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19.1 Introduction

Single-sensor imaging provides a convenient, yet low-cost solution for the problem of
capturing color images at multiple wavelengths. To capture color, single-sensor cameras
add a color filter array (CFA) [1], [2] on top of the photo-detector array. The CFA provides
a simple mechanism for sampling different color channels in a multiplexed fashion.1 Using
a CFA trades-off the spatial sampling resolution of the three-sensor system, to achieve
multispectral sampling. Refer to Chapters 1 and 5 for details.

Visual inspection of a real image shown in Figure 19.1a reveals various image quality
issues encountered in single-sensor imaging. These shortcomings motivated the develop-
ment of image processing algorithms to improve image quality for single-sensor imaging

1Design, properties, and performance characteristics of many CFA patterns are discussed in Reference [2].
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(a) (b)

FIGURE 19.1 (See color insert.)

(a) Example showing the typical image quality problems associated with inexpensive single-sensor imaging

devices. The image is noisy with evident color artifacts and has limited overall resolution as evidenced by the

difficulty in reading the text numbers. (b) Image enhanced using a multiframe color supperresolution approach.
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FIGURE 19.2

A block diagram representation of the multiframe image processing. The forward model is a mathematical

description of the image degradation process. The multiframe inverse problem addresses the issue of retrieving

(or estimating) the original scene from a set of low-quality images.

systems. Arguably, the most powerful image processing methods are the multiframe image
processing approaches. The multiframe approaches combine the information from multi-
ple images to produce higher quality images (Figure 19.1b). Figure 19.2 provides a general
picture of the multiframe imaging approach to mitigate the shortcomings of imaging sys-
tems.

The need to interpolate the missing values in CFA images calls for a model that ties the
full-color images in the sequence to the measurements obtained. The mathematical model
of the forward imaging model for single-sensor imaging is

y(k) = ADHF(k)x+v(k) (19.1)

where y is a vector containing all of the captured pixel values for a single image. The vector
x contains the pixel values of the unknown high-resolution, noise-free image. Conceptually,
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Block diagram representing the image formation model considered in this chapter, where x is the perfect

intensity image of the scene, v is the additive noise, and y is the resulting color-filtered low-quality image.

The operators F, H, D, and A are representatives of the warping, blurring, downsampling, and color-filtering

processes, respectively.

we can consider this vector to be comprised of the three unknown color channel images

x =




xR

xG

xB


 . (19.2)

The matrix F represents a motion operator capturing the image motion induced by the
relative motion between the imaging system and the camera. The matrix H captures the
blurring effects due to the camera optics, and D represents the downsampling effect due to
limited resolution of the sensor array. These three operators (F, H, and D) are applied to
each of the color channels, either separately or jointly. In this work we assume that their
effect is separated to each color channel.

The matrix A represents the sampling effect due to the CFA. This again stands for an
operator that operates on the three color channels, sampling each differently, based on the
Bayer pattern. The vectors v represent the additive random noise inherent in the imaging
process. For the multiframe imaging case, the variable k indexes the N captured frames.
Notice that in our proposed model, only the motion operators are assumed to vary as a
function of k, implying that the blur, downsampling, and CFA sampling are all independent
of time. An extension of this model could be proposed, where the various operators vary in
time, and operate on the RGB in a mixed way.

Figure 19.3 depicts the image capture model for multiframe image processing. The goal
of multiframe processing is to estimate the high resolution image x from a collection of
low-resolution images {y(k)}. In general, the problem of multiframe processing for single-
sensor imaging systems is complicated. Earlier approaches to this problem sequentially
solved single frame demosaicking, followed by multiframe resolution enhancement or su-



506 Single-Sensor Imaging: Methods and Applications for Digital Cameras

{y(k)}

single-frame

demosaicking

aquire set of low-

resolu tion CFA images

monochromatic

superresolu tion

monochromatic

superresolu tion

monochromatic

superresolu tion

red

channel

high

resolu tion

color

image

green

channel

blue

channel

{w (k)} x^ ^

FIGURE 19.4

Block diagram representing the traditional two-step approach to the multiframe reconstruction of color images.

