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This Lecture is About … 
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A Proposed Theory for Deep-Learning (DL)

Explanation: 

o DL has been extremely successful in 
solving a variety of learning problems 

o DL is an empirical field, with numerous 
tricks and know-how, but almost no 
theoretical  foundations

o A theory for DL has become the 
holy-grail of current research in 
Machine-Learning and related fields 



Who Needs Theory ? 
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We All Do !! 

… because … A theory 

o … could bring the next rounds of ideas 
to this field, breaking existing barriers 
and opening new opportunities

o … could map clearly the limitations of 
existing DL solutions, and point to key 
features that control their performance

o … could remove the feeling with many 
of us that DL is a “dark magic”, turning 
it into a solid scientific discipline

o

Understanding is a good 
thing … but another goal is 
inventing methods. In the 
history of science and 
technology, engineering 

preceded theoretical understanding: 
 Lens & telescope  Optics
 Steam engine  Thermodynamics
 Airplane  Aerodynamics
 Radio & Comm.  Info. Theory 
 Computer  Computer Science

“Machine 
learning has 
become 
alchemy”

Ali Rahimi: 
NIPS 2017 

Test-of-Time 
Award

Yan LeCun



A Theory for DL ?
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Architecture

Algorithms

Data

Rene Vidal  (JHU): Explained the ability to optimize the typical non-
convex objective and yet get to a global minima

Naftali Tishby (HUJI): Introduced the Information Bottleneck (IB) 
concept and demonstrated its relevance to deep learning 

Stefano Soatto’s team (UCLA): Analyzed the Stochastic Gradient 
Descent (SGD) algorithm, connecting it to the IB objective 

Stephane Mallat (ENS) & 
Joan Bruna (NYU): Proposed 

the scattering transform 
(wavelet-based) and 

emphasized the treatment of 
invariances in the input data

Richard Baraniuk & Ankit 
Patel (RICE): Offered a 

generative probabilistic 
model for the data, 

showing that classic 
architectures relate to it

Raja Giryes (TAU): Studied the architecture of DNN in the context 
of their ability to give distance-preserving embedding of signals

Gitta Kutyniok (TU) & Helmut Bolcskei (ETH): Studied the ability of 
DNN architectures to approximate families of functions



So, is there a Theory for DL ?
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The answer is tricky:

There are already 
various such attempts, 
and some of them are 

truly impressive

… but …

none of them is 
complete



Interesting Observations
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o Theory origins: Signal Proc., Control Theory, Info. Theory, Harmonic 
Analysis, Sparse Represen., Quantum Physics, PDE, Machine learning …

Ron Kimmel: “DL is a dark monster covered 
with mirrors. Everyone sees his reflection in it …”

David Donoho: “… these mirrors are taken 
from Cinderella's story, telling each that 
he is the most beautiful”

o Today’s talk is on our proposed theory:

… and yes, our theory is the bestVardan PapyanYaniv Romano Jeremias Sulam

Architecture

Algorithms

Data



ML-CSC   
Multi-Layered 
Convolutional 
Sparse Coding

Sparseland
Sparse 

Representation 
Theory

Another underlying idea that accompanies us

Generative modeling of data sources enables
o A systematic algorithm development, &  
o A theoretical analysis of their performance 

CSC
Convolutional 

Sparse 
Coding

This Lecture: More Specifically   
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Sparsity-Inspired Models

Michael Elad
The Computer-Science Department
The Technion

Deep-Learning

Disclaimer: Being a 
lecture on the theory 

of DL, this lecture 
is … theoretical … and 

mathematically oriented 



Multi-Layered Convolutional 
Sparse Modeling
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Our eventual goal in today’s talk is to present the …

So, lets use this as our running title, 
parse it into words, 

and explain each of them



Multi-Layered Convolutional 
Sparse Modeling

9Michael Elad
The Computer-Science Department
The Technion



3D Objects

Medical Imaging
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Our Data is Structured

o We are surrounded by various diverse 
sources of massive information

o Each of these sources have an internal 
structure, which can be exploited

o This structure, when identified, is the 
engine behind the ability to process data

o How to identify structure? 

