Sparse Modeling in Image Processing and Deep Learning

Michael Elad

Computer Science Department
The Technion - Israel Institute of Technology
Haifa 32000, Israel

New Deep Learning Techniques February 5-9, 2018

This Lecture

Sparseland

Sparse Representation Theory

CSC

Convolutional
Sparse
Coding

ML-CSC

Multi-Layered Convolutional Sparse Coding

Sparsity-Inspired Models

Deep-Learning

Another underlying idea that will accompany us

.....................

Generative modeling of data sources enables

- A systematic algorithm development, &
- A theoretical analysis of their performance

Multi-Layered Convolutional Sparse Modeling

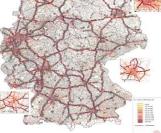
Our Data is Structured

Biological Signals

Social Networks

Matrix Data

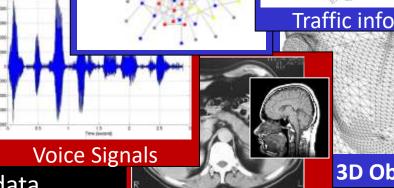
Seismic Data



 We are surrounded by various diverse sources of massive information

Each of these sources have an internal structure, which can be exploited

 This structure, when identified, is the engine behind our ability to process this data



3D Objects

Medical Imaging

Models

- description of the underlying signal of interest, describing our beliefs regarding its structure
- The following is a partial list of commonly used models for images
- Good models should be simple while matching the signals

Simplicity Reliability

Models are almost always imperfect

Principal-Component-Analysis

Gaussian-Mixture

Markov Random Field

Laplacian Smoothness

DCT concentration

Wavelet Sparsity

Piece-Wise-Smoothness

Besov-Spaces

Total-Variation

C2-smoothness

Beltrami-Flow

What This Talk is all About?

Data Models and Their Use

- Almost any task in data processing requires a model true for denoising, deblurring, super-resolution, inpainting, compression, anomaly-detection, sampling, recognition, separation, and more
- Sparse and Redundant Representations offer a new and highly effective model – we call it

Sparseland

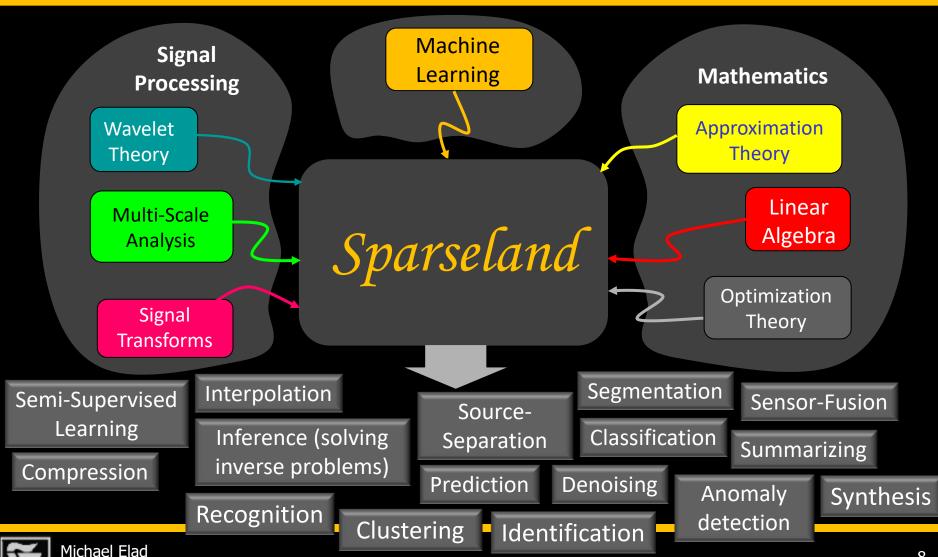
 We shall describe this and descendant versions of it that lead all the way to ... deep-learning

Multi-Layered Convolutional Sparse Modeling

A New Emerging Model

The Computer-Science Department

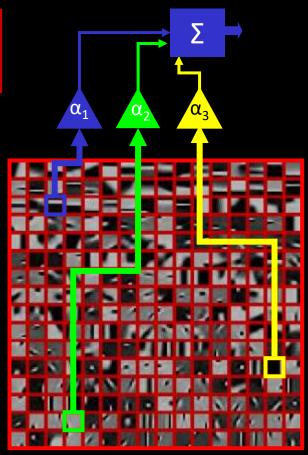
The Technion



The Sparseland Model

 Task: model image patches of size 8×8 pixels

- We assume that a dictionary of such image patches is given, containing 256 atom images
- The Sparseland model assumption:
 every image patch can be
 described as a linear
 combination of few atoms

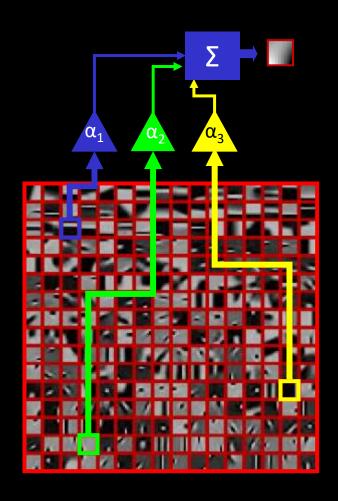


The Sparseland Model

Properties of this model:

Sparsity and Redundancy

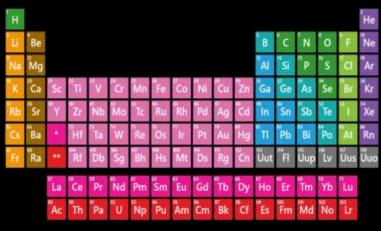
- We start with a 8-by-8 pixels patch and represent it using 256 numbers
 - This is a redundant representation
- However, out of those 256 elements in the representation, only 3 are non-zeros
 - This is a sparse representation
- Bottom line in this case: 64 numbers representing the patch are replaced by 6 (3 for the indices of the non-zeros, and 3 for their entries)