First, a demosaicking algorithm is applied to each of the CFA images independently. Second, a superresolution

algorithm is applied to each of the resulting color channel image sets independently.

perresolution. The proposed approach, a multiframe demosaicking scheme, solves both
problems in a joint fashion offering improved performance. In Sections 19.2 and 19.3 we
describe both of these approaches in more detail. In Section 19.4, we describe a fast imple-
mentation of the joint approach enabling multiframe enhancement of single-sensor video
sequences. Concluding remarks of this chapter are given in Section 19.5.

19.2 Sequential Demosaicking and Superresolution

The classic approach for multiframe processing of single-sensor color images involves
two stages of processing. First, single frame demosaicking interpolates the missing color
pixel values in the mosaic data. This single frame demosaicking is applied to a collection of
images independently, producing a set of full-color low-resolution images. Second, these
restored low-resolution color images are processed using multiframe resolution enhance-
ment or superresolution algorithms. The superresolution algorithms are either applied to
each color channel independently [3], [4], or to the luminance (grayscale) components of
the color images [5]. This traditional two-step approach is illustrated in Figure 19.4.

Producing a high resolution image requires a smart combination of data processing and
prior knowledge on the spatial and spectral (color) properties of images. The prior infor-
mation about the images characterizes both the color and the spatial properties of images.
In the following sections, we review the various approaches to single-frame demosaicking
and superresolution, including analysis of the different forms of prior information needed
to solve these two problems.

19.2.1 Single-Frame Demosaicking

Single-frame demosaicking algorithms, or just demosaicking algorithms, attempt to re-
store the missing color components eliminated by using a color filter array. Essentially,
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FIGURE 19.5

Illustration of the basic interpolation problem in single-frame demosaicking. The demosaicking algorithm must

estimate the missing color pixel value using the observed neighboring values. Individual pixel arrangements

correspond to: (left) blue, (middle) green, and (right) red channel of Bayer CFA captured images.

demosaicking algorithms try to estimate a low-resolution full-color image w(k) defined as

w(k) = DHF(k)x. (19.3)

The full-color image w(k) has three color values for every pixel location, whereas the
captured image y(k) = Aw(k)+v(k) contains only one color value per pixel location. The
single-frame demosaicking algorithm is applied to each captured image y(k) independently.

Numerous demosaicking methods have been proposed over the years to solve this under-
determined problem and in this section we review some of the more popular approaches.
The simplest approach estimates the unknown pixel values using linear interpolation of the
known color values in the neighboring pixel locations. Figure 19.5 illustrates the standard
neighborhood interpolation problem of single-frame demosaicking.

The straightforward interpolation approach ignores some important information about
the correlation between the color channel images and often produces serious color arti-
facts. It can be shown that the red and blue channels are related to the green channel via
the approximate equality of the ratios red

green and blue
green . As observed in Figure 19.5, the green

channel has twice the number of pixels, compared to the red and blue channels. Thus, us-
ing the correlations between the color channels just described allows us to provide better
interpolation of the red and blue channels using the more reliably interpolated green chan-
nel. This approach forms the basis of the smooth-hue transition method first discussed in
Reference [6].

Note that this correlation between color channels does not hold across edges in an im-
age. Consequently, although the smooth-hue transition algorithm works for smooth re-
gions of the image, it does not work in the high-frequency (edge) areas. Considering this
fact, gradient-based methods, first addressed in Reference [7], do not perform interpolation
across the edges of an image. This noniterative method [7] uses the second derivative of
the red and blue channels to estimate the edge direction in the green channel. Later, the
green channel is used to compute the missing values in the red and blue channels.

