o

o DL is an empirical field, with numerous ‘ ' mam ‘-”N'B‘\‘AM
tricks and know-how, but almost no “a mg e
theoretical foundations RL?Xede pﬂad“‘“e

o A theory for DL has become the DeeG% ee(_‘,h
holy-grail of current research in . ‘gs“c‘g"f‘g ”‘TC“J\_S_\—\\\%t on
Machine-Learning and related fields gatch-NO orma
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Who Needs Theory ?

Al Rahim| == “Machine
We A” DO || NIPS 2017 . learning has
Test-of-Time 3 become
Award " alchemy”
.. because ... A theory - =
o ...could bring the next rounds of ideas Yan LeCun Understanding is a good

thing ... but another goal is
inventing methods. In the
history of science and
technology, engineering

to this field, breaking existing barriers
and opening new opportunities

o ...could map clearly the limitations of

existing DL solutions, and point to key preceded theoretical understanding:
features that control their performance " Lens & telescope — Optics
. . = Steam engine — Thermodynamics
o ...could remove the feeling with many = Airplane —> Aerodynamics
of us that DL is a “dark magic”, turning = Radio & Comm. — Info. Theory
it into a solid scientific discipline = Computer — Computer Science
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A Theory for DL ?

Stephane Mallat (ENS) &
Joan Bruna (NYU): Proposed
the scattering transform
(wavelet-based) and
emphasized the treatment of
invariances in the input data

Richard Baraniuk & Ankit
Patel (RICE): Offered a
generative probabilistic
model for the data,
showing that classic
architectures relate to it
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Raja Giryes (TAU): Studied the architecture of DNN in the context
of their ability to give distance-preserving embedding of signals

Gitta Kutyniok (TU) & Helmut Bolcskei (ETH): Studied the ability of
DNN architectures to approximate families of functions

Architecture

Data
Algorithms

Rene Vidal (JHU): Explained the ability to optimize the typical non-
convex objective and yet get to a global minima

Naftali Tishby (HUJI): Introduced the Information Bottleneck (IB)
concept and demonstrated its relevance to deep learning

Stefano Soatto’s team (UCLA): Analyzed the Stochastic Gradient
Descent (SGD) algorithm, connecting it to the IB objective




So, is there a Theory for DL ?

The answer is tricky:

=51
=

. \u@ (‘ - =
g ¥ e S
-3\ .
! W Tk
’ ¥ - i
v
v S A >
N N .
N~ Y \ | f ) - /4 =
) \ " k “\‘ .
AR NS N AN
» -

There are already
various such attempts,
and some of them are

truly impressive

.. but ...

none of them is
complete
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Interesting Observations

o Theory origins: Signal Proc., Control Theory, Info. Theory, Harmonic
Analysis, Sparse Represen., Quantum Physics, PDE, Machine learning ...

Ron Kimmel: “DL is a dark monster covered
with mirrors. Everyone sees his reflection in it ...”

'
|

e '!! David Donoho: “... these mirrors are taken
| ..\ from Cinderella’s story, telling each that
he is the most beautiful”

O Today s talk is on our proposed theory:

i@

s |

Yaniv Romano Vardan Papyan Jeremias Sulam 00C and yes; our theory IS the beSt O

Michael Elad 6
The Computer-Science Department
The Technion



This Lecture: More Specifically

Sparseland CSC ML-CSC
Sparse Convolutional Multi-Layered

Representation Sparse » Convolutional
Theory Coding Sparse Coding

Sparsity-Inspired Models > Deep-Learning

Another underlying idea that accompanies us

Disclaimer: Being a

lecture on the theory
Generative modeling of data sources enables > of DL, this lecture

o A systematic algorithm development, & is ... theoretical ... and
o A theoretical analysis of their performance

J mathematically oriented
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Our eventual goal in today’s talk is to present the ...