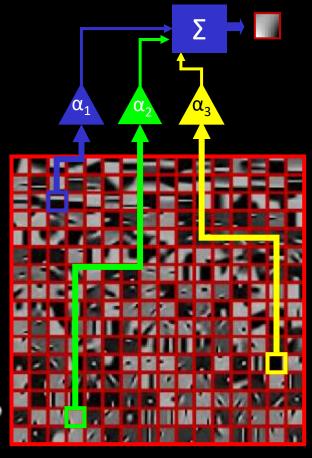


Chemistry of Data

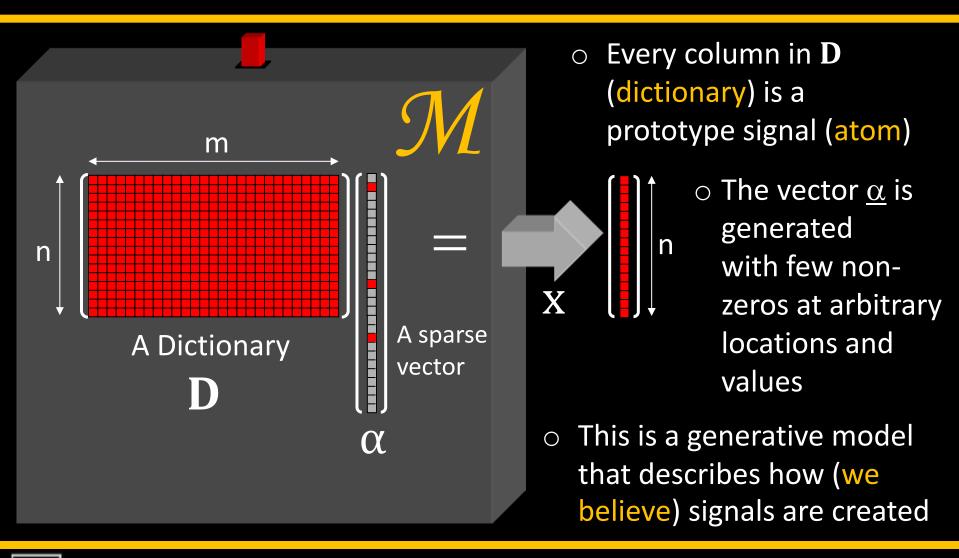
We could refer to the *Sparseland* model as the chemistry of information:

- Our dictionary stands for the Periodic Table containing all the elements
- Our model follows a similar rationale:
 Every molecule is built of few elements





Sparseland: A Formal Description

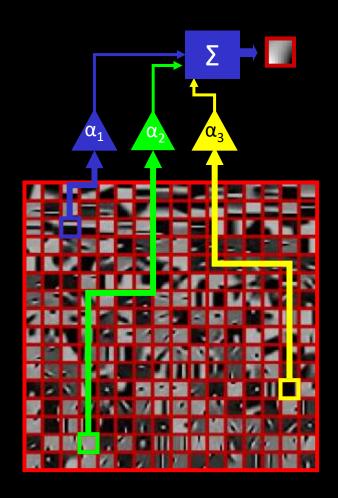


Difficulties with Sparseland

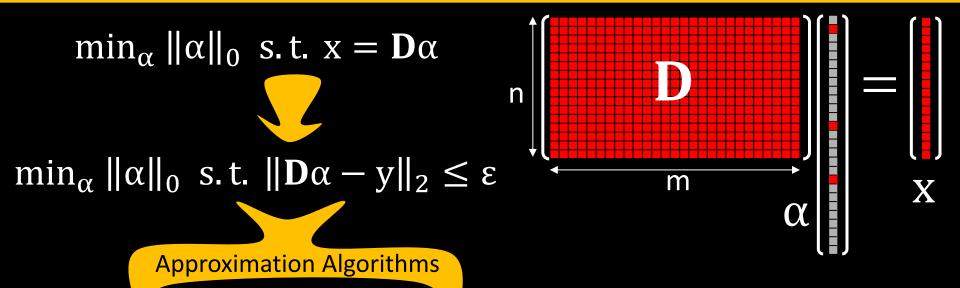
- Problem 1: Given a signal, how can we find its atom decomposition?
- A simple example:
 - There are 2000 atoms in the dictionary
 - The signal is known to be built of 15 atoms

$$\binom{2000}{15} \approx 2.4e + 37$$
 possibilities

- If each of these takes 1nano-sec to test, will take ~7.5e20 years to finish !!!!!!
- So, are we stuck?



Atom Decomposition Made Formal



Relaxation methods

Basis-Pursuit

Greedy methods

Thresholding/OMP

- L₀ counting number of non-zeros in the vector
- This is a projection onto the Sparseland model
- These problems are known to be NP-Hard problem

Pursuit Algorithms

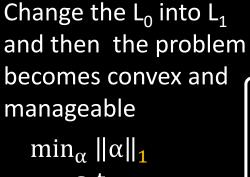
$$\min_{\alpha} \|\alpha\|_0$$
 s.t. $\|\mathbf{D}\alpha - \mathbf{y}\|_2 \le \varepsilon$

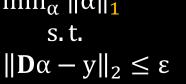
Basis Pursuit

Matching Pursuit

Approximation Algorithms

Find the support greedily, one element at a time

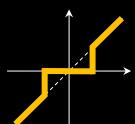




Thresholding

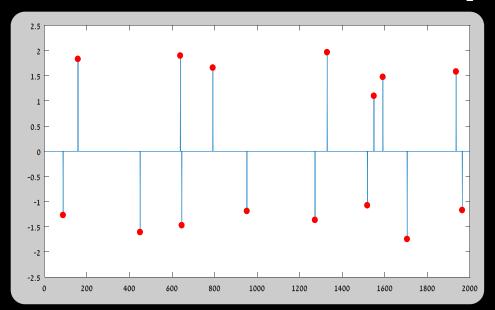
Multiply y by $\mathbf{D}^{\mathbf{T}}$ and apply shrinkage:

$$\widehat{\mathbf{\alpha}} = \mathcal{P}_{\beta} \{ \mathbf{D}^{\mathbf{T}} \mathbf{y} \}$$

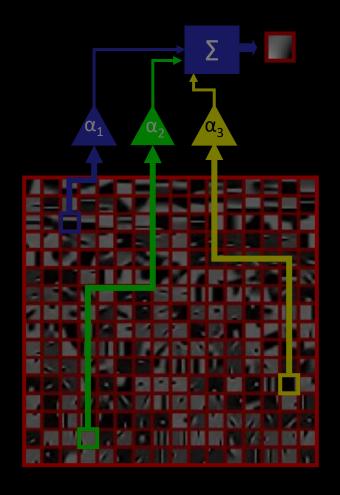


Difficulties with Sparseland

- There are various pursuit algorithms
- \circ Here is an example using the Basis Pursuit (L₁):

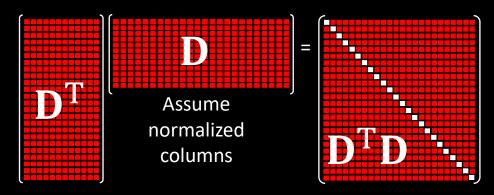


 Surprising fact: Many of these algorithms are often accompanied by theoretical guarantees for their success, if the unknown is sparse enough



The Mutual Coherence

Compute



- o The Mutual Coherence $\mu(\boldsymbol{D})$ is the largest off-diagonal entry in absolute value
- We will pose all the theoretical results in this talk using this property, due to its simplicity
- You may have heard of other ways to characterize the dictionary (Restricted Isometry Property - RIP, Exact Recovery Condition - ERC, Babel function, Spark, ...)