Voice Signals

Stock Market Biological Signals

Videos

Text Documents

Radar Imaging

Matrix Data

Social Networks

Traffic info

Seismic Data
Still Images

Michael Elad
The Computer-Science Department
The Technion

http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=qP6sc5F9CF2crM&tbnid=vNTslHLOR1tk1M:&ved=0CAUQjRw&url=http://www.vizago.ch/reconstructions.php&ei=weWNUZKQJ4KXtAbP_4GoDA&bvm=bv.46340616,d.Yms&psig=AFQjCNHmhI1dTCia7cxM-GT7LAi5PuR5gQ&ust=1368340276449695
http://24.149.138.246/_media/newsletters/USA/USA_Edition6_December09_files/Volume_Imaging.jpg
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Our Data is Structured

o We are surrounded by various diverse 
sources of massive information

o Each of these sources have an internal 
structure, which can be exploited

o This structure, when identified, is the 
engine behind the ability to process data
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Using models

http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=qP6sc5F9CF2crM&tbnid=vNTslHLOR1tk1M:&ved=0CAUQjRw&url=http://www.vizago.ch/reconstructions.php&ei=weWNUZKQJ4KXtAbP_4GoDA&bvm=bv.46340616,d.Yms&psig=AFQjCNHmhI1dTCia7cxM-GT7LAi5PuR5gQ&ust=1368340276449695
http://24.149.138.246/_media/newsletters/USA/USA_Edition6_December09_files/Volume_Imaging.jpg
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Model?

Effective removal of noise (and many other tasks)      
relies on an proper modeling of the signal

Michael Elad
The Computer-Science Department
The Technion

Fact 1:
This signal 

contains AWGN 
ℕ(0,1)

Fact 2: 
The clean signal 

is believed to 
be PWC



13

Models

o A model: a mathematical
description of the underlying 
signal of interest, describing our 
beliefs regarding its structure

o The following is a partial list of 
commonly used models for images

o Good models should be simple while 
matching the signals

o Models are almost always imperfect

Principal-Component-Analysis

Gaussian-Mixture

Markov Random Field

Laplacian Smoothness

DCT concentration

Wavelet Sparsity

Piece-Wise-Smoothness

C2-smoothness

Besov-Spaces

Total-Variation

Beltrami-Flow

Simplicity Reliability

Michael Elad
The Computer-Science Department
The Technion
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What this Talk is all About? 

Data Models and Their Use
o Almost any task in data processing requires a model –

true for denoising, deblurring, super-resolution, inpainting, 
compression, anomaly-detection, sampling, recognition, 
separation, and more

o Sparse and Redundant Representations offer a new and 
highly effective model – we call it 

Sparseland
o We shall describe this and descendant versions of it that 

lead all the way to … deep-learning

Michael Elad
The Computer-Science Department
The Technion



Multi-Layered Convolutional 
Sparse Modeling
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Machine 
Learning
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Mathematics
Signal   

Processing

A New Emerging Model

Sparseland

Wavelet 
Theory

Signal 
Transforms

Multi-Scale 
Analysis

Approximation 
Theory

Linear  
Algebra

Optimization 
Theory

Denoising

Interpolation

Prediction
Compression

Inference (solving 
inverse problems)

Anomaly 
detectionClustering

Summarizing

Sensor-FusionSource-
Separation

Segmentation

Recognition

Semi-Supervised 
Learning

Identification

Classification

Synthesis

Michael Elad
The Computer-Science Department
The Technion
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The Sparseland Model

o Task: model image patches of                                               
size 8×8 pixels

o We assume that a dictionary of 
such image patches is given, 

containing 256 atom images

o The Sparseland model assumption:                          

every image patch can be                                              
described as a linear                                    

combination of few atoms

α1 α2 α3

Σ

Michael Elad
The Computer-Science Department
The Technion
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The Sparseland Model

o We start with a 8-by-8 pixels patch and 
represent it using 256 numbers        

– This is a redundant representation

o However, out of those 256 elements in the 
representation, only 3 are non-zeros 

– This is a sparse representation

o Bottom line in this case: 64 numbers 
representing the patch are replaced by 6 
(3 for the indices of the non-zeros, and 3 
for their entries)

Properties of this model:                     

Sparsity and Redundancy
α1 α2 α3

Σ

Michael Elad
The Computer-Science Department
The Technion
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Chemistry of Data