Multi-Layered Convolutional
Sparse Modeling

So, lets use this as our running title,
parse it into words,
and explain each of them
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Multi-Layered Convolutional

sparse|Modeling
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Our Data is Structured

Stock Market Text Documents

ong Yerm Macket T

Biological Signals

B o
: \\\\\ ‘ |

Videos
o We are surrounded by various diverse
sources of massive information

o Each of these sources have an internal
structure, which can be exploited

o This structure, when identified, is the
engine behind the ability to process data

Voice Siinals © e die -~ _ "
' ects
. - 4 J

edica_l_lmaging I
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o How to identify structure?
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Our Data is Structured

Stock Market Text Documents

ong Yerm Macket T

Matrix Data

= R

Biological Signals

. S . e

S \wg‘ PR Still Images  cial Networks T
\\ E X e R, “ s m|c ata
& -Using modelsgs

o We are surrounded by various diverse
sources of massive information

o Each of these sources have an internal
structure, which can be exploited

o This structure, when identified, is the
engine behind the ability to process data

Voice Siinals © e die 3D _ "
' ects
. - 4 J

edica_l_lmaging I
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Model?

Fact 1:
This signal
contains AWGN
N(0,1)

Fact 2:
The clean signal

is believed to
be PWC

Effective removal of noise (and many other tasks)
relies on an proper modeling of the signal
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Models

o A model: a mathematical Principal-Component-Analysis

description of the underlying
signal of interest, describing our
beliefs regarding its structure

Gaussian-Mixture
Markov Random Field

Laplacian Smoothness

o The following is a partial list of 'DCT concentration
commonly used models for images ‘Wavelet Sparsity
o Good models should be simple while Piece-Wise-Smoothness
matching the signals
Simplicit ” Reliabilit
PREEY Y
: Beltrami-Fl
o Models are almost always imperfect e ——
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What this Talk is all About?

Data Models and Their Use

o Almost any task in data processing requires a model —
true for denoising, deblurring, super-resolution, inpainting,

compression, anomaly-detection, sampling, recognition,
separation, and more

o Sparse and Redundant Representations offer a new and
highly effective model — we call it

Sparseland

o We shall describe this and descendant versions of it that
lead all the way to ... deep-learning
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Multi-Layered Convolutional
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A New Emerging Model

Signal

. Machine
Processing Learning Mathematics
Wavelet e Approximation
Theory Theory
Analy5|s Sparse[and‘ Algebra

Optimization

Signal Theory
Transforms ‘
Semi-Supervised Interpolation Source. >egmentation  “goncqr Fusion
Learning e (cmlvr . re
!nference (solving Separation Classification SUmmarizing
Compression Inverse pr0b|emS)

Prediction  Denoising Ano_rm Synthesis

Recognition : :

|
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The Sparseland Model

o Task: model image patches of
size 8 X8 pixels

o We assume that a dictionary of

such image patches is given, R
containing 256 atom images R
zf-'n?

o The Sparse[anc{ model assumption: .
every image patch can be ﬁﬁ? E;
described as a linear i
combination of few atoms . mia

W . N | liM,
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The Sparseland Model

Properties of this model:

Sparsity and Redundancy

o We start with a 8-by-8 pixels patch and o
represent it using 256 numbers

— This is a redundant representation é-—:;:'= -

o However, out of those 256 elements in the ul- S -

r
|

representation, only 3 are non-zeros '_L_'- =r-.r_ -

e —— : EES Bl M.

This is a sparse representation A o kT

R N N

o Bottom line in this case: 64 numbers E A REY  Bar"™

) M- HigL ¥ "3
representing the patch are replaced by 6 N Ei - M-l

(3 for the indices of the non-zeros, and 3 : = =,'=Nﬁ S

: ; - M NuW, {ANd

for their entries) B - T N
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Chemistry of Data

We could refer to the Sparse[anc[
model as the chemistry of information:

o Our dictionary stands for the [g=glels[[sME] ]
containing all the elements

o Our model follows a similar rationale:
Every molecule is built of few elements

Michael Elad %‘\.
The Computer-Science Department
The Technion

— a3\ . HAP -F

J—
-
-

19



Sparseland : A Formal Description

o Every columninD

(dictionary) is a
o M prototype signal (atom)

A
A

H \(: (1t o The vector ais
[
-l - . " generated

n | — .