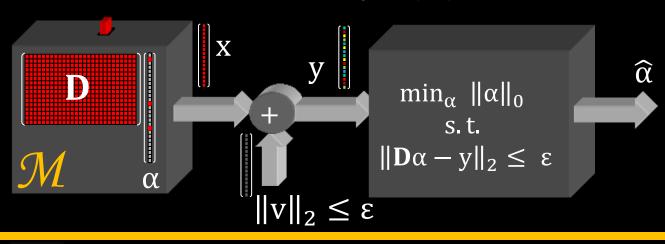
Basis-Pursuit Success

Theorem: Given a noisy signal $y = D\alpha + v$ where $||v||_2 \le \varepsilon$ and α is sufficiently sparse, $||\alpha||_0 < \frac{1}{4} \left(1 + \frac{1}{\mu}\right)$

then Basis-Pursuit: $\min_{\alpha} \|\alpha\|_1$ s.t. $\|\mathbf{D}\alpha - \mathbf{y}\|_2 \le \epsilon$

leads to a stable result: $\|\widehat{\alpha} - \alpha\|_2^2 \le \frac{4\varepsilon^2}{1 - \mu(4\|\alpha\|_0 - 1)}$

Donoho, Elad & Temlyakov ('06)

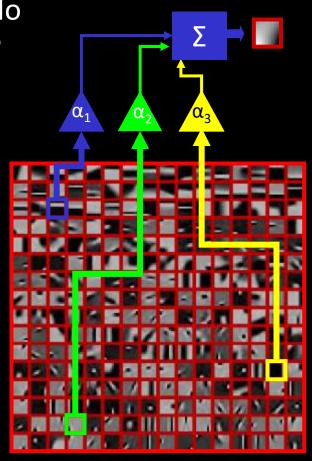


Comments:

- \circ If $\varepsilon=0 \rightarrow \widehat{\alpha} = \alpha$
- This is a worst-case analysis better bounds exist
- Similar theorems
 exist for many other
 pursuit algorithms

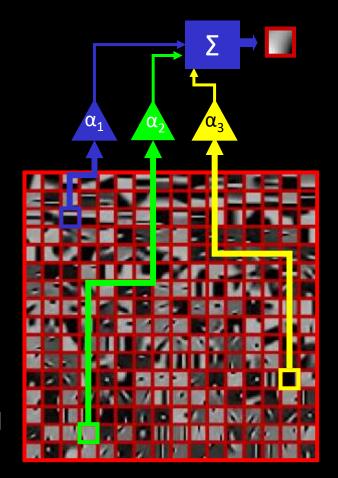
Difficulties with Sparseland

- Problem 2: Given a family of signals, how do we find the dictionary to represent it well?
- Solution: Learn! Gather a large set of signals (many thousands), and find the dictionary that sparsifies them
- Such algorithms were developed in the past 10 years (e.g., K-SVD), and their performance is surprisingly good
- We will not discuss this matter further in this talk due to lack of time



Difficulties with Sparseland

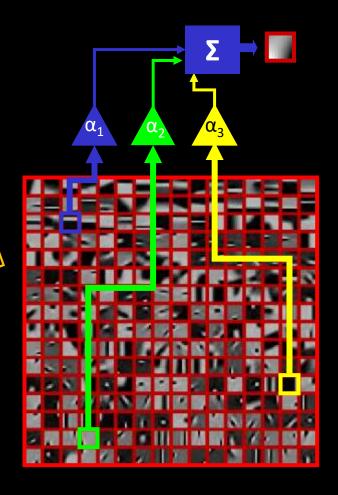
- Problem 3: Why is this model suitable to describe various sources? e.g., Is it good for images? Audio? Stocks? ...
- General answer: Yes, this model is extremely effective in representing various sources
 - Theoretical answer: Clear connection to other models
 - Empirical answer: In a large variety of signal and image processing (and later machine learning), this model has been shown to lead to state-of-the-art results



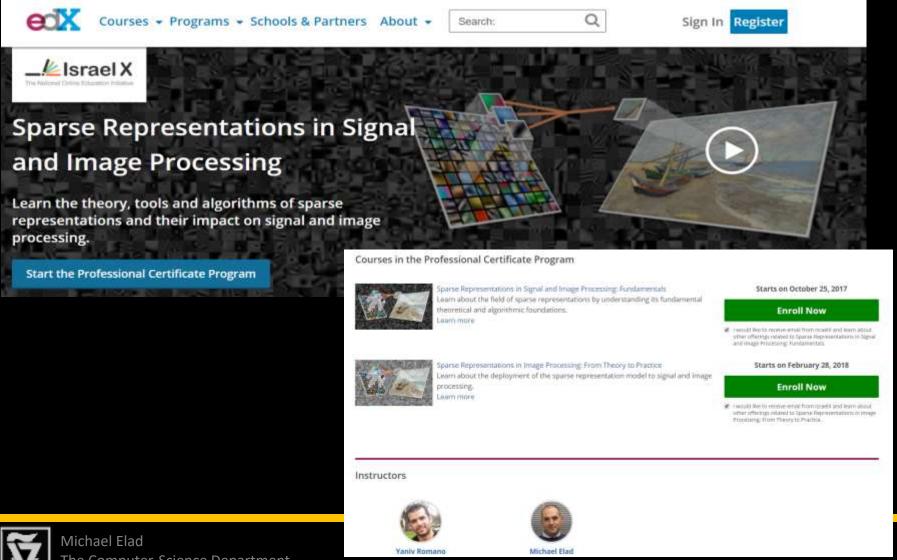
Difficulties with Sparseland?

- Problem 1: Given an image now can we find its at-
- ALL ANSWERED POSITIVE DE LA COMPANION DE LA Prob CONSTRUCTIVELY as sources?

mages? audio? ...

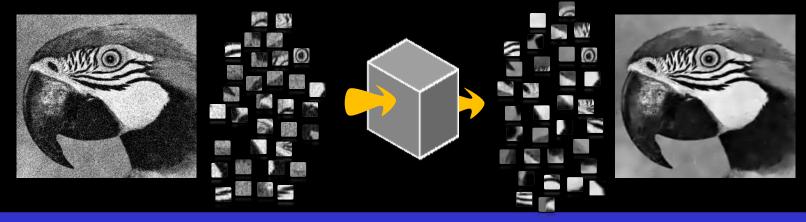


A New Massive Open Online Course



Sparseland for Image Processing

 When handling images, Sparseland is typically deployed on small overlapping patches due to the desire to train the model to fit the data better



- The model assumption is: each patch in the image is believed to have a sparse representation w.r.t. a common local dictionary
- What is the corresponding global model? This brings us to ... the Convolutional Sparse Coding (CSC)

