Sparse Modeling in Image Processing and Deep Learning

Michael Elad

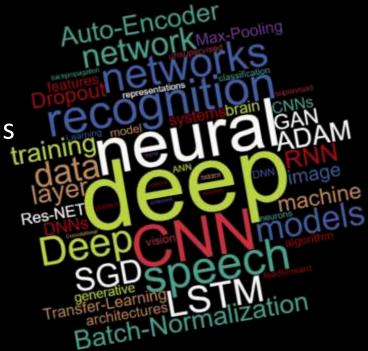
Computer Science Department
The Technion - Israel Institute of Technology
Haifa 32000, Israel

This Lecture is About ...

A Proposed Theory for Deep-Learning (DL)

Explanation:

- DL has been extremely successful in solving a variety of learning problems
- DL is an empirical field, with numerous tricks and know-how, but almost no theoretical foundations
- A theory for DL has become the holy-grail of current research in Machine-Learning and related fields



Who Needs Theory?

We All Do!!

... because ... A theory

- ... could bring the next rounds of ideas to this field, breaking existing barriers and opening new opportunities
- ... could map clearly the limitations of existing DL solutions, and point to key features that control their performance
- ... could remove the feeling with many of us that DL is a "dark magic", turning it into a solid scientific discipline

Ali Rahimi: NIPS 2017 Test-of-Time Award

"Machine learning has become alchemy"

Yan LeCun

Understanding is a good thing ... but another goal is inventing methods. In the history of science and technology, engineering

preceded theoretical understanding:

- Lens & telescope → Optics
- Steam engine → Thermodynamics
- Airplane → Aerodynamics
- Radio & Comm. → Info. Theory
- Computer → Computer Science

A Theory for DL?

Stephane Mallat (ENS) &
Joan Bruna (NYU): Proposed
the scattering transform
(wavelet-based) and
emphasized the treatment of
invariances in the input data

Richard Baraniuk & Ankit
Patel (RICE): Offered a
generative probabilistic
model for the data,
showing that classic
architectures relate to it

Raja Giryes (TAU): Studied the architecture of DNN in the context of their ability to give distance-preserving embedding of signals Gitta Kutyniok (TU) & Helmut Bolcskei (ETH): Studied the ability of DNN architectures to approximate families of functions

Architecture

Data

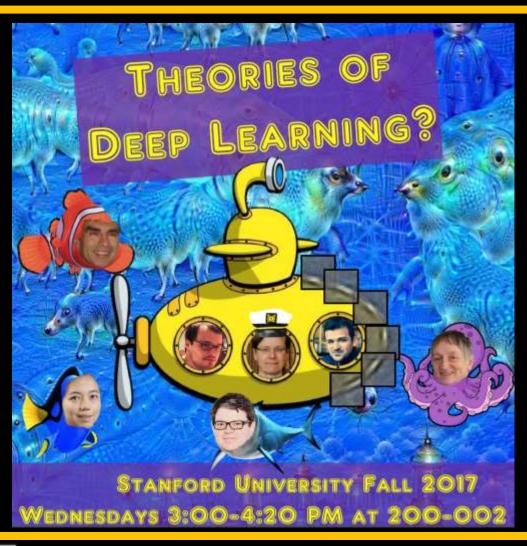
Algorithms

Rene Vidal (JHU): Explained the ability to optimize the typical nonconvex objective and yet get to a global minima

Naftali Tishby (HUJI): Introduced the Information Bottleneck (IB) concept and demonstrated its relevance to deep learning

Stefano Soatto's team (UCLA): Analyzed the Stochastic Gradient Descent (SGD) algorithm, connecting it to the IB objective

So, is there a Theory for DL?



The answer is tricky:

There are already various such attempts, and some of them are truly impressive

... but ...

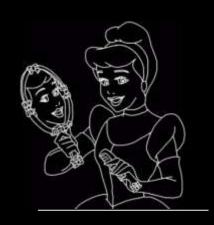
none of them is complete

Interesting Observations

 Theory origins: Signal Proc., Control Theory, Info. Theory, Harmonic Analysis, Sparse Represen., Quantum Physics, PDE, Machine learning ...

Ron Kimmel: "DL is a dark monster covered with mirrors. Everyone sees his reflection in it ..."

David Donoho: "... these mirrors are taken from Cinderella's story, telling each that he is the most beautiful"



Today's talk is on our proposed theory:

Yaniv Romano

Vardan Papyan

Jeremias Sulam

... and yes, our theory is the best

This Lecture: More Specifically

Sparseland

Sparse Representation Theory

CSC

Convolutional
Sparse
Coding

ML-CSC

Multi-Layered Convolutional Sparse Coding

Sparsity-Inspired Models

Deep-Learning

Another underlying idea that accompanies us

Generative modeling of data sources enables

- A systematic algorithm development, &
- A theoretical analysis of their performance

Disclaimer: Being a lecture on the theory of DL, this lecture is ... theoretical ... and mathematically oriented

Our eventual goal in today's talk is to present the ...

Multi-Layered Convolutional Sparse Modeling

So, lets use this as our running title, parse it into words, and explain each of them

Multi-Layered Convolutional Sparse Modeling

Our Data is Structured

Biological Signals

Still Images

cial Networks

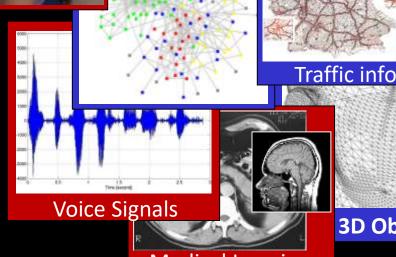
Matrix Data

Seismic Data

 We are surrounded by various diverse sources of massive information

- Each of these sources have an internal structure, which can be exploited
- This structure, when identified, is the engine behind the ability to process data

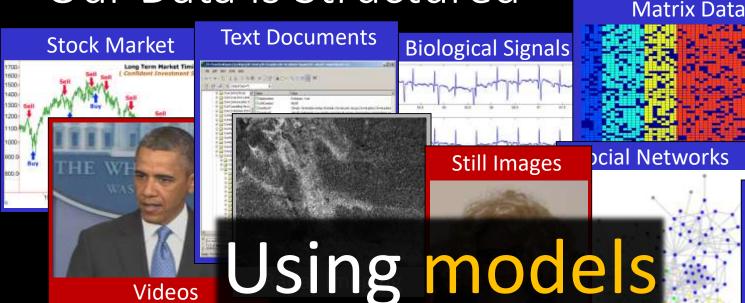
O How to identify structure?



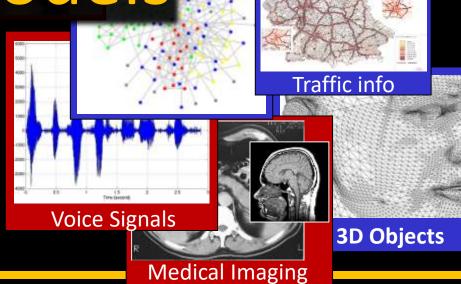
3D Objects

Medical Imaging

Our Data is Structured

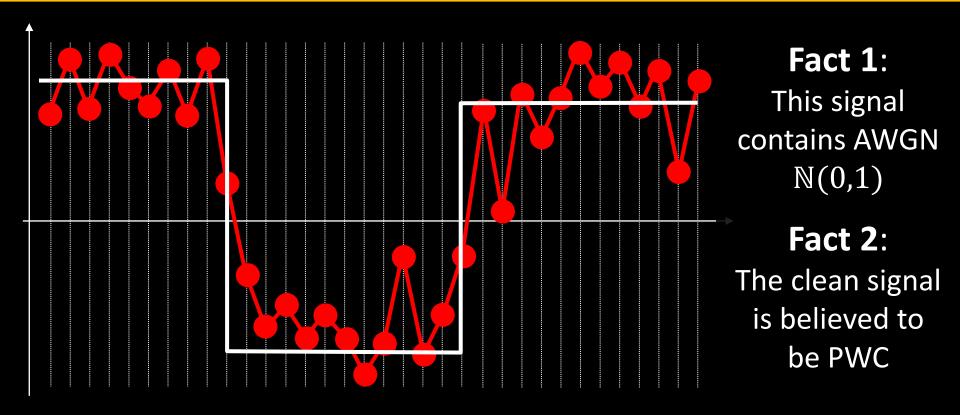


- We are surrounded by various diverse sources of massive information
- Each of these sources have an internal structure, which can be exploited
- This structure, when identified, is the engine behind the ability to process data
- O How to identify structure?



Seismic Data

Model?