- with few non-

v L J ; X N zeros at arbitrary

A Dictionary A SPRIEE locations and
vector
D values

o o This is a generative model

that describes how (we
believe) signals are created

*= | Michael Elad 20
¥ The Computer-Science Department
The Technion




Difficulties with Sparseland

o Problem 1: Given a signal, how

can we find its atom decomposition?

o Asimple example:

= There are 2000 atoms in the dictionary

=  The signal is known to be built of 15 atoms

‘ (Z(I)EOJ ~2.4e + 37 possibilities

= |f each of these takes 1nano-sec to test,

o So, are we stuck?
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Atom Decomposition Made Formal

g
)
g

Al N

min, ||ally s.t. x = Da

! . D

VN y

ming llallo s.t. IDa—yll, <¢ e
(04

L[]
[ 4
| .

A

. L

Approximation Algorithms

cwd\

Relaxation methods Greedy m

" L,—counting number of
non-zeros in the vector

= This is a projection onto
the Sparseland model

g

ethods
= These problems are known

Basis-Pursuit Thresholding/OMP to be NP-Hard problem
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Pursuit Algorithms

ming [[all s.t. |[Da—yll; <€

Approximation Algorithms

Basis Pursuit Matching Pursuit Thresholding

Change the Ly into L, Find the support greedily, Multiply y by DT

and then the problem one element at a time and apply shrinkage:
beCOmeS CO nVEX and F====..........=.=..======= h d B T h a = ?ﬁ{DTY}
manageable e e 1

T T T P T e eIl
) I T O
T T T P T e eIl
| o 1 I T O
I T O
T T T P T e eIl
S. t T T T P T e eIl
« L I T O
T T T P T e eIl
I T O

xa— y y) E Qe
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Difficulties with Sparseland

o There are various pursuit algorithms

o Here is an example using the Basis Pursuit (L,):

0 200 400 600 800 1000 1200 1400 1600 1800 2000

o Surprising fact: Many of these algorithms are often
accompanied by theoretical guarantees for their
success, if the unknown is sparse enough

*= | Michael Elad
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The Mutual Coherence

o Compute ‘ D ]=
DT Assume '-._
normalized "ul
columns DTD

o The Mutual Coherence pu(D) is the largest off-diagonal
entry in absolute value

o We will pose all the theoretical results in this talk using
this property, due to its simplicity

o You may have heard of other ways to characterize the
dictionary (Restricted Isometry Property - RIP, Exact
Recovery Condition - ERC, Babel function, Spark, ...)
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Basis-Pursuit Success

Theorem: Given a noisy signal y = Da + v where ||v]||, < ¢
and «a is sufficiently sparse, 1 ( 1)
1 +E

allg < —
» lallo < 7
then Basis-Pursuit:

min, [lall; s.t. |[Da—yl[; <¢
4.2
1-p(4|lallp—1)

leads to a stable result: [|[@ — o|3 <

Donoho, Elad & Temlyakov (‘06)
Comments:

X o Ife=s0 >0 =aa

vl

D _ _ o o Thisis a worst-case
: -:_h ming |lallo analysis — better
= s. t. bounds exist
m H' IDa—yll, < € o Similar theorems
(04 exist for many other
Ivll, < ¢ pursuit algorithms
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Difficulties with Sparseland

o Problem 2: Given a family of signals, how do
we find the dictionary to represent it well? I
2

o Solution: Learn! Gather a large set of
signals (many thousands), and find the
dictionary that sparsifies them B