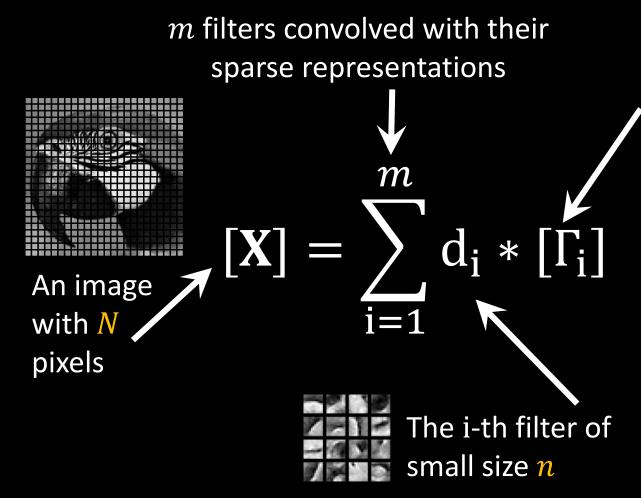
Multi-Layered Convolutional Sparse Modeling

Joint work with

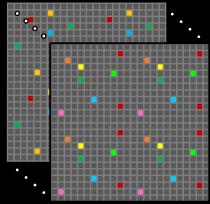
Vardan Papyan

Jeremias Sulam

Convolutional Sparse Coding (CSC)



i-th feature-map:
An image of the same size as **X**holding the sparse representation related to the i-filter



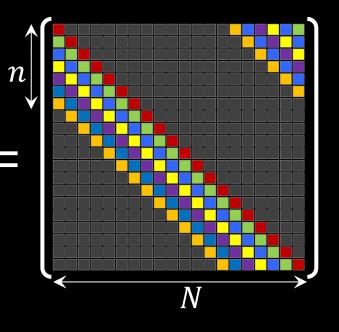
CSC in Matrix Form

Here is an alternative global sparsity-based model formulation

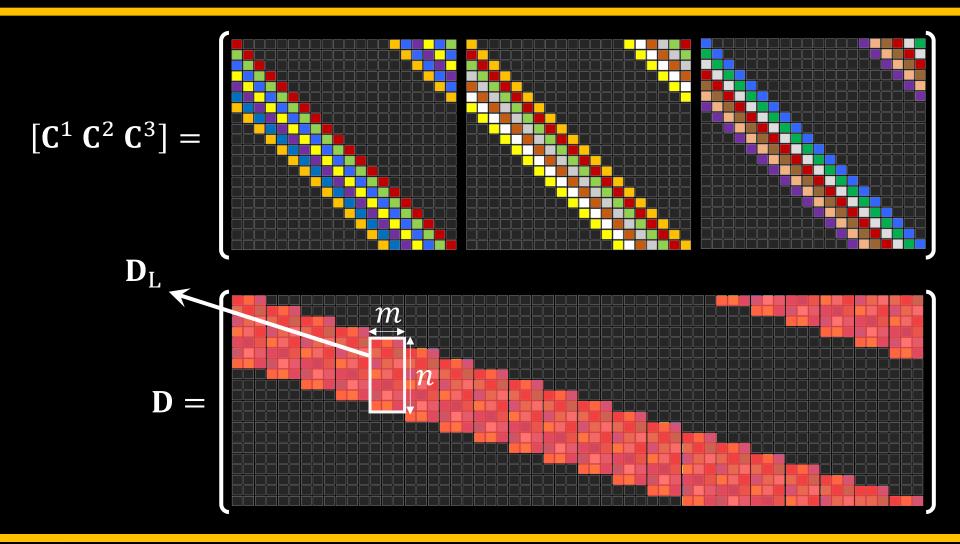
$$\mathbf{X} = \sum_{i=1}^{m} \mathbf{C}^{i} \mathbf{\Gamma}^{i} = \begin{bmatrix} \mathbf{C}^{1} & \cdots & \mathbf{C}^{m} \end{bmatrix} \begin{bmatrix} \mathbf{\Gamma}^{1} \\ \vdots \\ \mathbf{\Gamma}^{m} \end{bmatrix} = \mathbf{D} \mathbf{\Gamma}$$

 \circ $\mathbf{C}^{i} \in \mathbb{R}^{N \times N}$ is a banded and Circulant matrix containing a single atom with all of its shifts

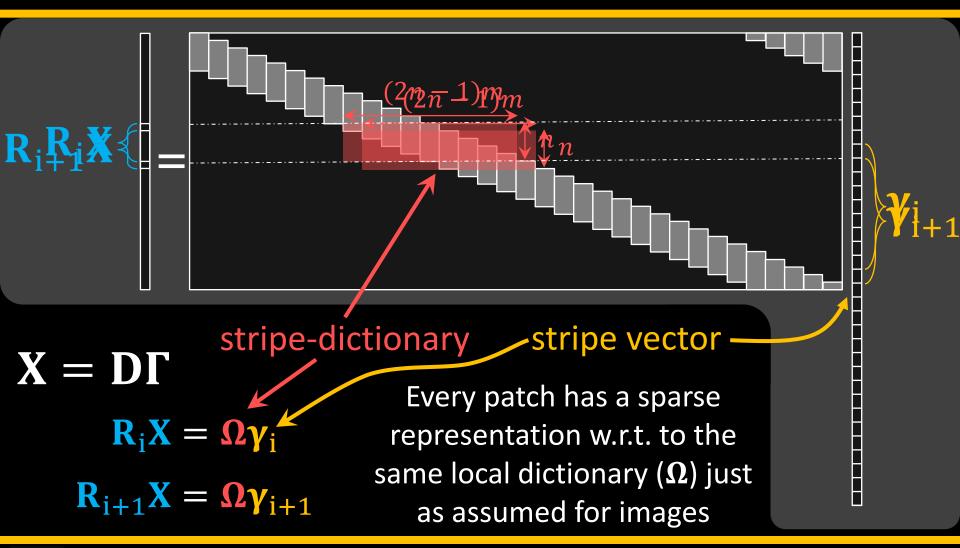
 \circ $\Gamma^i \in \mathbb{R}^N$ are the corresponding coefficients ordered as column vectors



The CSC Dictionary



Why CSC?



Classical Sparse Theory for CSC?

$$\min_{\Gamma} \|\Gamma\|_0 \quad \text{s. t. } \|Y - D\Gamma\|_2 \le \epsilon$$

Theorem: BP is guaranteed to "succeed" if
$$\|\Gamma\|_0 < \frac{1}{4} \left(1 + \frac{1}{\mu}\right)$$

- \circ Assuming that m=2 and n=64 we have that [Welch, '74] $\mu \geq 0.063$
- O Success of pursuite is

 The classic Sparseland Theory

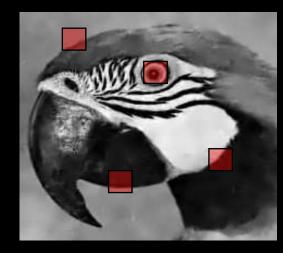
 The classic Sparseland Theory

 does not provide good explanations

 for the CSC model

 for the CSC model

 allowed!!! This is a very pessimistic result!