α1 α2 α3

Σ

o Our dictionary stands for the Periodic Table 
containing all the elements

o Our model follows a similar rationale:                                            
Every molecule is built of few elements

We could refer to the Sparseland
model as the chemistry of information:

Michael Elad
The Computer-Science Department
The Technion



20

Sparseland : A Formal Description

Mm

n

A Dictionary

o Every column in 𝐃
(dictionary) is a 
prototype signal (atom)

o The vector  is 
generated 
with few non-
zeros at arbitrary
locations and 
values

A sparse 
vector

 n

o This is a generative model 
that describes how (we 
believe) signals are created

x

α
𝐃

Michael Elad
The Computer-Science Department
The Technion
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Difficulties with Sparseland

o Problem 1: Given a signal, how                           
can we find its atom decomposition?

o A simple example: 

 There are 2000 atoms in the dictionary

 The signal is known to be built of 15 atoms

possibilities 

 If each of these takes 1nano-sec to test,                                      this 
will take ~7.5e20 years to finish !!!!!! 

o So, are we stuck? 

α1 α2 α3

Σ

2000
2.4e 37

15

 
  

 

Michael Elad
The Computer-Science Department
The Technion
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Atom Decomposition Made Formal

Greedy methods

Thresholding/OMP

Relaxation methods

Basis-Pursuit

 L0 – counting number of 
non-zeros in the vector

 This is a projection onto  

the Sparseland model

 These problems are known 
to be NP-Hard problem

Approximation Algorithms

minα α 0 s. t. 𝐃α − y 2 ≤ ε

minα α 0 s. t. x = 𝐃α

m

n 𝐃

xα

Michael Elad
The Computer-Science Department
The Technion
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Pursuit Algorithms 

Michael Elad
The Computer-Science Department
The Technion

Basis Pursuit

Change the L0 into L1

and then  the problem 
becomes convex and 
manageable 

Matching Pursuit

Find the support greedily, 

one element at a time

Thresholding

Multiply y by 𝐃𝐓

and apply shrinkage:

ෝα = 𝒫𝛽 𝐃𝐓y

minα α 0 s. t. 𝐃α − y 2 ≤ ε

Approximation Algorithms

minα α 1

s. t.
𝐃α − y 2 ≤ ε





α1 α2 α3

Σ
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Difficulties with Sparseland
o There are various pursuit algorithms

o Here is an example using the Basis Pursuit (L1):

o Surprising fact: Many of these algorithms are often 
accompanied by theoretical guarantees for their 
success, if the unknown is sparse enough

Michael Elad
The Computer-Science Department
The Technion
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The Mutual Coherence

o The Mutual Coherence μ 𝐃 is the largest off-diagonal 
entry in absolute value

o We will pose all the theoretical results in this talk using 
this property, due to its simplicity

o You may have heard of other ways to characterize the 
dictionary (Restricted Isometry Property - RIP, Exact 
Recovery Condition - ERC, Babel function, Spark, …)

=o Compute

Assume 
normalized 

columns

𝐃

𝐃T

𝐃T𝐃

Michael Elad
The Computer-Science Department
The Technion
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Basis-Pursuit Success 

Comments: 
o If =0  ෝα = α
o This is a worst-case 

analysis – better 
bounds exist 

o Similar theorems 
exist for many other 
pursuit algorithms

Theorem: Given a noisy signal y = 𝐃α + v where v 2 ≤ ε
and α is sufficiently sparse,

then Basis-Pursuit: minα α 1 s. t. 𝐃α − y 2 ≤ ε

leads to a stable result:  ෝα − α 2
2 ≤

4𝜀2

1−μ 4 α 0−1

Michael Elad
The Computer-Science Department
The Technion

Donoho, Elad & Temlyakov (‘06)

ෝα

α 0 <
1

4
1 +

1

μ

M

x

α

𝐃
+

y

v 2 ≤ ε

minα α 1

s. t.
𝐃α − y 2 ≤ ε

minα α 0

s. t.
𝐃α − y 2 ≤ ε



27

Difficulties with Sparseland

α1 α2 α3

Σ
o Problem 2: Given a family of signals, how do                      

we find the dictionary to represent it well?