R L N
o Such algorithms were developed inthe B he - 5- =r|»r. -
past 10 years (e.g., K-SVD), and their 'EEE i :‘gbysn:
' isi A TN L
performance is surprisingly good =_- P“.ﬁ B
o We will not discuss this matter further -'" ='“.',"“ |
in this talk due to lack of time n e ik
" W 3 |l
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Difficulties with Sparseland

o Problem 3: Why is this model suitable to
describe various sources? e.g., Is it good : F
for images? Audio? Stocks? ...

o General answer: Yes, this model is

extremely effective in representing L o S agh =
various sources S I e
Al aresr 1s
; . H . ri ‘
= Theorr]etlcal ZnTwer. Clear connection ;EE ma!'n!‘“: -
. H
to other models A A
.. . E A REN  “Ba'™
= Empirical answer: In alarge variety of M- NitL: T
signal and image processing (and later » ='..g‘...,'“
; : ; 1 Esr@NZS -
machine learning), this model has been . WM, miw
shown to lead to state-of-the-art results _ L
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Difficulties with Sparseland ?

o Problem 1: Given an image patch, how
can we find its atom decomposition ?

o Problem 2: Given a family of signals,
how do we find the dictionary to
represent it well?

o Problem 3: Is this model flexible
enough to describe various sources?
E.g., Is it good for images? audio? ...

Michael Elad
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Difficulties with Sparseland ?

Ae'"a"m - k=-EF= R
E—I1 =Y i s O e B —
— R m-—-Hi1" Nad
Ul Se- - .- 31-_. =1
BAS (7PN - ee——
- . BE1AM 4BV E &N
=1 I - mElll M%L 1.
EECd™ N & BE2 IR
hd A 114 YR L
B Ayl FrBREY " Ba'™
M- g4 “JdII1L, TAL?
. -SR-"OEE .M -l

P EfS \HIIERN -
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' ali‘Fd, . | & ° X |1il,
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This Field has been rapidly GROW!| NG

Published Items in Each Year

O Sparse[anc[ has a great success in signal &
image processing and machine learning tasks

o In the past 8-9 years, many books were
published on this and closely related fields
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A New Massive Open Online Course

e' x courses « Programs = Schoo

¥ Israel X

Sparse Representations in Signal. & ©
and Image Processing

Learn the theory, tools and algorithms of sparse
representations and their impact on signal and image
processing.

Start the Professional Certificate Program



Sparse[ancf for Image Processing

o When handling images, Sparse[ancf is typically deployed on small

overlapping patches due to the desire to train the model to fit the
data better

o The model assumption is: each patch in the image is believed to
have a sparse representation w.r.t. a common local dictionary

o What is the corresponding global model? This brings us to ... the
Convolutional Sparse Coding (CSC)
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Convolutional
Sparse Modeling

Joint work with
R

Yaniv Romano Vardan Papyan Jeremias Sulam
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Convolutional Sparse Coding (CSC)

m filters convolved with their sparse
representations

i-th feature-map: An
image of the same size

as X holding the sparse
¢ representation related
to the i-filter

2 d I‘ -H H_-H::‘.
An image : 4
with N PHEEH :
pixels AR -
éEE= The i-th fllter of A

P E small size n

This model emerged in 2005-2010, developed and advocated by Yan LeCun and
others. It serves as the foundation of Convolutional Neural Networks
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CSC in Matrix Form

o Here is an alternative global sparsity-based model formulation

T (L o N B
X — Z CIFI —
=k l"m
o C! € RVN*N s 3 banded and Circulant
matrix containing a single atom

with all of its shifts

ENFEEE

»

oT! € RN are the corresponding coefficients
ordered as column vectors

mm EEEEEE
m CEECEE
B B
I
m = [
CEE m |
HEN
CEEEEN
CEEC NN
DN
NN
CEECEEN
B L
CEE N
CEECEEN
CEL N
CEE NN
RN I
W T ] bk
DN
)J
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The CSC Dictionary

r "
m EEEEEE W EmEEE N T
m  EESEE DN CEEEEE BN CEE W
L T EEEE NN " EEEE EEE =

" EEs

B o m

EEEE -

| [ [ [
[ 77 [
I ] [

(e [ [ 1 O O T O

|
0 o o |
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/ 0
stripe-dictionary __~stripe vector ——/