Effective removal of noise (and many other tasks) relies on an proper modeling of the signal

Models

- A model: a mathematical description of the underlying signal of interest, describing our beliefs regarding its structure
- The following is a partial list of commonly used models for images
- Good models should be simple while matching the signals

Simplicity Reliability

Models are almost always imperfect

Principal-Component-Analysis

Gaussian-Mixture

Markov Random Field

Laplacian Smoothness

DCT concentration

Wavelet Sparsity

Piece-Wise-Smoothness

C2-smoothness

Besov-Spaces

Beltrami-Flow

Total-Variation

What this Talk is all About?

Data Models and Their Use

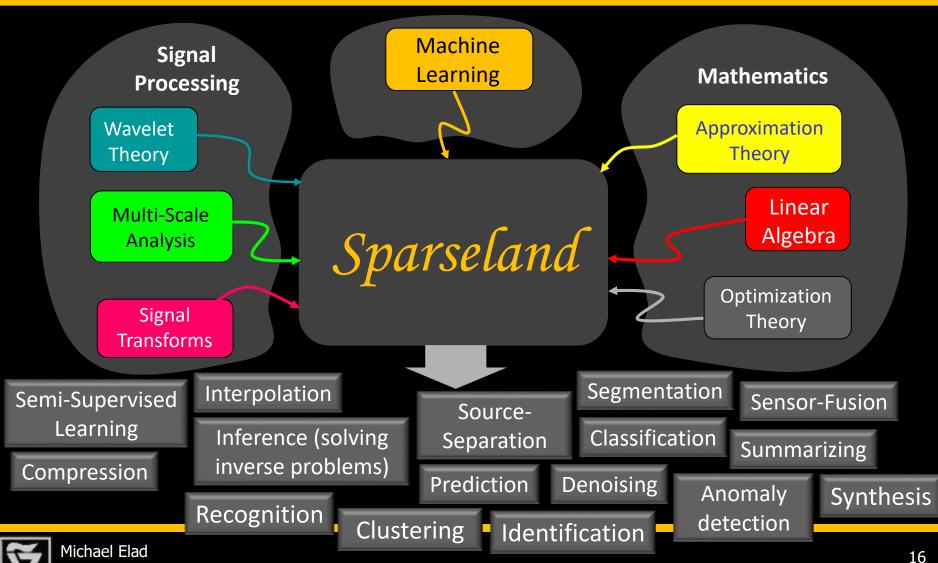
- Almost any task in data processing requires a model true for denoising, deblurring, super-resolution, inpainting, compression, anomaly-detection, sampling, recognition, separation, and more
- Sparse and Redundant Representations offer a new and highly effective model – we call it

Sparseland

 We shall describe this and descendant versions of it that lead all the way to ... deep-learning

Multi-Layered Convolutional Sparse Modeling

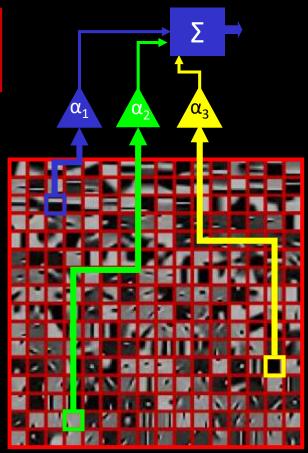
A New Emerging Model



The Sparseland Model

 Task: model image patches of size 8×8 pixels

- We assume that a dictionary of such image patches is given, containing 256 atom images
- The Sparseland model assumption:
 every image patch can be
 described as a linear
 combination of few atoms

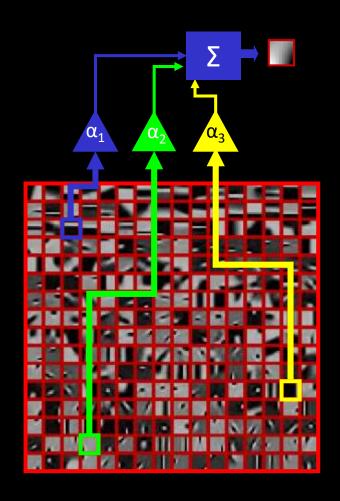


The Sparseland Model

Properties of this model:

Sparsity and Redundancy

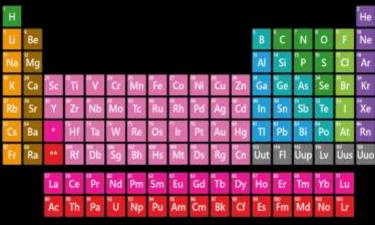
- We start with a 8-by-8 pixels patch and represent it using 256 numbers
 - This is a redundant representation
- However, out of those 256 elements in the representation, only 3 are non-zeros
 - This is a sparse representation
- Bottom line in this case: 64 numbers representing the patch are replaced by 6 (3 for the indices of the non-zeros, and 3 for their entries)

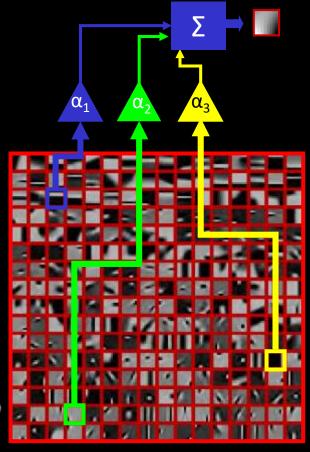


Chemistry of Data

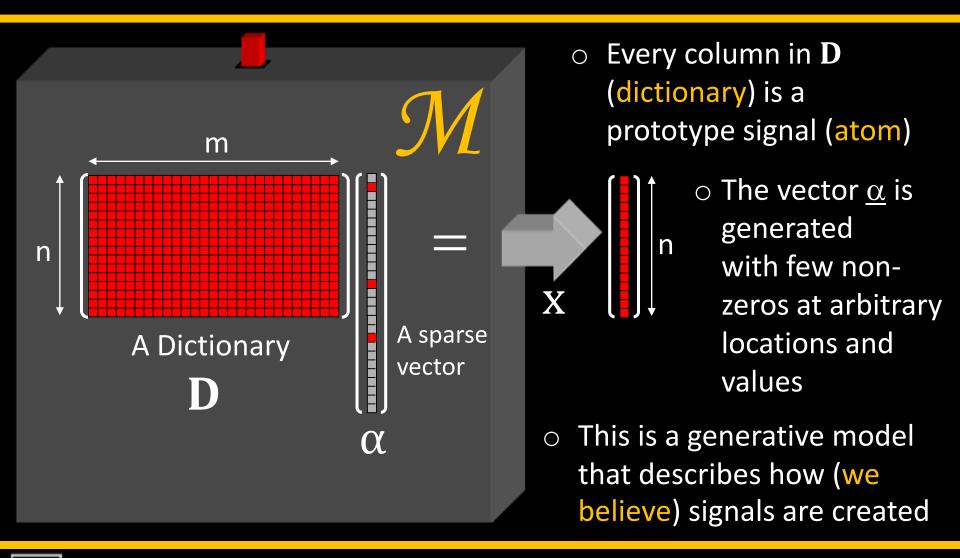
We could refer to the *Sparseland* model as the chemistry of information:

- Our dictionary stands for the Periodic Table containing all the elements
- Our model follows a similar rationale:
 Every molecule is built of few elements





Sparseland: A Formal Description

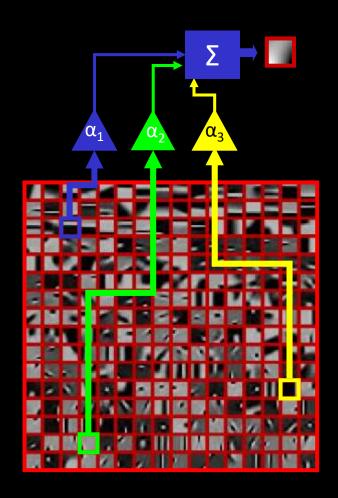


Difficulties with Sparseland

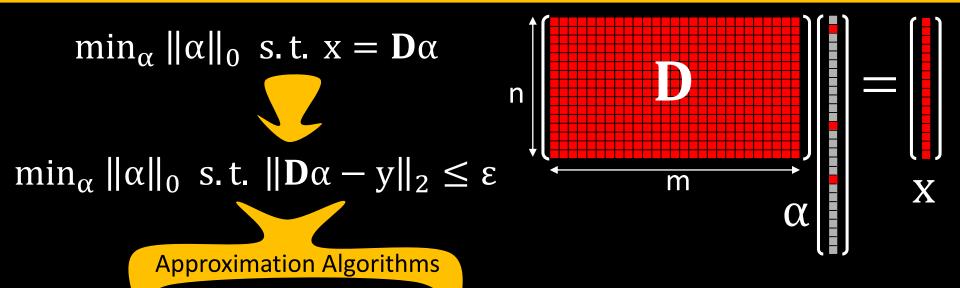
- Problem 1: Given a signal, how can we find its atom decomposition?
- A simple example:
 - There are 2000 atoms in the dictionary
 - The signal is known to be built of 15 atoms

$$\binom{2000}{15} \approx 2.4e + 37$$
 possibilities

- If each of these takes 1nano-sec to test,
 will take ~7.5e20 years to finish !!!!!!
- So, are we stuck?