o Solution: Learn! Gather a large set of                                
signals (many thousands), and find the                                                          
dictionary that sparsifies them

o Such algorithms were developed in the                               
past 10 years (e.g., K-SVD), and their                          
performance is surprisingly good

o We will not discuss this matter further 
in this talk due to lack of time

Michael Elad
The Computer-Science Department
The Technion
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Difficulties with Sparseland

α1 α2 α3

Σ
o Problem 3: Why is this model suitable to                   

describe various sources? e.g., Is it good
for images? Audio? Stocks? … 

o General answer: Yes, this model is                                
extremely effective in representing                                    
various sources

 Theoretical answer: Clear connection 
to other models

 Empirical answer:  In a large variety of 
signal and image processing (and later 
machine learning), this model has been 
shown to lead to state-of-the-art results

Michael Elad
The Computer-Science Department
The Technion
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Difficulties with Sparseland ?

o Problem 1: Given an image patch, how  
can we find its atom decomposition ?

o Problem 2: Given a family of signals,                                    
how do we find the dictionary to                                        
represent it well?

o Problem 3: Is this model flexible                                      
enough to describe various sources?                                  
E.g., Is it good for images? audio? …

α1 α2 α3

Σ

Michael Elad
The Computer-Science Department
The Technion
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Difficulties with Sparseland ?

o Problem 1: Given an image patch, how  
can we find its atom decomposition ?

o Problem 2: Given a family of signals,                                    
how do we find the dictionary to                                        
represent it well?

o Problem 3: Is this model flexible                                      
enough to describe various sources?                                  
E.g., Is it good for images? audio? …

α1 α2 α3

Σ

Michael Elad
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o Sparseland has a great success in signal &

image processing and machine learning tasks

o In the past 8-9 years, many books were 
published on this and closely related fields

Michael Elad
The Computer-Science Department
The Technion

This Field has been rapidly GROWING … 
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A New Massive Open Online Course

Michael Elad
The Computer-Science Department
The Technion
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o When handling images, Sparseland is typically deployed on small 

overlapping patches due to the desire to train the model to fit the 
data better

o The model assumption is: each patch in the image is believed to 
have a sparse representation w.r.t. a common local dictionary

o What is the corresponding global model? This brings us to … the 
Convolutional Sparse Coding (CSC) 

Michael Elad
The Computer-Science Department
The Technion

Sparseland for Image Processing



Multi-Layered Convolutional
Sparse Modeling
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Joint work with

Vardan PapyanYaniv Romano Jeremias Sulam
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Convolutional Sparse Coding (CSC) 

[𝐗] =෍

i=1

𝑚

di ∗ [Γi]

𝑚 filters convolved with their sparse 
representations 

An image 
with 𝑁
pixels

i-th feature-map: An 
image of the same size 
as 𝐗 holding the sparse 
representation related 
to the i-filter

The i-th filter of 
small size 𝑛

29

This model emerged in 2005-2010, developed and advocated by Yan LeCun and 
others. It serves as the foundation of Convolutional Neural Networks
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oHere is an alternative global sparsity-based model formulation

o𝐂i ∈ ℝ𝑁×𝑁 is a banded and Circulant
matrix containing a single atom 
with all of its shifts

o𝚪i ∈ ℝ𝑁 are the corresponding coefficients 
ordered as column vectors

𝐗 =෍

i=1

𝑚

𝐂i𝚪i

CSC in Matrix Form

𝑛

𝑁

𝐂i =

=
𝐂1 ⋯ 𝐂𝑚 𝚪1

⋮
𝚪𝑚

= 𝐃𝚪

30
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The CSC Dictionary

𝐂1 𝐂2 𝐂3 =

𝐃 =
𝑛

𝐃L

𝑚

31
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=

𝐑i𝐗 = 𝛀𝛄i

𝑛

(2𝑛 − 1)𝑚

𝐑i𝐗

𝛄i

Why CSC?

𝐗 = 𝐃𝚪
stripe-dictionary stripe vector

32
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=

𝐑i𝐗 = 𝛀𝛄i

𝑛

(2𝑛 − 1)𝑚

𝐑i+1𝐗

𝛄i+1

Why CSC?

𝐗 = 𝐃𝚪
stripe-dictionary

Every patch has a sparse 
representation w.r.t. to the 

same local dictionary (𝛀) just 
as assumed for images

stripe vector

32

𝐑i+1𝐗 = 𝛀𝛄i+1
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Classical Sparse Theory for CSC ? 