X=DI L(/

RiX = Qy;
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/7
X DT stripe—dictionary/stripe vector ——/
i // Every patch has a sparse

R;X = Qy; representation w.r.t. to the
same local dictionary () just
Riy1X = Qvyjq

Yi+1

as assumed for images
Michael Elad
The Computer-Science Department
The Technion
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Classical Sparse Theory for CSC ?

mrin ITll, s.t.|]Y—DrI|, <¢

Theorem: BP is guaranteed to “succeed” .... if ||[T||y < %(1 * i)

o Assuming that m = 2 and n = 64 we have that [welch, '74]
u=0.063

o Success of pursuits is guaranteed as long as

1
1Tl < (1 + ﬁ) L14-1) ~ 42

o Only few (4) non-zeros GLOBALLY are
allowed!!! This is a very pessimistic result!

Michael Elad 33
The Computer-Science Department
The Technion




Classical Sparse Theory for CSC ?

mrin ITll, s.t.|]Y—DrI|, <¢

Theorem: BP is guaranteed to “succeed” .... if ||[T||y < %(1 * i)

o Assuming that m = 2 and n = 64 we have that [welch, '74]
u=0.063

o Success of pur :
The c\assic 5

Ot p V\d
h

does
o0

alloweaT!T This is a very pessimistic result!
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Moving to Local Sparsity: Stripes

m = 24,
£O,oo Norm: ”F”Ooo — maX ||YI”O 2
bmln T3, s-t. |[Y—=DI]|; < '
» IT|[3, o is low — all y; are sparse — every i
. A
patch has a sparse representation over £} (=

Yiew [ Vi
The main question we aim to address is this: E )
\l
Can we generalize the vast theory of Sparseland to this :
new notion of local sparsity? For example, could we £

provide guarantees for success for pursuit algorithms? F
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Success of the Basis Pursuit

E
[gp = min - IY — DT||5 + ATl

Theorem: ForY = DI'+ E, if A = 4||E||12)’OO if

1 1 o
» ITIS . <=(1+ This is a .much better
' 3 u(D) result — it allows few
then Basis Pursuit performs very-well: non-zeros locally in
each stripe, implying

) a permitted O(N)
— <

2. |ITgp —T'lle = 7.5][Ell; o non-zeros globally

3. Every entry greater than 7.5||E||I2),Oo is found

4

1. The support of I'gp is contained in that of T

Too iS UNiQue Papyan, Sulam
s a & Elad (‘17)
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From CSC to Multi-Layered CSC

XeRY D; e RY*V™ T; e RV™ We propose to impose the
my same structure on the
representations themselves

[

Fl € [Rle D2 € Rlemez l"z € IRNmz

_ mp i
Convolutional sparsity MMy
(CSC) assumes an !
inherent structure is = my {

present in natural
signals

» Multi-Layer CSC (ML-CSC)
Michael Elad 45
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Intuition: From Atoms to Molecules

XeRY  D; e RVN™ T, eBERIMNM: T, € RN™

 —
 —

o We can chain the all the dictionaries
into one effective dictionary
Dess = DDy D3 - D — X = Dggr Ik

o This is a special Sparseland (indeed, a CSC) model
N iy

o However: Y1"1 e RV™

= Akey property in this model: sparsity of the intermediate representations

=  The effective atoms: atoms

Su% | Michael Elad 46
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A Small Taste: Model Training (MNIST

MNIST Dictionary:

*D,: 32 filters of size 7x7, with stride of 2 (dense)

*D,: 128 filters of size 5x5x32 with stride of 1 - 99.09 % sparse
*D3: 1024 filters of size 7x7x128 —99.89 % sparse

Michael Elad 47
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A Small Taste: Model Training (MNIST)