Atom Decomposition Made Formal



Relaxation methods

Basis-Pursuit

Greedy methods

Thresholding/OMP

- L₀ counting number of non-zeros in the vector
- This is a projection onto the Sparseland model
- These problems are known to be NP-Hard problem

Pursuit Algorithms

$$\min_{\alpha} \|\alpha\|_0 \text{ s. t. } \|\mathbf{D}\alpha - \mathbf{y}\|_2 \leq \epsilon$$
 Approximation Algorithms

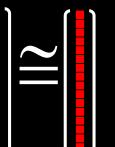
Matching Pursuit

Thresholding

Change the L₀ into L₁ and then the problem becomes convex and manageable

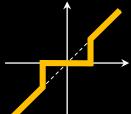
$$\min_{\alpha} \|\alpha\|_{\mathbf{1}}$$
s. t.
$$\|\mathbf{D}\alpha - \mathbf{y}\|_{2} \le \varepsilon$$

Find the support greedily, one element at a time



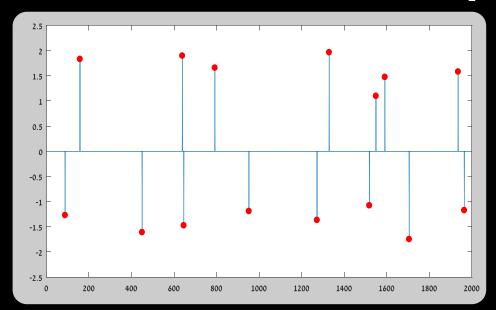
Multiply y by $\mathbf{D}^{\mathbf{T}}$ and apply shrinkage:

$$\widehat{\alpha} = \mathcal{P}_{\beta} \{ \mathbf{D}^{\mathsf{T}} \mathbf{y} \}$$

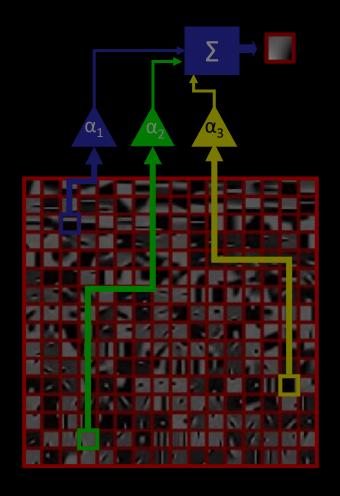


Difficulties with Sparseland

- There are various pursuit algorithms
- \circ Here is an example using the Basis Pursuit (L₁):

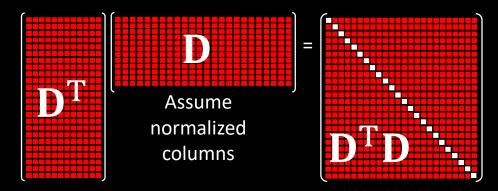


 Surprising fact: Many of these algorithms are often accompanied by theoretical guarantees for their success, if the unknown is sparse enough



The Mutual Coherence

Compute



- \circ The Mutual Coherence $\mu(\boldsymbol{D})$ is the largest off-diagonal entry in absolute value
- We will pose all the theoretical results in this talk using this property, due to its simplicity
- You may have heard of other ways to characterize the dictionary (Restricted Isometry Property - RIP, Exact Recovery Condition - ERC, Babel function, Spark, ...)

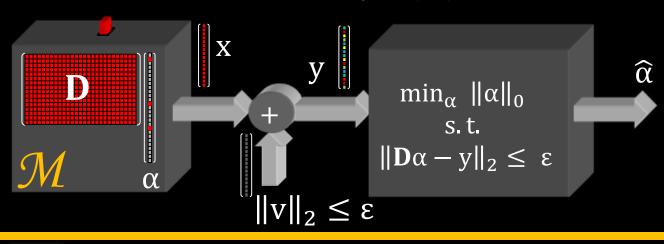
Basis-Pursuit Success

Theorem: Given a noisy signal $y = \mathbf{D}\alpha + v$ where $||v||_2 \le \varepsilon$ and α is sufficiently sparse, $||\alpha||_0 < \frac{1}{4} \left(1 + \frac{1}{\mu}\right)$

then Basis-Pursuit: $\min_{\alpha} \|\alpha\|_1$ s.t. $\|\mathbf{D}\alpha - \mathbf{y}\|_2 \le \epsilon$

leads to a stable result: $\|\widehat{\alpha} - \alpha\|_2^2 \le \frac{4\varepsilon^2}{1 - \mu(4\|\alpha\|_0 - 1)}$

Donoho, Elad & Temlyakov ('06)

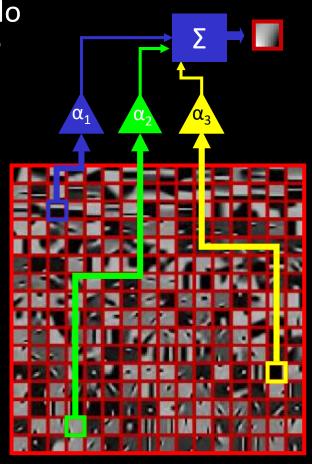


Comments:

- $\circ \quad \text{If } \varepsilon = 0 \to \widehat{\alpha} = \alpha$
- This is a worst-case analysis better bounds exist
- Similar theorems exist for many other pursuit algorithms

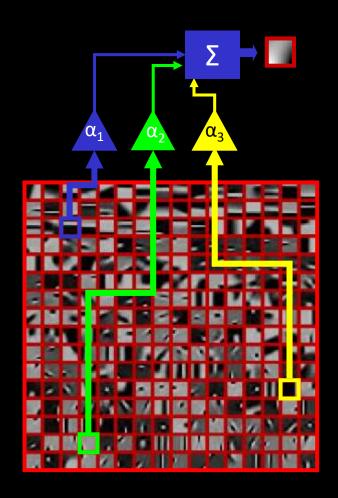
Difficulties with Sparseland

- Problem 2: Given a family of signals, how do we find the dictionary to represent it well?
- Solution: Learn! Gather a large set of signals (many thousands), and find the dictionary that sparsifies them
- Such algorithms were developed in the past 10 years (e.g., K-SVD), and their performance is surprisingly good
- We will not discuss this matter further in this talk due to lack of time



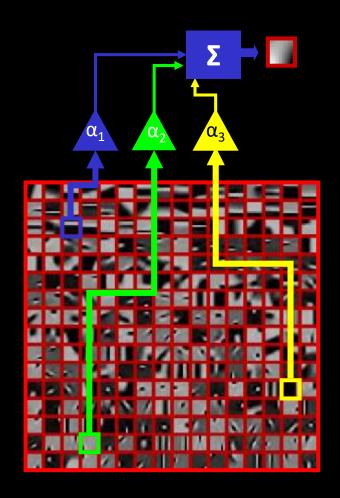
Difficulties with Sparseland

- Problem 3: Why is this model suitable to describe various sources? e.g., Is it good for images? Audio? Stocks? ...
- General answer: Yes, this model is extremely effective in representing various sources
 - Theoretical answer: Clear connection to other models
 - Empirical answer: In a large variety of signal and image processing (and later machine learning), this model has been shown to lead to state-of-the-art results



Difficulties with Sparseland?

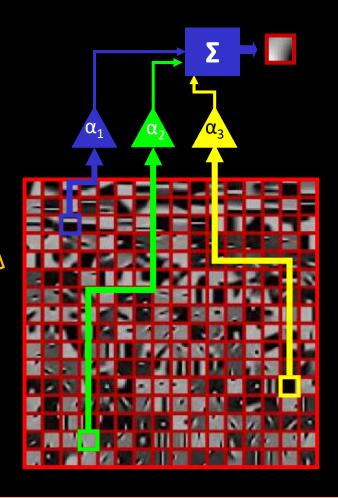
- Problem 1: Given an image patch, how can we find its atom decomposition ?
- Problem 2: Given a family of signals, how do we find the dictionary to represent it well?
- Problem 3: Is this model flexible enough to describe various sources?
 E.g., Is it good for images? audio? ...