Moving to Local Sparsity: Stripes

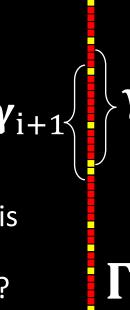
$$\ell_{0,\infty}$$
 Norm: $\|\Gamma\|_{0,\infty}^s = \max_i \|\gamma_i\|_0$

$$\min_{\Gamma} \|\Gamma\|_{0,\infty}^{s} \text{ s.t. } \|\mathbf{Y} - \mathbf{D}\Gamma\|_{2} \le \varepsilon$$

 $\|\mathbf{\Gamma}\|_{0,\infty}^{s}$ is low \to all γ_i are sparse \to every patch has a sparse representation over Ω

The main question we aim to address is this:

Can we generalize the vast theory of *Sparseland* to this new notion of local sparsity? For example, could we provide guarantees for success for pursuit algorithms?



m = 2 {

Success of the Basis Pursuit

$$\Gamma_{\rm BP} = \min_{\Gamma} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}\Gamma\|_2^2 + \lambda \|\Gamma\|_1$$

Local noise (per patch)

Theorem: For ${
m Y}={
m D}\Gamma+{
m E}$, if ${
m \lambda}=4\|{
m E}\|_{2,\infty}^{
m p}$, if

$$\|\Gamma\|_{0,\infty}^s < \frac{1}{3} \left(1 + \frac{1}{\mu(D)}\right)$$

then Basis Pursuit performs very-well:

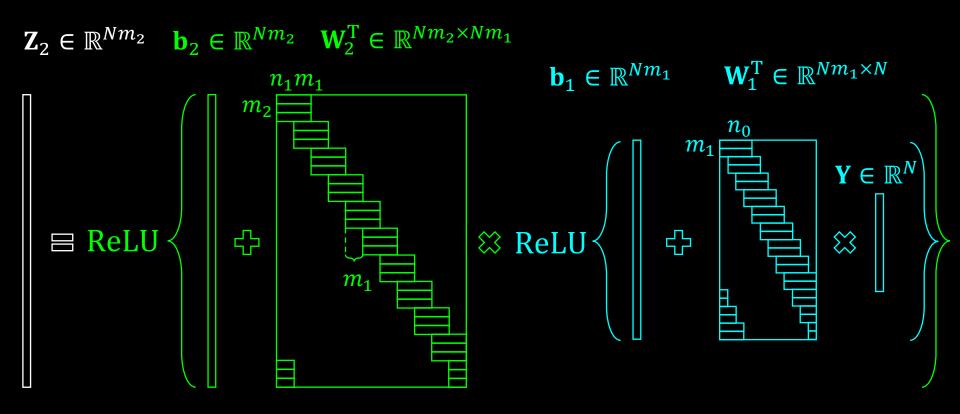
- 1. The support of $\Gamma_{\rm BP}$ is contained in that of Γ
- 2. $\|\Gamma_{BP} \Gamma\|_{\infty} \le 7.5 \|E\|_{2,\infty}^p$
- 3. Every entry greater than $7.5||E||_{2,\infty}^p$ is found
- 4. $\Gamma_{\rm BP}$ is unique

Papyan, Sulam & Elad ('17)

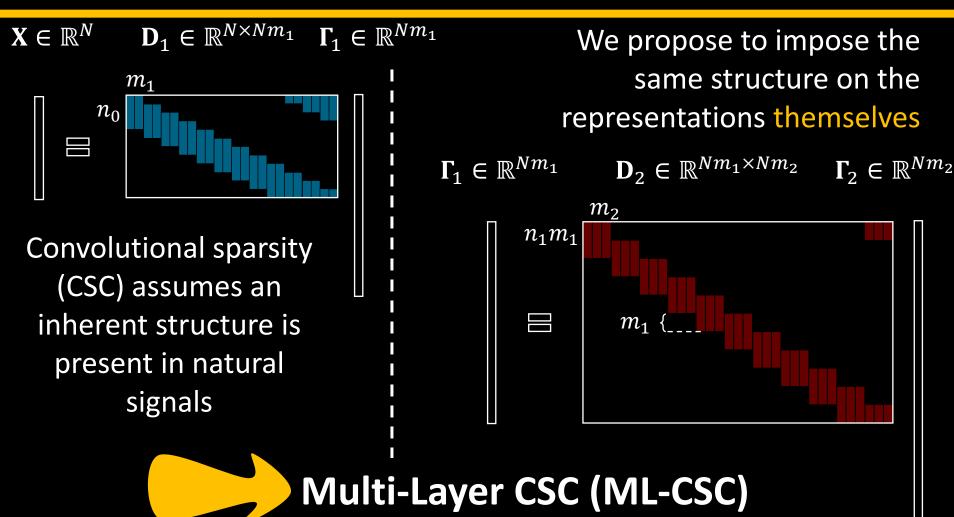
Multi-Layered Convolutional Sparse Modeling

Quick Recall: The Forward Pass

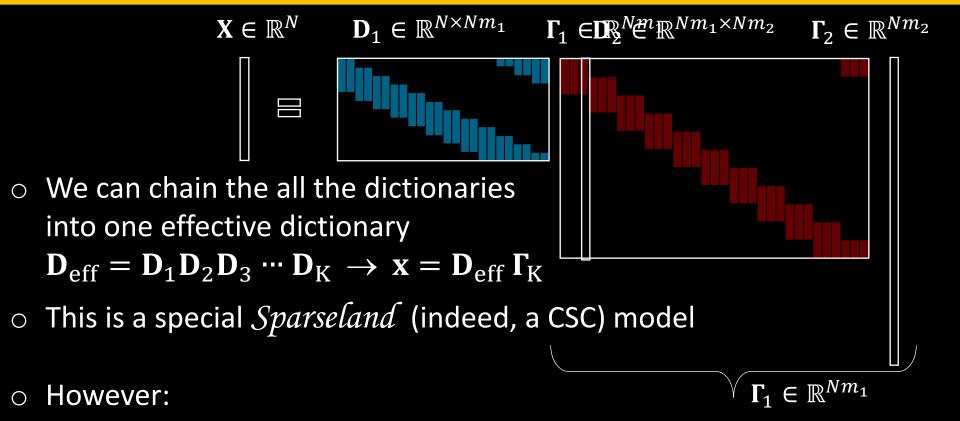
$$f(\mathbf{Y}) = \text{ReLU}(\mathbf{b}_2 + \mathbf{W}_2^{\text{T}} \text{ ReLU}(\mathbf{b}_1 + \mathbf{W}_1^{\text{T}} \mathbf{Y}))$$