MNIST Dictionary:
*D;: 32 fiIter {2 (dense)
*D,: 128 / - 3 X 1- 99.09 % sparse

Narse

Michael Elad
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ML-CSC: Pursuit

o Deep—Coding Problem (DCP, ) (dictionaries are known):

( X=DyI
I = D,I,

\

o Or, more realistically for noisy signals,

Find {I‘j}]il s.t. <

(lY-D.Lyll, <€
I = D,I5

Michael Elad
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A Small Taste: Pursuit

I
94.51 % sparse

99.51% sparse
(5 nnz)
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The simplest pursuit algorithm (single-layer case) is
the THR algorithm, which operates on a given input signal Y by:

10
Y=Dr +E g Va4
and I' is sparse 611 + 5%(2) - Soft Nonnegative i
P
2 = 3
: .
~ -2
[ = Ps(DTY) »

_1910-8—6 -4 -2 0 2 4 6 8 10

Michael Elad 0]
The Computer-Science Department
The Technion




Consider this for Solving the DCP

o Layered thresholding (LT):

K
(DCP{): Find {Ij}.  s.t.
Estimate I'; via the THR algorithm =1

U (MY -DiLll, <€ Nlfe <A
T — T T = S <
[, =Pg, (DI P, (DTY)) | T=Dalz  IRlie <
- ~ . : .
Estimate I, via the THR algorithm | Tk-1 = Dklx ITicl[0,00 = )\KJ

o Now let’s take a look at how Conv. Neural Network operates:
f(Y) = ReLU (b, + W] ReLU(b, + W]'Y))

The layered (soft nonnegative)
thresholding and the CNN forward pass
algorithm are the very same thing !!!
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Theoretical Path
_ | "}t 15",'1"('”&\"?'.'\\ ﬂW‘W

m A
Q -I- . e _guie

T, = DKFK (Forward Pass)

Maybe other?

I is Ly o Sparse

Armed with this view of a generative source model, we
may ask new and daring theoretical questions
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Success of the Layered-THR

»

Theorem:IfIII‘illf‘,oo<l 1+ — |rrlr:;i| s '831;:,(
' 2 u(@;) I ] uy)  |r{teX|

then the Layered Hard THR (with the proper thresholds)
finds the correct supports and ||I‘{‘T — I‘i||12)oo < si, where

we have defined ¢} = IIEIIIZ)’Oo and

et = JIRIE - (el + uO (IRl — 1)IFP)

Papyan, Romano & Elad (‘17)

Problems:

1. Contrast

2. Error growth

3. Error even if no noise
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Layered Basis Pursuit (BP)

o We chose the Thresholding algorithm
due to its simplicity, but we do know
that there are better pursuit methods
— how about using them?

o Lets use the Basis Pursuit instead ...

\

1
FLBP = Hll,ln 5 1Y — D1F1||% + A || T |
1

FLBP

\

1

) K
(DCP{): Find {rj}j:1

(IY = DIy, < €

I =D,I;

I'k_1 = DIk

= min > || LBP — D, L[| + 2,1, ]Iy

IT I 0 <2y )
IT2115 00 < A,

~N"

1Tl o0 < Ak

Deconvolutional networks
[Zeiler, Krishnan, Taylor & Fergus ‘10]
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Success of the Layered BP
/h

Theorem: Assuming that |||l ., < (1 +

o)

then the Layered Basis Pursuit performs very well:

1. The support of FLBP is contained in that of I

» 2. The erroris bounded: |I‘LBP I‘-||poo < el where

3. Every entry in I greater than

Problems:

eL/\/llI‘ || Will be found 1. -Contrast
2. Error growth
Papyan Romano & Elad (‘17) 3. Errereven-i-Re-reise
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Layered lterative Thresholding

Layered BP: I‘]-LBP = mln || LBP D]Tj||§ T EJ'||FJ'”1 ]

.~

Layered Iterative Soft-Thresholding:

I =Sgq (07 + DI (T - D))

Note that our suggestion
implies that groups of layers Can be seen as a very deep

share the same dictionaries recurrent neural network
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Where are the Labels?