Theorem: BP is guaranteed to “succeed” …. if  𝚪 𝟎 <
𝟏

𝟒
𝟏 +

𝟏

𝛍

min
𝚪

𝚪 0 s. t. 𝐘 − 𝐃𝚪 2 ≤ ε

oAssuming that 𝑚 = 2 and 𝑛 = 64 we have that [Welch, ’74]

μ ≥ 0.063

o Success of pursuits is guaranteed as long as

𝚪 0 <
1

4
1 +

1

μ(𝐃)
≤

1

2
1 +

1

0.063
≈ 4.2

oOnly few (4) non-zeros GLOBALLY are 
allowed!!! This is a very pessimistic result!

33
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The main question we aim to address is this: 

Can we generalize the vast theory of Sparseland to this 
new notion of local sparsity? For example, could we 
provide guarantees for success for pursuit algorithms?

𝑚 = 2

Moving to Local Sparsity: Stripes

min
𝚪

𝚪 0,∞
s s. t. 𝐘 − 𝐃𝚪 2 ≤ ε

ℓ0,∞ Norm:   𝚪 0,∞
s = max

i
𝛄i 0

𝚪 0,∞
s is low  all  𝛄i are sparse  every 

patch has a sparse representation over 𝛀

34

𝛄i𝛄i+1

𝚪
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Success of the Basis Pursuit 

36

Theorem: For Y = DΓ + E, if λ = 4 E 2,∞
p

, if 

𝚪 𝟎,∞
𝐬 <

𝟏

𝟑
𝟏 +

𝟏

𝛍 𝐃

then Basis Pursuit performs very-well:

1. The support of ΓBP is contained in that of Γ

2. ΓBP − Γ ∞ ≤ 7.5 E 2,∞
p

3. Every entry greater than 7.5 E 2,∞
p

is found

4. ΓBP is unique

ΓBP = min
Γ

1

2
Y − DΓ 2

2 + λ Γ 1

Papyan, Sulam 
& Elad (‘17)

This is a much better 
result – it allows few 

non-zeros locally in 
each stripe, implying 

a permitted O 𝑁
non-zeros globally 
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From CSC to Multi-Layered CSC
𝐗 ∈ ℝ𝑁

𝑚1

𝑛0

𝐃1 ∈ ℝ𝑁×𝑁𝑚1

𝑛1𝑚1

𝑚2

𝐃2 ∈ ℝ𝑁𝑚1×𝑁𝑚2

𝑚1

𝚪1 ∈ ℝ𝑁𝑚1

𝚪1 ∈ ℝ𝑁𝑚1

𝚪2 ∈ ℝ𝑁𝑚2

Convolutional sparsity 
(CSC) assumes an 

inherent structure is 
present in natural 

signals

We propose to impose the 
same structure on the 

representations themselves

Multi-Layer CSC (ML-CSC)

45
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Intuition: From Atoms to Molecules
𝐗 ∈ ℝ𝑁 𝐃1 ∈ ℝ𝑁×𝑁𝑚1 𝐃2 ∈ ℝ𝑁𝑚1×𝑁𝑚2

𝚪1 ∈ ℝ𝑁𝑚1

𝚪2 ∈ ℝ𝑁𝑚2

o We can chain the all the dictionaries 
into one effective dictionary
𝐃eff = 𝐃1𝐃2𝐃3 ∙∙∙ 𝐃K  𝐱 = 𝐃eff 𝚪K

o This is a special Sparseland  (indeed, a CSC) model

o However: 

 A key property in this model: sparsity of the intermediate representations

 The effective atoms: atoms  molecules  cells  tissue  body-parts  …

𝚪1 ∈ ℝ𝑁𝑚1

46
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A Small Taste: Model Training (MNIST)

𝐃1𝐃2𝐃3 (28×28)

MNIST Dictionary:
•D1:  32 filters of size 7×7, with stride of 2 (dense)
•D2: 128 filters of size 5×5×32 with stride of 1 - 99.09 % sparse
•D3: 1024 filters of size 7×7×128 – 99.89 % sparse

𝐃1𝐃2 (15×15)

𝐃1 (7×7)

47
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ML-CSC: Pursuit

o Deep–Coding Problem 𝐃𝐂𝐏λ (dictionaries are known):

Find 𝚪j j=1

K
𝑠. 𝑡.