From CSC to Multi-Layered CSC

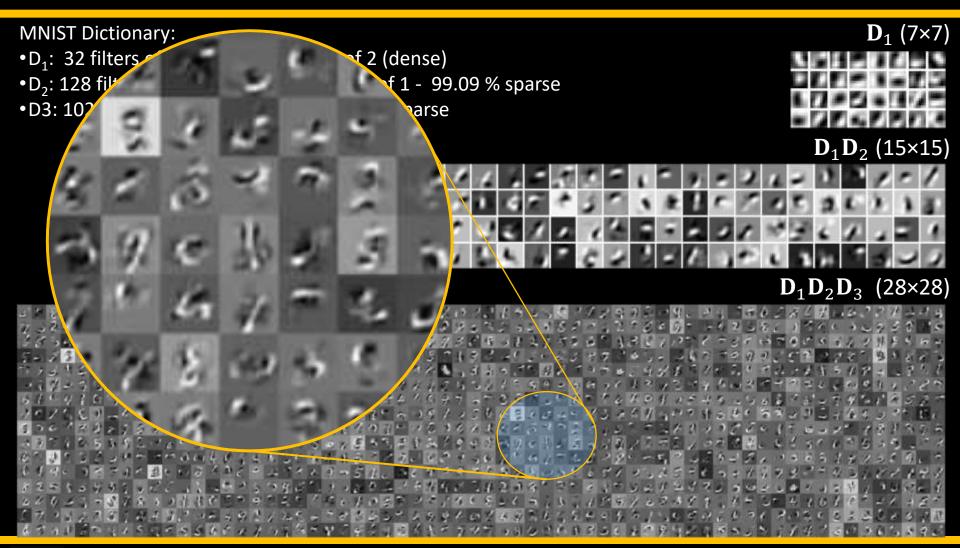


Intuition: From Atoms to Molecules

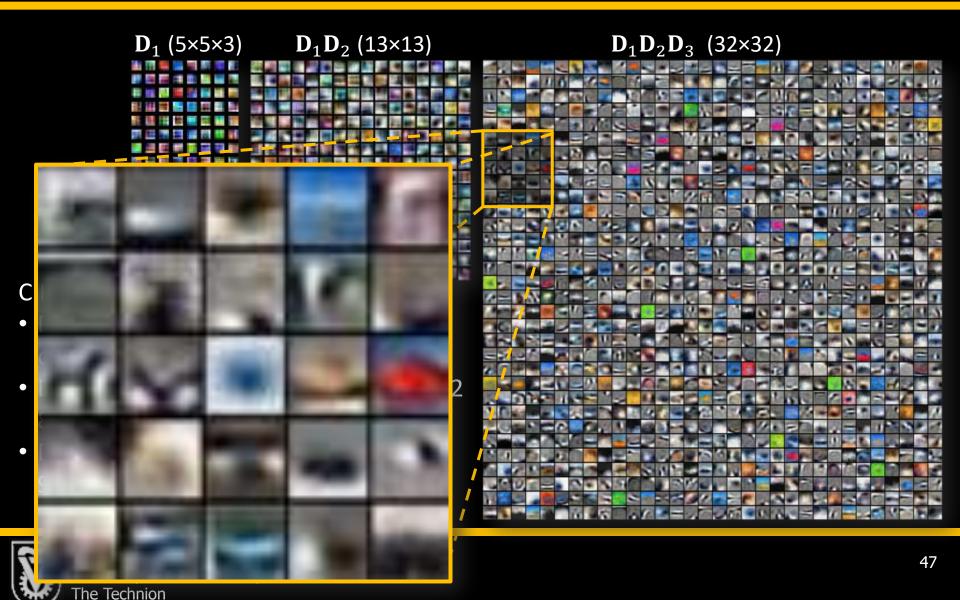


- A key property in this model: sparsity of the intermediate representations
- The effective atoms: atoms

A Small Taste: Model Training (MNIST)



A Small Taste: Model Training (CiFAR)



ML-CSC: Pursuit

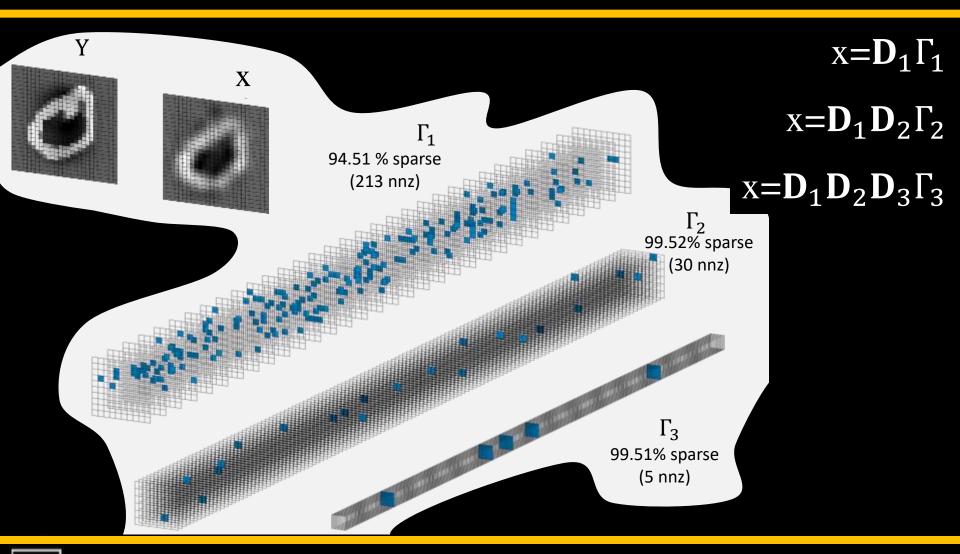
 \circ Deep-Coding Problem (DCP $_{\lambda}$) (dictionaries are known):

$$\begin{cases} \mathbf{X} = \mathbf{D}_{1} \mathbf{\Gamma}_{1} & \|\mathbf{\Gamma}_{1}\|_{0,\infty}^{s} \leq \lambda_{1} \\ \mathbf{\Gamma}_{1} = \mathbf{D}_{2} \mathbf{\Gamma}_{2} & \|\mathbf{\Gamma}_{2}\|_{0,\infty}^{s} \leq \lambda_{2} \\ \vdots & \vdots \\ \mathbf{\Gamma}_{K-1} = \mathbf{D}_{K} \mathbf{\Gamma}_{K} & \|\mathbf{\Gamma}_{K}\|_{0,\infty}^{s} \leq \lambda_{K} \end{cases}$$

Or, more realistically for noisy signals,

$$\text{Find } \left\{ \boldsymbol{\Gamma}_{j} \right\}_{j=1}^{K} \quad s. \, t. \, \left\{ \begin{aligned} \| \boldsymbol{Y} - \boldsymbol{D}_{1} \boldsymbol{\Gamma}_{1} \|_{2} &\leq \mathcal{E} & \| \boldsymbol{\Gamma}_{1} \|_{0,\infty}^{s} \leq \lambda_{1} \\ \boldsymbol{\Gamma}_{1} &= \boldsymbol{D}_{2} \boldsymbol{\Gamma}_{2} & \| \boldsymbol{\Gamma}_{2} \|_{0,\infty}^{s} \leq \lambda_{2} \\ &\vdots & \vdots \\ \boldsymbol{\Gamma}_{K-1} &= \boldsymbol{D}_{K} \boldsymbol{\Gamma}_{K} & \| \boldsymbol{\Gamma}_{K} \|_{0,\infty}^{s} \leq \lambda_{K} \end{aligned} \right\}$$