Difficulties with Sparseland?

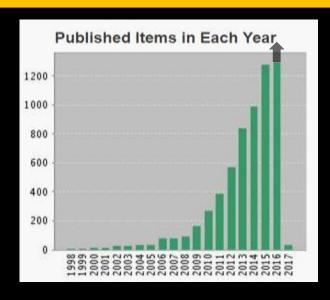
- Problem 1: Given an image now can we find its at-
- ALL ANSWERED ensit walled the second of Prob CONSTRUCTIVELY s sources?

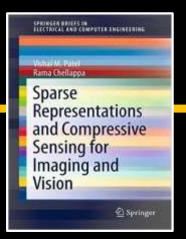
mages? audio? ...

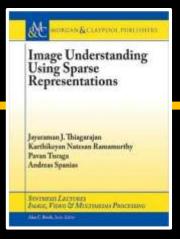


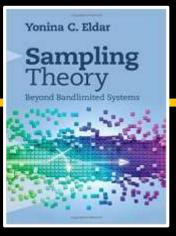
This Field has been rapidly GROWING.

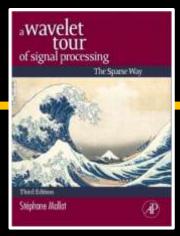
- Sparseland has a great success in signal & image processing and machine learning tasks
- In the past 8-9 years, many books were published on this and closely related fields

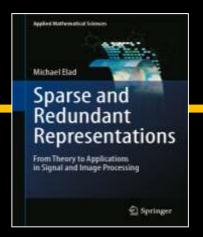


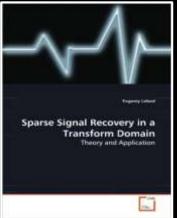




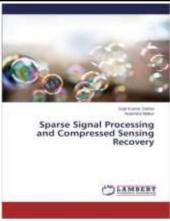


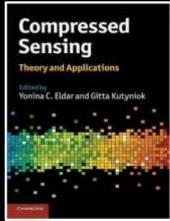


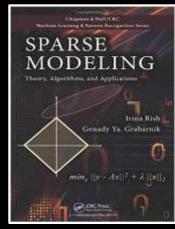


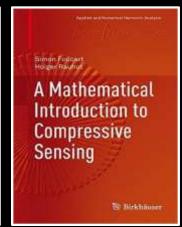


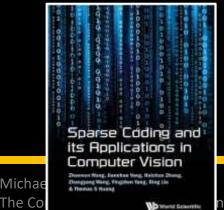
The Tecimion

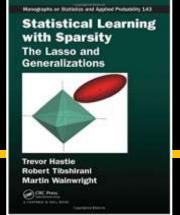




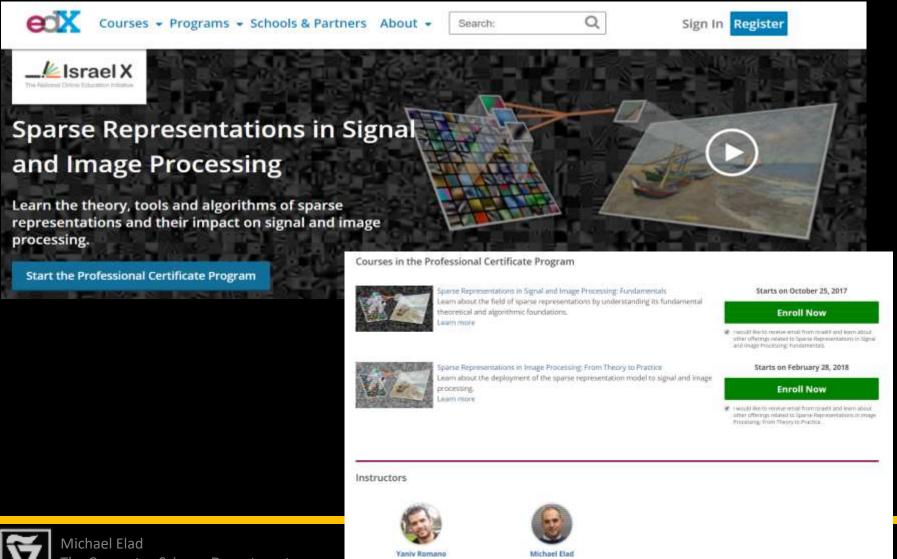






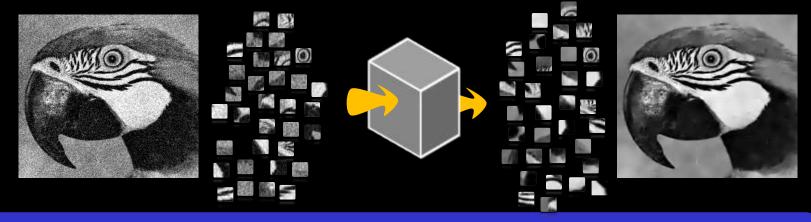


A New Massive Open Online Course



Sparseland for Image Processing

 When handling images, Sparseland is typically deployed on small overlapping patches due to the desire to train the model to fit the data better



- The model assumption is: each patch in the image is believed to have a sparse representation w.r.t. a common local dictionary
- What is the corresponding global model? This brings us to ... the Convolutional Sparse Coding (CSC)

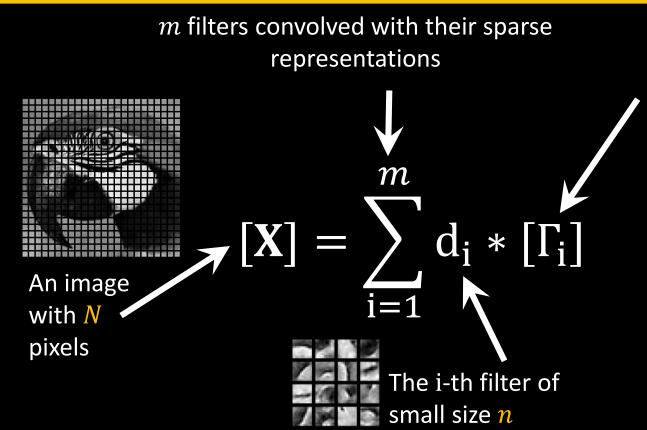
Multi-Layered Convolutional Sparse Modeling

Joint work with

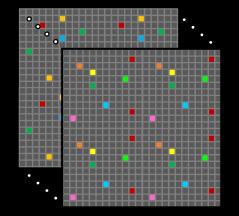
Vardan Papyan

Jeremias Sulam

Convolutional Sparse Coding (CSC)



i-th feature-map: An image of the same size as **X** holding the sparse representation related to the i-filter



This model emerged in 2005-2010, developed and advocated by Yan LeCun and others. It serves as the foundation of Convolutional Neural Networks

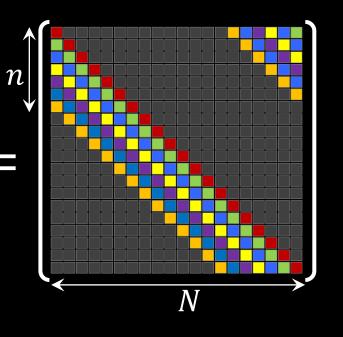
CSC in Matrix Form

Here is an alternative global sparsity-based model formulation

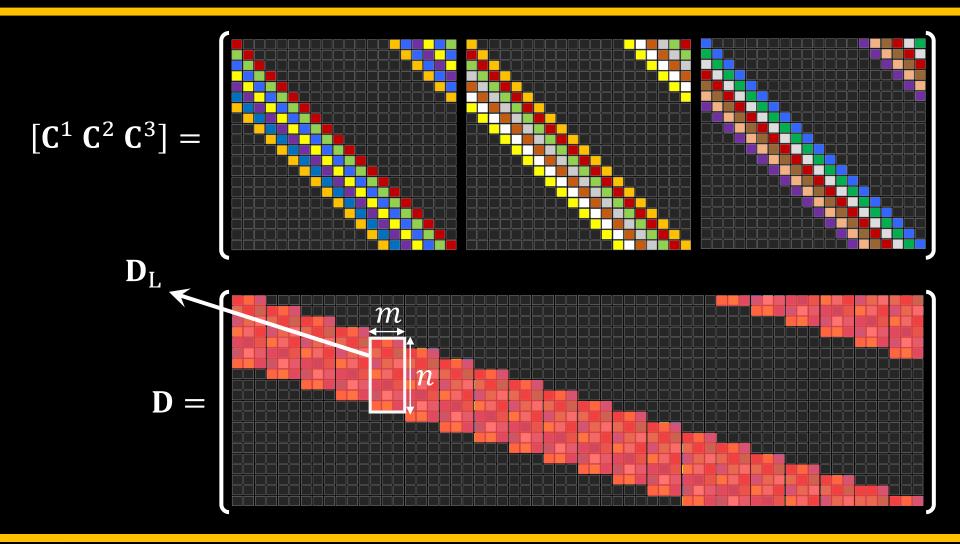
$$\mathbf{X} = \sum_{\mathrm{i}=1}^{m} \mathbf{C}^{\mathrm{i}} \mathbf{\Gamma}^{\mathrm{i}} = \begin{bmatrix} \mathbf{C}^{1} & \cdots & \mathbf{C}^{m} \end{bmatrix} \begin{bmatrix} \mathbf{\Gamma}^{1} \\ \vdots \\ \mathbf{\Gamma}^{m} \end{bmatrix} = \mathbf{D}\mathbf{\Gamma}$$