Answer 1:
d__F
o We do not need labels because everything we
show refer to the unsupervised case, in which
we operate on signals, not necessarily in the
context of recognition
X — Dlrl X
I = D,I;
I'k-1 = DklIxk B

L(X)
I is Ly« sparse

We presented the ML-CSC as a
machine that produces signals X

Michael Elad 52
The Computer-Science Department
The Technion



Where are the Labels?

Answer 2:
o In fact, this model could be augmented by a
M . synthesis of the corresponding label by:
X L(X) = sign{c + Z]-Kzl WjTFj}
X — Dlrl ) . .
o This assumes that knowing the representations
I = D,I;

(or maybe their supports?) suffice for

: identifying the label
Mk, =Dglx ™ |

L(X) o Thus, a successful pursuit algorithm can lead to
an accurate recognition if the network is
I is Ly« sparse augmented by a FC classification layer

We presented the ML-CSC as a
machine that produces signals X
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What About Learning?

Sparseland CSC ML-CSC
Sparse Convolutional » Multi-Layered

Representation Sparse Convolutional
Theory Coding Sparse Coding

All these models rely on proper
Dictionary Learning Algorithms to fulfil their mission:

=  Sparseland: We have unsupervised and supervised such algorithms, and a
beginning of theory to explain how these work

= (CSC: We have few and only unsupervised methods, and even these are not fully
stable/clear

= ML-CSC: One algorithm has been proposed (unsupervised) — see ArxiV
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Time to Conclude
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The desire to
model data

This Talk Sparseland «

We spoke about the importance of models in signal/image
processing and described Sparselandin details
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The desire to
model data

This Talk Sparseland «

\ 4

Novel View of
Convolutional
Sparse Coding

We presented a theoretical study of the CSC model and
how to operate locally while getting global optimality
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This Talk

Sparseland g

\ 4

Novel View of
Convolutional
Sparse Coding

\ 4

Multi-Layer
Convolutional
Sparse Coding

We propose a multi-layer extension of
CSC, shown to be tightly connected to CNN

The desire to
model data

A_r

M

X - Dirl
Fl = Dzrz
Ik-1 = DgIk

I is Ly o Sparse

4

X

Michael Elad
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The desire to

Th |S Ta ‘ k Sparse[am[ « model data

\ 4 :

Novel View of 9‘4

Convolutional X = D,T, I

Sparse Coding I, = D,I,
- tﬂ_\ﬂ__ ‘ Tk—1 - DIk X
= " I is Ly o Sparse
A novel interpretation Multi-Layer
and theoretical « Convolutional
understanding of CNN Sparse Coding

The ML-CSC was shown to enable a theoretical
study of CNN, along with new insights
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The desire to

This Talk Spareland | G

model data
Take Home Message 1: !
Generative modeling of data
sources enables algorithm Novel View of

Convolutional

velopment along with
development along wit Sparse Coding

theoretically analyzing
algorithms’ performance

Take Home Message 2:
The Multi-Layer
Convolutional Sparse
Coding model could be
a new platform for
understanding and
developing deep-
learning solutions

Michael Elad 59
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A novel interpretation Multi-Layer

and theoretical Convolutional
understanding of CNN Sparse Coding




fQUSD,nCt' dndenoising
“dict eClOrpatches
IC |onaryc>8%oo

plxels estimation

atrlx

inequality
separation

it
eﬁ‘ﬁ?—il sns to L .
penely probablllty
cardinality retselgtld?é I codung
Sparse- Lan%on_ze"r~ MMSE I m | J t"
random Um
Compressmn 2
thresholdmg ——
' redund?nt . bO“”dSupport S|gna|
-SVD
inpaintin value nO|Se
shrirF\)kage ° OMP ||'}A‘|/é%r
local
wavelet

More on these (including these slides and the relevant papers) can be
found in http://www.cs.technion.ac.il/~elad
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