A Small Taste: Pursuit

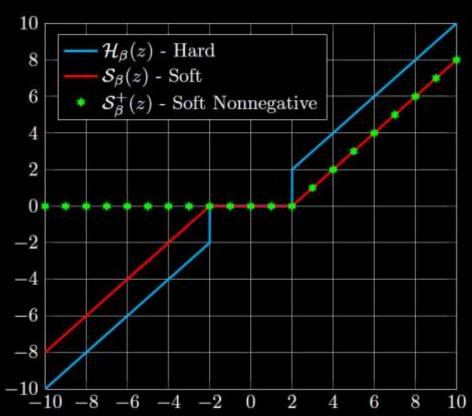


ML-CSC: The Simplest Pursuit

Keep it simple! The simplest pursuit algorithm (single-layer case) is the THR algorithm, which operates on a given input signal Y by:

$$\mathbf{Y} = \mathbf{D}\mathbf{\Gamma} + \mathbf{E}$$
 and $\mathbf{\Gamma}$ is sparse

$$\hat{\mathbf{\Gamma}} = \mathcal{P}_{\beta}(\mathbf{D}^{\mathrm{T}}\mathbf{Y})$$



Consider this for Solving the DCP

O Layered thresholding (LT):

Estimate Γ_1 via the THR algorithm

$$\widehat{\mathbf{\Gamma}}_{2} = \mathcal{P}_{\beta_{2}} \left(\mathbf{D}_{2}^{\mathrm{T}} \mathcal{P}_{\beta_{1}} (\mathbf{D}_{1}^{\mathrm{T}} \mathbf{Y}) \right)$$

Estimate Γ_2 via the THR algorithm

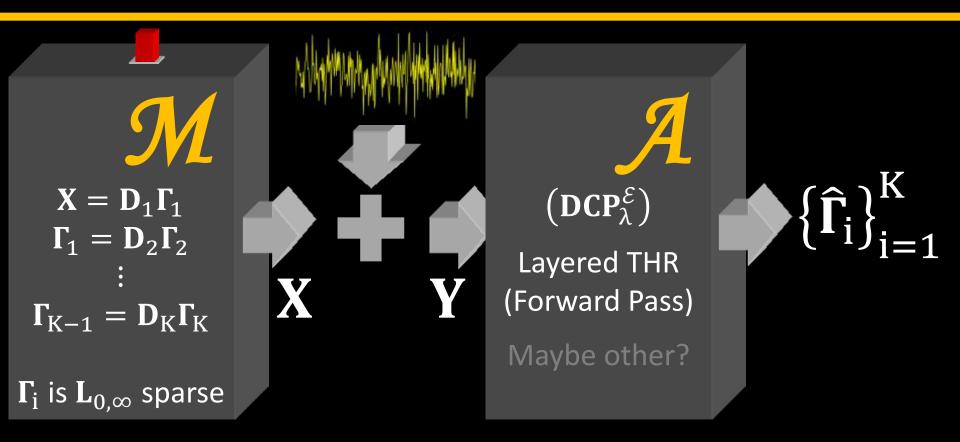
$$\begin{split} \left(\mathbf{DCP}_{\lambda}^{\mathcal{E}}\right) &: \text{Find } \left\{\Gamma_{j}\right\}_{j=1}^{K} s.t. \\ \left(\|\mathbf{Y} - \mathbf{D}_{1}\boldsymbol{\Gamma}_{1}\|_{2} \leq \mathcal{E} \quad \|\boldsymbol{\Gamma}_{1}\|_{0,\infty}^{s} \leq \lambda_{1}\right) \\ \boldsymbol{\Gamma}_{1} &= \mathbf{D}_{2}\boldsymbol{\Gamma}_{2} \quad \|\boldsymbol{\Gamma}_{2}\|_{0,\infty}^{s} \leq \lambda_{2} \\ &\vdots &\vdots \\ \boldsymbol{\Gamma}_{K-1} &= \mathbf{D}_{K}\boldsymbol{\Gamma}_{K} \quad \|\boldsymbol{\Gamma}_{K}\|_{0,\infty}^{s} \leq \lambda_{K} \end{split}$$

O Now let's take a look at how Conv. Neural Network operates:

$$f(\mathbf{Y}) = \text{ReLU}(\mathbf{b}_2 + \mathbf{W}_2^{\text{T}} \text{ ReLU}(\mathbf{b}_1 + \mathbf{W}_1^{\text{T}} \mathbf{Y}))$$

The layered (soft nonnegative) thresholding and the CNN forward pass algorithm are the very same thing !!!

Theoretical Path



Armed with this view of a generative source model, we may ask new and daring theoretical questions

Success of the Layered-THR

Theorem: If
$$\|\Gamma_i\|_{0,\infty}^s < \frac{1}{2} \left(1 + \frac{1}{\mu(D_i)} \cdot \frac{\left|\Gamma_i^{min}\right|}{\left|\Gamma_i^{max}\right|}\right) - \frac{1}{\mu(D_i)} \cdot \frac{\epsilon_L^{i-1}}{\left|\Gamma_i^{max}\right|}$$

then the Layered Hard THR (with the proper thresholds)

finds the correct supports and $\left\| \Gamma_i^{LT} - \Gamma_i \right\|_{2,\infty}^p \leq \epsilon_L^i$, where

we have defined $\varepsilon_{\rm L}^0 = \|{\bf E}\|_{2,\infty}^{\rm p}$ and

$$\epsilon_{L}^{i} = \sqrt{\|\boldsymbol{\Gamma}_{i}\|_{0,\infty}^{p} \cdot \left(\epsilon_{L}^{i-1} + \mu(\boldsymbol{D}_{i}) \left(\|\boldsymbol{\Gamma}_{i}\|_{0,\infty}^{s} - 1\right) |\boldsymbol{\Gamma}_{i}^{max}|\right)}$$

Papyan, Romano & Elad ('17)

The stability of the forward pass is guaranteed if the underlying representations are locally sparse and the noise is locally bounded

Problems:

- 1. Contrast
- 2. Error growth
- 3. Error even if no noise

Layered Basis Pursuit (BP)

- We chose the Thresholding algorithm due to its simplicity, but we do know that there are better pursuit methods – how about using them?
- Lets use the Basis Pursuit instead ...