 \circ $\mathbf{C}^{i} \in \mathbb{R}^{N \times N}$ is a banded and Circulant matrix containing a single atom with all of its shifts

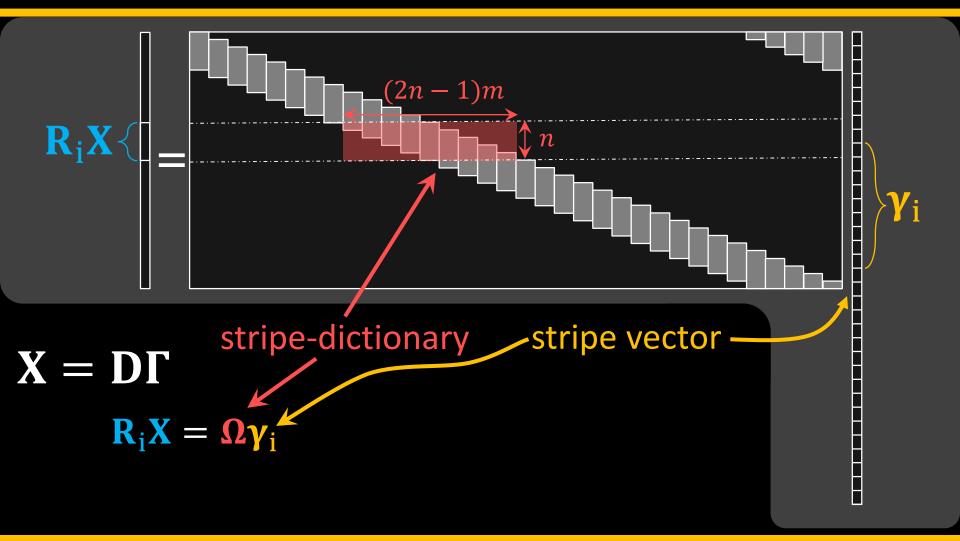
 $\circ \Gamma^i \in \mathbb{R}^N$ are the corresponding coefficients ordered as column vectors



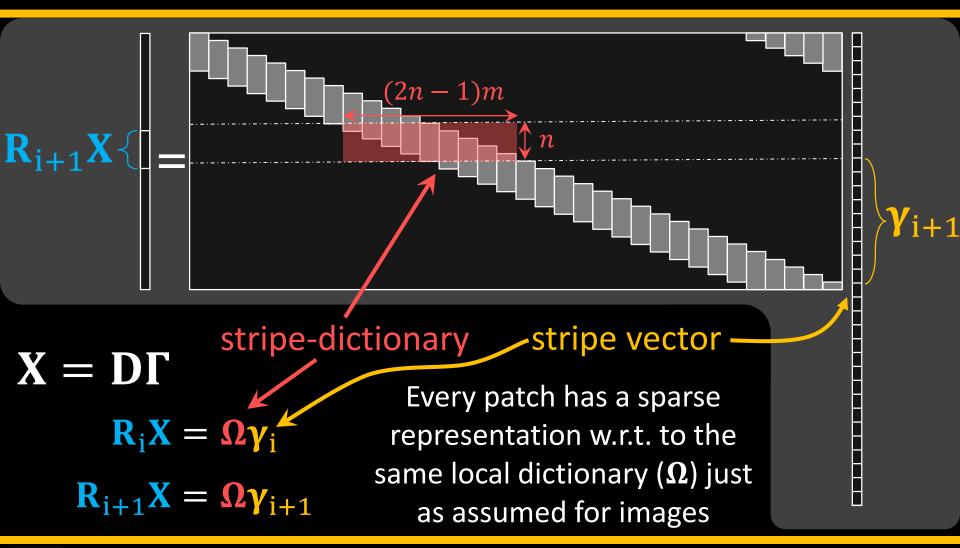
The CSC Dictionary



Why CSC?



Why CSC?



Classical Sparse Theory for CSC?

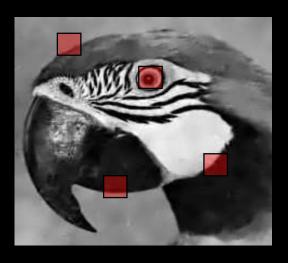
$$\min_{\Gamma} \|\Gamma\|_0 \quad \text{s. t. } \|\mathbf{Y} - \mathbf{D}\Gamma\|_2 \le \varepsilon$$

Theorem: BP is guaranteed to "succeed" if
$$\|\Gamma\|_0 < \frac{1}{4} \left(1 + \frac{1}{\mu}\right)$$

- \circ Assuming that m=2 and n=64 we have that [Welch, '74] $\mu \geq 0.063$
- Success of pursuits is guaranteed as long as

$$\|\mathbf{\Gamma}\|_{0} < \frac{1}{4} \left(1 + \frac{1}{\mu(\mathbf{D})}\right) \le \frac{1}{2} \left(1 + \frac{1}{0.063}\right) \approx 4.2$$

Only few (4) non-zeros GLOBALLY are allowed!!! This is a very pessimistic result!



Classical Sparse Theory for CSC?

$$\min_{\Gamma} \|\Gamma\|_0 \quad \text{s. t. } \|Y - D\Gamma\|_2 \le \epsilon$$

Theorem: BP is guaranteed to "succeed" if
$$\|\Gamma\|_0 < \frac{1}{4} \left(1 + \frac{1}{\mu}\right)$$

 \odot Assuming that m=2 and n=64 we have that [Welch, '74] $\mu \geq 0.063$

The classic Sparseland Theory

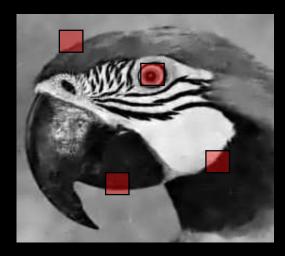
The classic Sparseland Theory

does not provide good explanations

for the CSC model

for the CSC model

allowed!!! This is a very pessimistic result!



Moving to Local Sparsity: Stripes

$$\ell_{0,\infty}$$
 Norm: $\|\Gamma\|_{0,\infty}^s = \max_i \|\gamma_i\|_0$

$$\min_{\Gamma} \|\Gamma\|_{0,\infty}^{s} \text{ s.t. } \|\mathbf{Y} - \mathbf{D}\Gamma\|_{2} \le \varepsilon$$

 $\|\Gamma\|_{0,\infty}^s$ is low \to all γ_i are sparse \to every patch has a sparse representation over Ω

The main question we aim to address is this:

Can we generalize the vast theory of *Sparseland* to this new notion of local sparsity? For example, could we provide guarantees for success for pursuit algorithms?