𝐗 = 𝐃1𝚪1 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

o Or, more realistically for noisy signals, 

Find 𝚪j j=1

K
𝑠. 𝑡.

𝐘 − 𝐃1𝚪1 2 ≤ ℰ 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

48
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A Small Taste: Pursuit

Γ1

Γ2

Γ3

Γ0

Y

99.51% sparse
(5 nnz)

99.52% sparse
(30 nnz)

94.51 % sparse
(213 nnz)
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x=𝐃1Γ1

x=𝐃1𝐃2Γ2

x=𝐃1𝐃2𝐃3Γ3
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The simplest pursuit algorithm (single-layer case)  is 
the THR algorithm, which operates on a given input signal 𝐘 by:

෠𝚪 = 𝒫𝛽 𝐃T𝐘

ML-CSC: The Simplest Pursuit

𝐘 = 𝐃𝚪 + 𝐄
and 𝚪 is sparse
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The layered (soft nonnegative) 
thresholding and the CNN forward pass 

algorithm are the very same thing !!!

o Layered thresholding (LT):

oNow let’s take a look at how Conv. Neural Network operates:

෡𝚪2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐘෡𝚪2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐘෡𝚪2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐘

Consider this for Solving the DCP

Estimate 𝚪1 via the THR algorithm

Estimate 𝚪2 via the THR algorithm

𝐃𝐂𝐏λ
ℰ : Find 𝚪j j=1

K
𝑠. 𝑡.

𝐘 − 𝐃1𝚪1 2 ≤ ℰ 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

𝑓 𝐘 = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐘
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𝐘

Theoretical Path

M A
෠𝚪i i=1

K𝐗 = 𝐃1𝚪1
𝚪1 = 𝐃2𝚪2

⋮
𝚪K−1 = 𝐃K𝚪K

𝚪i is 𝐋0,∞ sparse

𝐃𝐂𝐏λ
ℰ

Layered THR
(Forward Pass)

Maybe other?

𝐗

Armed with this view of a generative source model, we 
may ask new and daring theoretical questions
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Success of the Layered-THR

Theorem: If 𝚪i 0,∞
s <

1

2
1 +

1

μ 𝐃i
⋅
𝚪i
min

𝚪i
max −

1

μ 𝐃i
⋅

εL
i−1

𝚪i
max

then the Layered Hard THR (with the proper thresholds)     

finds the correct supports  and  𝚪i
LT − 𝚪i 2,∞

p
≤ εL

i ,  where 

we have defined εL
0 = 𝐄 2,∞

p
and

εL
i = 𝚪i 0,∞

p
⋅ εL

i−1 + μ 𝐃i 𝚪i 0,∞
s − 1 𝚪i

max

The stability of the forward pass is guaranteed 
if the underlying representations are locally

sparse and the noise is locally bounded

Problems: 
1. Contrast
2. Error growth
3. Error even if no noise
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Layered Basis Pursuit (BP)

𝚪1
LBP = min

𝚪1

1

2
𝐘 − 𝐃1𝚪1 2

2 + λ1 𝚪1 1

𝚪2
LBP = min

𝚪2

1

2
𝚪1
LBP − 𝐃2𝚪2 2

2
+ λ2 𝚪2 1

𝐃𝐂𝐏λ
ℰ : Find 𝚪j j=1

K
𝑠. 𝑡.

𝐘 − 𝐃1𝚪1 2 ≤ ℰ 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

oWe chose the Thresholding algorithm 
due to its simplicity, but we do know 
that there are better pursuit methods 
– how about using them?

o Lets use the Basis Pursuit instead …

Deconvolutional networks
[Zeiler, Krishnan, Taylor & Fergus ‘10]
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Success of the Layered BP

Theorem: Assuming that  𝚪𝐢 𝟎,∞
𝐬 <

𝟏

𝟑
𝟏 +

𝟏

𝛍 𝐃𝐢

then the Layered Basis Pursuit performs very well: 