$$\begin{array}{cccc} \left(\mathbf{DCP}_{\lambda}^{\mathcal{E}}\right) & \text{Find} & \left\{\Gamma_{j}\right\}_{j=1}^{K} & s.\,t. \\ \left\|\mathbf{Y} - \mathbf{D}_{1}\boldsymbol{\Gamma}_{1}\right\|_{2} \leq \mathcal{E} & \left\|\boldsymbol{\Gamma}_{1}\right\|_{0,\infty}^{s} \leq \lambda_{1} \\ \boldsymbol{\Gamma}_{1} & = \mathbf{D}_{2}\boldsymbol{\Gamma}_{2} & \left\|\boldsymbol{\Gamma}_{2}\right\|_{0,\infty}^{s} \leq \lambda_{2} \\ & \vdots & \vdots \\ \boldsymbol{\Gamma}_{K-1} & = \mathbf{D}_{K}\boldsymbol{\Gamma}_{K} & \left\|\boldsymbol{\Gamma}_{K}\right\|_{0,\infty}^{s} \leq \lambda_{K} \end{array}$$

$$\mathbf{\Gamma}_{1}^{\mathrm{LBP}} = \min_{\mathbf{\Gamma}_{1}} \frac{1}{2} \|\mathbf{Y} - \mathbf{D}_{1} \mathbf{\Gamma}_{1}\|_{2}^{2} + \lambda_{1} \|\mathbf{\Gamma}_{1}\|_{1}$$

$$\mathbf{\Gamma}_{2}^{\text{LBP}} = \min_{\mathbf{\Gamma}_{2}} \frac{1}{2} \left\| \mathbf{\Gamma}_{1}^{\text{LBP}} - \mathbf{D}_{2} \mathbf{\Gamma}_{2} \right\|_{2}^{2} + \lambda_{2} \| \mathbf{\Gamma}_{2} \|_{1}$$

Deconvolutional networks

[Zeiler, Krishnan, Taylor & Fergus '10]

Success of the Layered BP

Theorem: Assuming that $\|\Gamma_i\|_{0,\infty}^s < \frac{1}{3} \left(1 + \frac{1}{\mu(D_i)}\right)$

then the Layered Basis Pursuit performs very well:

- 1. The support of $oldsymbol{\Gamma}_{
 m i}^{
 m LBP}$ is contained in that of $oldsymbol{\Gamma}_{
 m i}$
- 2. The error is bounded: $\left\| \mathbf{\Gamma}_{i}^{\mathrm{LBP}} \mathbf{\Gamma}_{i} \right\|_{2,\infty}^{\mathrm{p}} \leq \varepsilon_{\mathrm{L}}^{\mathrm{i}}$, where

$$\epsilon_{L}^{i} = 7.5^{i} \|\mathbf{E}\|_{2,\infty}^{p} \prod_{j=1}^{i} \sqrt{\|\mathbf{\Gamma}_{j}\|_{0,\infty}^{p}}$$

3. Every entry in Γ_i greater than

$$\epsilon_L^i/\sqrt{\|\Gamma_i\|_{0,\infty}^p}$$
 will be found

Papyan, Romano & Elad ('17)

Problems:

- 1. Contrast
- 2. Error growth
- 3. Error even if no noise

Layered Iterative Thresholding

Layered BP:
$$\Gamma_{j}^{LBP} = \min_{\Gamma_{j}} \frac{1}{2} \left\| \Gamma_{j-1}^{LBP} - \mathbf{D}_{j} \Gamma_{j} \right\|_{2}^{2} + \xi_{j} \left\| \Gamma_{j} \right\|_{1}$$

Layered Iterative Soft-Thresholding:

$$\begin{array}{c} \boldsymbol{\Gamma}_j^t = \mathcal{S}_{\xi_j/c_j} \left(\boldsymbol{\Gamma}_j^{t-1} + \boldsymbol{D}_j^T \big(\widehat{\boldsymbol{\Gamma}}_{j-1} - \boldsymbol{D}_j \boldsymbol{\Gamma}_j^{t-1} \big) \right) \\ j \end{array}$$

Note that our suggestion implies that groups of layers share the same dictionaries

Can be seen as a very deep recurrent neural network

[Gregor & LeCun '10]

What About Learning?

Sparseland

Sparse Representation Theory

CSC

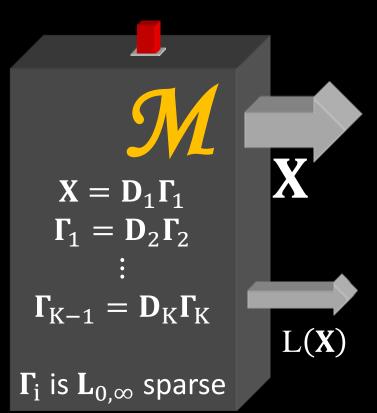
Convolutional Sparse Coding

ML-CSC

Multi-Layered Convolutional Sparse Coding

- All these models rely on proper Dictionary Learning Algorithms to fulfil their mission:
 - Sparseland: We have unsupervised and supervised such algorithms, and a beginning of theory to explain how these work
 - CSC: We have few and only unsupervised methods, and even these are not fully stable/clear
 - ML-CSC: One algorithm has been proposed (unsupervised) see ArxiV

Where are the Labels?



We presented the ML-CSC as a machine that produces signals **X**

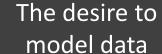
Answer 2:

- o Weado, tibis medelabelabelabeas grewerty thing ave should exist of the comespending labea, by: which we operate on signals, not necessarily in the context of recognition $\{c + \sum_{j=1}^{K} w_j \Gamma_j\}$
- This assumes that knowing the representations (or maybe their supports?) suffice for identifying the label
- Thus, a successful pursuit algorithm can lead to an accurate recognition if the network is augmented by a FC classification layer

Time to Conclude

This Talk

Sparseland



Take Home Message 1:

Generative modeling of data sources enables algorithm development along with theoretically analyzing

Novel View of Convolutional **Sparse Coding**

algorithms performance

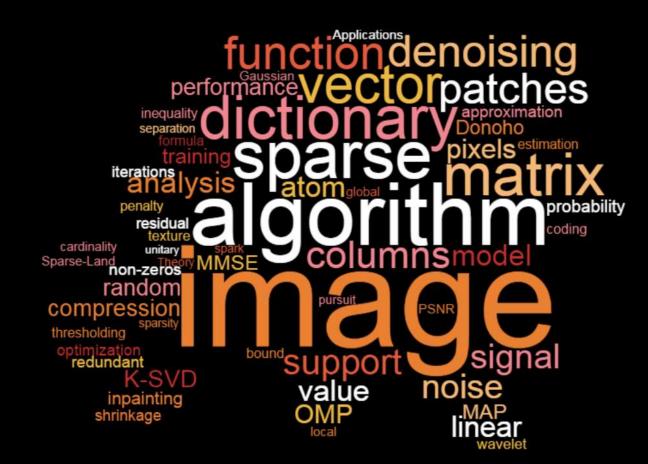
Multi-Layer Convolutional

The Multi-Layer **Convolutional Sparse** Coding model could be a new platform for understanding and

A novel interpretation and theoretical understanding of CNN

Sparse Coding

We property the content of the conte BEEN ED BOOK BENEAU TO BE SHIP TO



More on these (including these slides and the relevant papers) can be found in http://www.cs.technion.ac.il/~elad