 $m = 2\{$

Success of the Basis Pursuit

$$\Gamma_{\rm BP} = \min_{\Gamma} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\Gamma\|_2^2 + \lambda \|\Gamma\|_1$$

Theorem: For
$$Y = D\Gamma + E$$
, if $\lambda = 4||E||_{2,\infty}^p$, if

$$\|\Gamma\|_{0,\infty}^s < \frac{1}{3} \left(1 + \frac{1}{\mu(D)}\right)$$

then Basis Pursuit performs very-well:

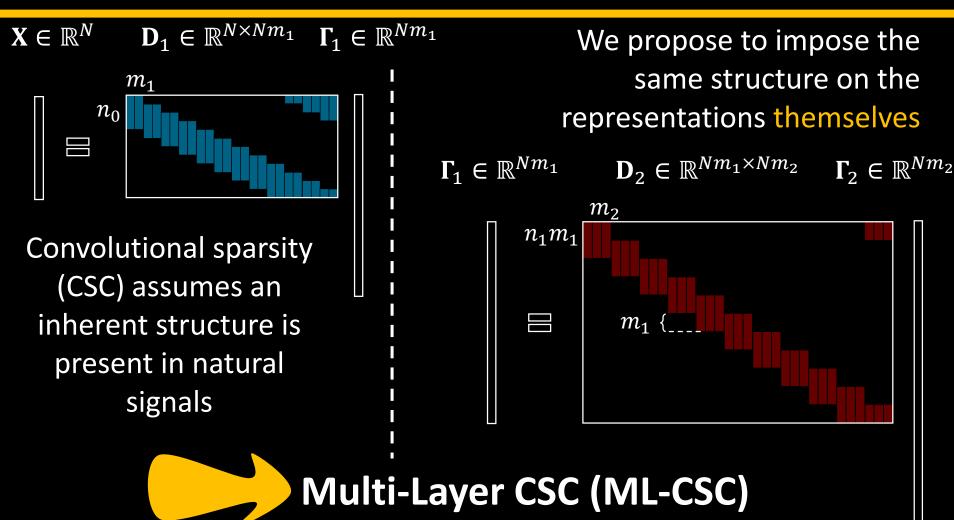
- 1. The support of $\Gamma_{\rm BP}$ is contained in that of Γ
- $2. \quad \|\Gamma_{\mathrm{BP}} \Gamma\|_{\infty} \le 7.5 \|\mathrm{E}\|_{2,\infty}^{\mathrm{p}}$
- 3. Every entry greater than $7.5||E||_{2.\infty}^p$ is found
- 4. $\Gamma_{\rm BP}$ is unique

This is a much better result – it allows few non-zeros locally in each stripe, implying a permitted O(N) non-zeros globally

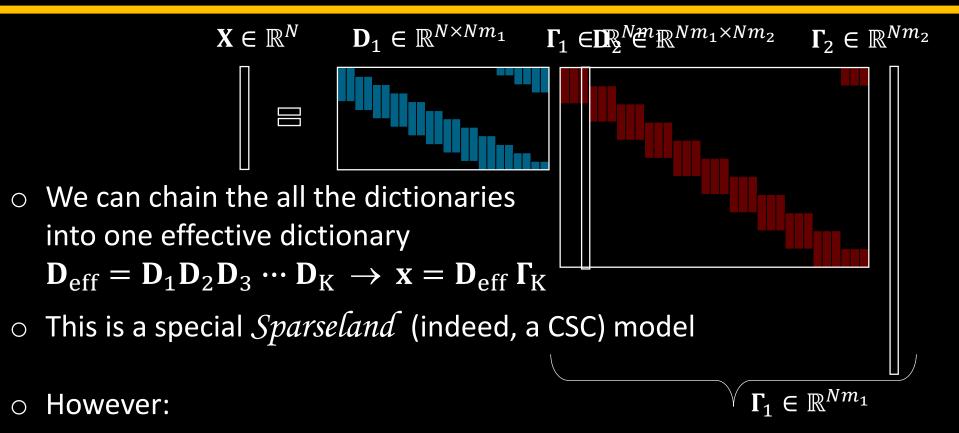
Papyan, Sulam & Elad ('17)

Multi-Layered Convolutional Sparse Modeling

From CSC to Multi-Layered CSC



Intuition: From Atoms to Molecules

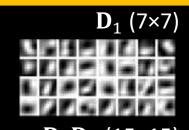


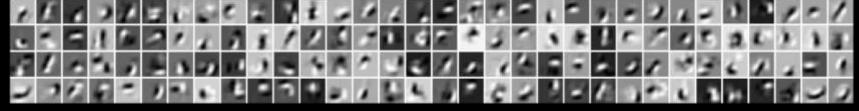
- A key property in this model: sparsity of the intermediate representations
- The effective atoms: atoms

A Small Taste: Model Training (MNIST)

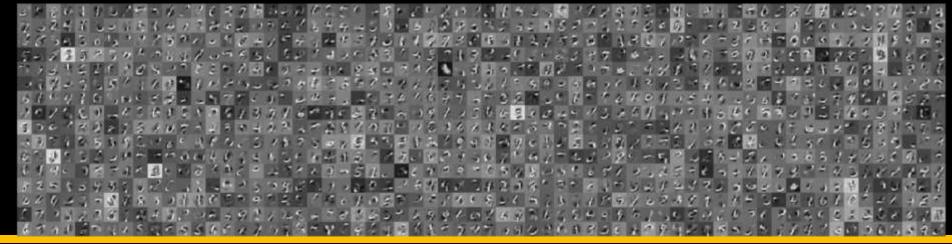
MNIST Dictionary:

- D_1 : 32 filters of size 7×7, with stride of 2 (dense)
- •D₂: 128 filters of size 5×5×32 with stride of 1 99.09 % sparse
- •D3: 1024 filters of size 7×7×128 99.89 % sparse

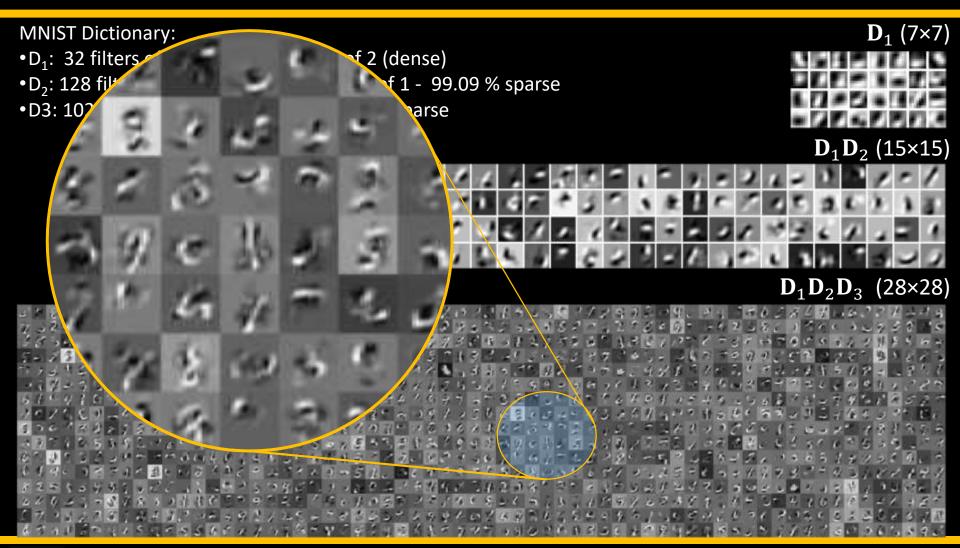




 $D_1D_2D_3$ (28×28)



A Small Taste: Model Training (MNIST)



ML-CSC: Pursuit

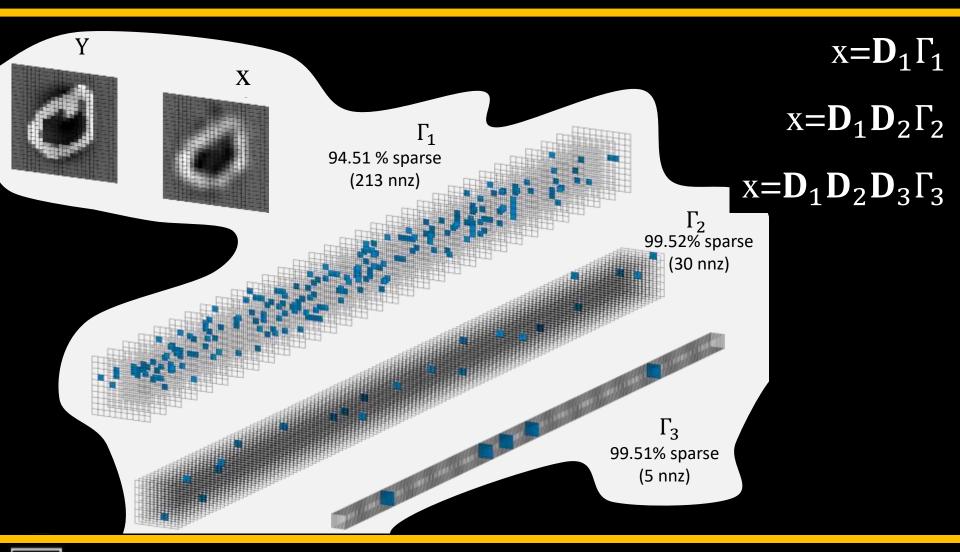
 \circ Deep-Coding Problem (DCP $_{\lambda}$) (dictionaries are known):

$$\begin{cases} \mathbf{X} = \mathbf{D}_{1} \mathbf{\Gamma}_{1} & \|\mathbf{\Gamma}_{1}\|_{0,\infty}^{s} \leq \lambda_{1} \\ \mathbf{\Gamma}_{1} = \mathbf{D}_{2} \mathbf{\Gamma}_{2} & \|\mathbf{\Gamma}_{2}\|_{0,\infty}^{s} \leq \lambda_{2} \\ \vdots & \vdots & \vdots \\ \mathbf{\Gamma}_{K-1} = \mathbf{D}_{K} \mathbf{\Gamma}_{K} & \|\mathbf{\Gamma}_{K}\|_{0,\infty}^{s} \leq \lambda_{K} \end{cases}$$