1. The support of 𝚪i
LBP is contained in that of 𝚪i

2. The error is bounded:  𝚪i
LBP − 𝚪i 2,∞

p
≤ εL

i , where 

εL
i = 7.5i 𝐄 2,∞

p ςj=1
i 𝚪j 0,∞

p

3. Every entry in 𝚪i greater than 

εL
i / 𝚪i 0,∞

p
will be found
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Problems: 
1. Contrast
2. Error growth
3. Error even if no noise
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Layered Iterative Soft-Thresholding:

𝚪j
t = 𝒮ξj/cj 𝚪j

t−1 +𝐃j
T ෡𝚪j−1 −𝐃j𝚪j

t−1

Layered Iterative Thresholding

Layered BP:    𝚪j
LBP = min

𝚪j

1

2
𝚪j−1
LBP − 𝐃j𝚪j 2

2
+ ξj 𝚪j 1

Can be seen as a very deep 
recurrent neural network

[Gregor & LeCun ‘10]

t

j

j

Note that our suggestion 
implies that groups of layers 
share the same dictionaries
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Where are the Labels? 

M
𝐗 = 𝐃1𝚪1
𝚪1 = 𝐃2𝚪2

⋮
𝚪K−1 = 𝐃K𝚪K

𝚪i is 𝐋0,∞ sparse

𝐗

52

L 𝐗

Answer 1: 

o We do not need labels because everything we 
show refer to the unsupervised case, in which 
we operate on signals, not necessarily in the 
context of recognition

We presented the ML-CSC as a 
machine that produces signals X
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Where are the Labels? 

M
𝐗 = 𝐃1𝚪1
𝚪1 = 𝐃2𝚪2

⋮
𝚪K−1 = 𝐃K𝚪K

𝚪i is 𝐋0,∞ sparse

𝐗

Answer 2: 

o In fact, this model could be augmented by a 
synthesis of the corresponding label by: 

L 𝐗 = 𝑠𝑖𝑔𝑛 c + σj=1
K wj

TΓj

o This assumes that knowing the representations 
(or maybe their supports?) suffice for 
identifying the label 

o Thus, a successful pursuit algorithm can lead to 
an accurate recognition if the network is 
augmented by a FC classification layer
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L 𝐗

We presented the ML-CSC as a 
machine that produces signals X
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What About Learning?  

All these models rely on  proper 
Dictionary Learning Algorithms to fulfil their mission: 

 Sparseland: We have unsupervised and supervised such algorithms, and a 
beginning of theory to explain how these work

 CSC: We have few and only unsupervised methods, and even these are not fully 
stable/clear

 ML-CSC: One algorithm has been proposed (unsupervised) – see ArxiV
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ML-CSC   
Multi-Layered 
Convolutional 
Sparse Coding

Sparseland
Sparse 

Representation 
Theory

CSC
Convolutional 

Sparse 
Coding
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Time to Conclude
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This Talk Sparseland The desire to 
model data

We spoke about the importance of models in signal/image 

processing and described Sparseland in details
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This Talk Sparseland The desire to 
model data

Novel View of 
Convolutional 
Sparse Coding

We presented a theoretical study of the CSC  model and 
how to operate locally while getting global optimality 
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This Talk

Multi-Layer 
Convolutional 
Sparse Coding

Sparseland The desire to 
model data

Novel View of 
Convolutional 
Sparse Coding

We propose a multi-layer extension of 
CSC, shown to be tightly connected to CNN
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This Talk

A novel interpretation 
and theoretical 

understanding of CNN

Multi-Layer 
Convolutional 
Sparse Coding

Sparseland The desire to 
model data

Novel View of 
Convolutional 
Sparse Coding

The ML-CSC was shown to enable a theoretical 
study of CNN, along with new insights 
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This Talk

A novel interpretation 
and theoretical 

understanding of CNN

Multi-Layer 
Convolutional 
Sparse Coding

Sparseland The desire to 
model data

Novel View of 
Convolutional 
Sparse Coding

Take Home Message 1: 
Generative modeling of data 

sources enables algorithm 
development along with 
theoretically analyzing 

algorithms’ performance 
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Take Home Message 2: 
The Multi-Layer 

Convolutional Sparse 
Coding model could be 

a new platform for 
understanding and 
developing deep-
learning solutions 
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More on these (including these slides and the relevant papers) can be 
found in http://www.cs.technion.ac.il/~elad 

Questions?