Or, more realistically for noisy signals,

Find
$$\left\{ \mathbf{\Gamma}_{j} \right\}_{j=1}^{K}$$
 s.t.
$$\begin{cases} \|\mathbf{Y} - \mathbf{D}_{1} \mathbf{\Gamma}_{1}\|_{2} \leq \mathcal{E} & \|\mathbf{\Gamma}_{1}\|_{0,\infty}^{s} \leq \lambda_{1} \\ \mathbf{\Gamma}_{1} = \mathbf{D}_{2} \mathbf{\Gamma}_{2} & \|\mathbf{\Gamma}_{2}\|_{0,\infty}^{s} \leq \lambda_{2} \\ \vdots & \vdots \\ \mathbf{\Gamma}_{K-1} = \mathbf{D}_{K} \mathbf{\Gamma}_{K} & \|\mathbf{\Gamma}_{K}\|_{0,\infty}^{s} \leq \lambda_{K} \end{cases}$$

A Small Taste: Pursuit

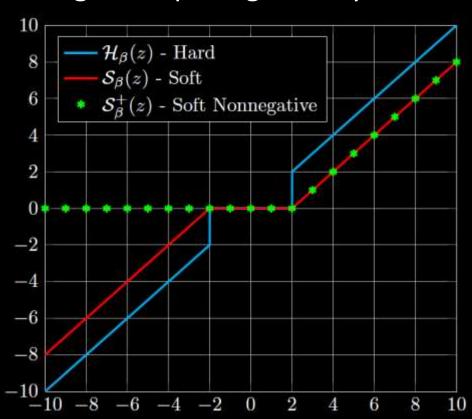


ML-CSC: The Simplest Pursuit

Keep it simple! The simplest pursuit algorithm (single-layer case) is the THR algorithm, which operates on a given input signal Y by:

$$\mathbf{Y} = \mathbf{D}\mathbf{\Gamma} + \mathbf{E}$$
 and $\mathbf{\Gamma}$ is sparse

$$\hat{\mathbf{\Gamma}} = \mathcal{P}_{\beta}(\mathbf{D}^{\mathrm{T}}\mathbf{Y})$$



Consider this for Solving the DCP

Layered thresholding (LT):

Estimate Γ_1 via the THR algorithm

$$\widehat{\mathbf{\Gamma}}_{2} = \mathcal{P}_{\beta_{2}} \left(\mathbf{D}_{2}^{\mathrm{T}} \mathcal{P}_{\beta_{1}} (\mathbf{D}_{1}^{\mathrm{T}} \mathbf{Y}) \right)$$

Estimate Γ_2 via the THR algorithm

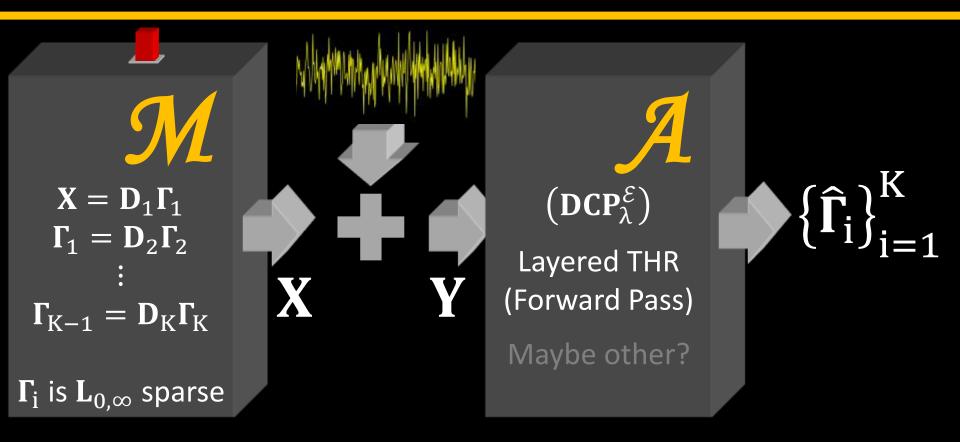
$$\begin{array}{cccc} \left(\mathbf{DCP}_{\lambda}^{\mathcal{E}}\right) & \text{Find} & \left\{\Gamma_{j}\right\}_{j=1}^{K} & s.t. \\ \left(\|\mathbf{Y} - \mathbf{D}_{1}\boldsymbol{\Gamma}_{1}\|_{2} \leq \mathcal{E} & \|\boldsymbol{\Gamma}_{1}\|_{0,\infty}^{s} \leq \lambda_{1} \right) \\ \boldsymbol{\Gamma}_{1} & = \mathbf{D}_{2}\boldsymbol{\Gamma}_{2} & \|\boldsymbol{\Gamma}_{2}\|_{0,\infty}^{s} \leq \lambda_{2} \\ & \vdots & \vdots & \vdots \\ \boldsymbol{\Gamma}_{K-1} & = \mathbf{D}_{K}\boldsymbol{\Gamma}_{K} & \|\boldsymbol{\Gamma}_{K}\|_{0,\infty}^{s} \leq \lambda_{K} \end{array}$$

O Now let's take a look at how Conv. Neural Network operates:

$$f(\mathbf{Y}) = \text{ReLU}\left(\mathbf{b}_2 + \mathbf{W}_2^{\text{T}} \text{ ReLU}\left(\mathbf{b}_1 + \mathbf{W}_1^{\text{T}}\mathbf{Y}\right)\right)$$

The layered (soft nonnegative) thresholding and the CNN forward pass algorithm are the very same thing !!!

Theoretical Path



Armed with this view of a generative source model, we may ask new and daring theoretical questions

Success of the Layered-THR

Theorem: If
$$\|\Gamma_i\|_{0,\infty}^s < \frac{1}{2} \left(1 + \frac{1}{\mu(D_i)} \cdot \frac{\left|\Gamma_i^{min}\right|}{\left|\Gamma_i^{max}\right|}\right) - \frac{1}{\mu(D_i)} \cdot \frac{\epsilon_L^{i-1}}{\left|\Gamma_i^{max}\right|}$$

then the Layered Hard THR (with the proper thresholds)

finds the correct supports and $\left\|\Gamma_i^{LT} - \Gamma_i\right\|_{2,\infty}^p \leq \epsilon_L^i$, where

we have defined $\varepsilon_{\rm L}^0 = \|{\bf E}\|_{2,\infty}^{\rm p}$ and

$$\epsilon_{L}^{i} = \sqrt{\|\mathbf{\Gamma}_{i}\|_{0,\infty}^{p} \cdot \left(\epsilon_{L}^{i-1} + \mu(\mathbf{D}_{i}) \left(\|\mathbf{\Gamma}_{i}\|_{0,\infty}^{s} - 1\right) |\mathbf{\Gamma}_{i}^{max}|\right)}$$

Papyan, Romano & Elad ('17)

The stability of the forward pass is guaranteed if the underlying representations are locally sparse and the noise is locally bounded

Problems:

- 1. Contrast
- 2. Error growth
- 3. Error even if no noise

Layered Basis Pursuit (BP)

- We chose the Thresholding algorithm due to its simplicity, but we do know that there are better pursuit methods – how about using them?
- Lets use the Basis Pursuit instead ...

$$\begin{array}{cccc} \left(\mathbf{DCP}_{\lambda}^{\mathcal{E}}\right) & \text{Find} & \left\{\Gamma_{j}\right\}_{j=1}^{K} & s.\,t. \\ \left\|\mathbf{Y} - \mathbf{D}_{1}\boldsymbol{\Gamma}_{1}\right\|_{2} \leq \mathcal{E} & \left\|\boldsymbol{\Gamma}_{1}\right\|_{0,\infty}^{s} \leq \lambda_{1} \\ \boldsymbol{\Gamma}_{1} & = \mathbf{D}_{2}\boldsymbol{\Gamma}_{2} & \left\|\boldsymbol{\Gamma}_{2}\right\|_{0,\infty}^{s} \leq \lambda_{2} \\ & \vdots & \vdots \\ \boldsymbol{\Gamma}_{K-1} & = \mathbf{D}_{K}\boldsymbol{\Gamma}_{K} & \left\|\boldsymbol{\Gamma}_{K}\right\|_{0,\infty}^{s} \leq \lambda_{K} \end{array}$$

$$\mathbf{\Gamma}_{1}^{\mathrm{LBP}} = \min_{\mathbf{\Gamma}_{1}} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}_{1} \mathbf{\Gamma}_{1}\|_{2}^{2} + \lambda_{1} \|\mathbf{\Gamma}_{1}\|_{1}$$

$$\mathbf{\Gamma}_{2}^{\text{LBP}} = \min_{\mathbf{\Gamma}_{2}} \frac{1}{2} \left\| \mathbf{\Gamma}_{1}^{\text{LBP}} - \mathbf{D}_{2} \mathbf{\Gamma}_{2} \right\|_{2}^{2} + \lambda_{2} \| \mathbf{\Gamma}_{2} \|_{1}$$

Deconvolutional networks

[Zeiler, Krishnan, Taylor & Fergus '10]

Success of the Layered BP

Theorem: Assuming that $\|\Gamma_i\|_{0,\infty}^s < \frac{1}{3} \left(1 + \frac{1}{\mu(D_i)}\right)$

then the Layered Basis Pursuit performs very well:

- 1. The support of $oldsymbol{\Gamma}_{
 m i}^{
 m LBP}$ is contained in that of $oldsymbol{\Gamma}_{
 m i}$
- 2. The error is bounded: $\left\| \mathbf{\Gamma}_{i}^{\mathrm{LBP}} \mathbf{\Gamma}_{i} \right\|_{2,\infty}^{p} \leq \varepsilon_{\mathrm{L}}^{i}$, where

$$\epsilon_{L}^{i} = 7.5^{i} ||\mathbf{E}||_{2,\infty}^{p} \prod_{j=1}^{i} \sqrt{||\mathbf{\Gamma}_{j}||_{0,\infty}^{p}}$$

3. Every entry in Γ_i greater than

$$\epsilon_L^i/\sqrt{\|\Gamma_i\|_{0,\infty}^p}$$
 will be found

Papyan, Romano & Elad ('17)

Problems:

- 1. Contrast
- 2. Error growth
- 3. Error even if no noise

Layered Iterative Thresholding

Layered BP:
$$\Gamma_{j}^{LBP} = \min_{\Gamma_{j}} \frac{1}{2} \left\| \Gamma_{j-1}^{LBP} - \mathbf{D}_{j} \Gamma_{j} \right\|_{2}^{2} + \xi_{j} \left\| \Gamma_{j} \right\|_{1}$$

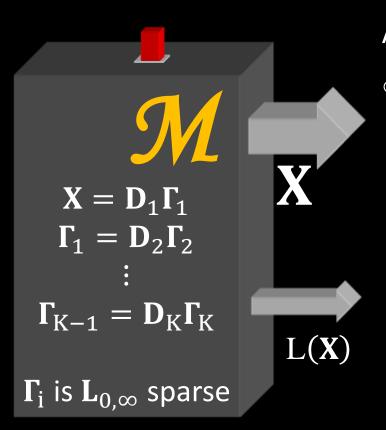
Layered Iterative Soft-Thresholding:

Note that our suggestion implies that groups of layers share the same dictionaries

Can be seen as a very deep recurrent neural network

[Gregor & LeCun '10]

Where are the Labels?

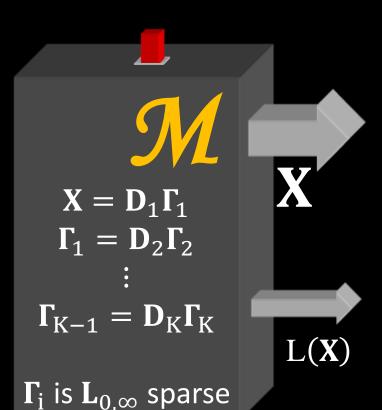


Answer 1:

 We do not need labels because everything we show refer to the unsupervised case, in which we operate on signals, not necessarily in the context of recognition

We presented the ML-CSC as a machine that produces signals **X**

Where are the Labels?



We presented the ML-CSC as a machine that produces signals **X**

Answer 2:

 In fact, this model could be augmented by a synthesis of the corresponding label by:

$$L(\mathbf{X}) = sign\{c + \sum_{j=1}^{K} w_j^T \Gamma_j\}$$

- This assumes that knowing the representations (or maybe their supports?) suffice for identifying the label
- Thus, a successful pursuit algorithm can lead to an accurate recognition if the network is augmented by a FC classification layer

What About Learning?

Sparseland

Sparse Representation Theory

CSC

Convolutional Sparse Coding

ML-CSC

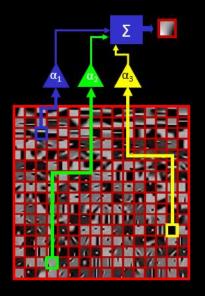
Multi-Layered Convolutional Sparse Coding

All these models rely on proper Dictionary Learning Algorithms to fulfil their mission:

- Sparseland: We have unsupervised and supervised such algorithms, and a beginning of theory to explain how these work
- CSC: We have few and only unsupervised methods, and even these are not fully stable/clear
- ML-CSC: One algorithm has been proposed (unsupervised) see ArxiV

Time to Conclude

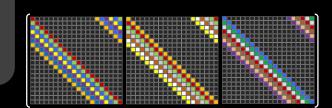
The desire to model data



We spoke about the importance of models in signal/image processing and described *Sparseland* in details

Sparseland The desire to model data

Novel View of Convolutional Sparse Coding

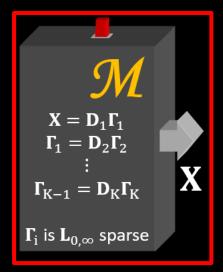


We presented a theoretical study of the CSC model and how to operate locally while getting global optimality

The desire to model data

Novel View of Convolutional Sparse Coding

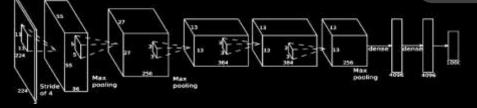
Multi-Layer Convolutional Sparse Coding



We propose a multi-layer extension of CSC, shown to be tightly connected to CNN

The desire to model data

Novel View of Convolutional Sparse Coding



 $X = D_1\Gamma_1$ $\Gamma_1 = D_2\Gamma_2$ \vdots $\Gamma_{K-1} = D_K\Gamma_K$ $\Gamma_i \text{ is } \mathbf{L}_{0,\infty} \text{ sparse}$

A novel interpretation and theoretical understanding of CNN

Multi-Layer Convolutional Sparse Coding

The ML-CSC was shown to enable a theoretical study of CNN, along with new insights

Sparseland

The desire to model data

Take Home Message 1:

Generative modeling of data sources enables algorithm development along with theoretically analyzing algorithms' performance

7

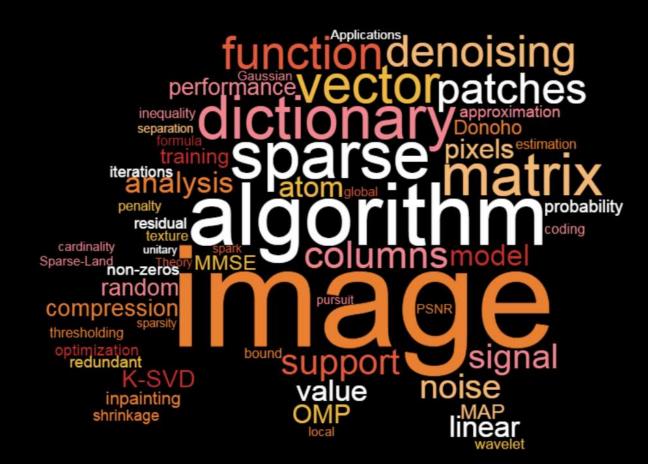
Novel View of Convolutional Sparse Coding

Multi-Layer Convolutional Sparse Coding

Take Home Message 2:

The Multi-Layer
Convolutional Sparse
Coding model could be
a new platform for
understanding and
developing deeplearning solutions

A novel interpretation and theoretical understanding of CNN



More on these (including these slides and the relevant papers) can be found in http://www.cs.technion.ac.il/~elad