A variation of this method was later proposed in Reference [8], where the second deriva-
tive of the green channel and the first derivative of the red (or blue) channels are used to
estimate the edge direction in the green channel. Both the smooth hue and edge-based
methods were later combined in Reference [9]. In this iterative method, the smooth hue in-
terpolation is performed along the local image gradients computed in eight directions about
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a pixel of interest. A second stage using anisotropic inverse diffusion further enhances the
quality of the reconstructed image. This two step approach of interpolation followed by an
enhancement step has been used in many other settings. In Reference [10], spatial and spec-
tral correlations among neighboring pixels are exploited to define the interpolation step,
while adaptive median filtering is used as the enhancement step. A different iterative im-
plementation of the median filter is used as the enhancement step of the method described
in Reference [11], that takes advantage of a homogeneity assumption in the neighboring
pixels.

Maximum a posteriori (MAP) methods form another important category of demosaicking
methods. These MAP approaches apply global assumptions about the correlations between
the color channels and the spatial correlation using a penalty function of the form

Ω(w) = J0(w,y)+P(w) (19.4)

where J0(·, ·) captures the correspondence between the estimated image w and the ob-
served data y and P(·) captures the quality of the proposed solution w based on the prior
knowledge about the spatial and color correlations in the destination image. For example,
a MAP algorithm with a smooth chrominance prior is discussed in Reference [12]. The
smooth chrominance prior is also used in Reference [13], where the original image is first
transformed to YIQ representation.2 The chrominance interpolation is performed using
isotropic smoothing. The luminance interpolation is done using edge directions computed
in a steerable wavelet pyramidal structure.

Other examples of popular demosaicking methods available in published literature are
[15], [16], [17], [18], [19], [20], [21], and [22]. For additional information on demosaick-
ing refer to Chapters 1, 3, and 6 to 9. We also note that a few postdemosaicking image
enhancement techniques have been proposed (e.g., References [23] and [24]) to reduce
artifacts introduced through the color-interpolation process. Almost all of the above demo-
saicking methods are based on one or more of these following assumptions:

1. In the measured image with the mosaic pattern, there are more green sensors with
regular pattern of distribution than blue or red ones (in the case of Bayer CFA there
are twice as many greens than Red or Blue pixels and each is surrounded by four
green pixels).

2. The CFA pattern is most likely the Bayer pattern.
3. For each pixel, one and only one color band value is available.
4. The color pattern of available pixels does not change through the measured image.
5. The human eye is more sensitive to the details in the luminance component of the

image than the details in chrominance component [13].
6. The human eye is more sensitive to chromatic changes in the low-spatial frequency

regions than the luminance changes [18].
7. Interpolation should be performed along and not across the edges.
8. Different color bands are correlated with each other.
9. Edges should align between color channels.

2YIQ is the standard color representation used in broadcast television (NTSC systems) [14].
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(a) (b) (c)

(d) (e) (f)

FIGURE 19.6

A high-resolution image (a) captured by a three-CCD sensor camera is (b) downsampled by a factor of four.

In (c) the original three-sensor image is blurred by a Gaussian kernel before downsampling by a factor of four.

The images in (a-c) are color-filtered and then demosaicked by the method of Reference [9] to produce the

results shown in (d-f), respectively. c© 2007 IEEE

The accuracy of these single-frame demosaicking algorithms depends to a large degree
on the resolution of the single-sensor imaging system. For example, Figure 19.6a shows
a high-resolution image captured by a three-sensor camera. If we had captured this im-
age instead using a single-sensor camera and then applied the single frame demosaicking
algorithm of Reference [9], we would obtain the image depicted in Figure 19.6d. This de-
mosaicked image shows negligible color artifacts. Figure 19.6b shows the same scene from
a simulated three-sensor camera which is undersampled by a factor of four. Figure 19.6e
shows the single-frame demosaicking result, where the color artifacts in this image are
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much more evident than Figure 19.6d. In this case, inadequate sampling resolution and the
subsequent aliasing produces severe color artifacts. Such severe aliasing happens in cheap
commercial still or video digital cameras, with small number of sensor pixels [25].

Some imaging systems attempt to avoid these aliasing artifacts by adding optical low-
pass filters to eliminate high spatial frequency image content prior to sampling. Refer to
Chapter 4 for details. Such optical low-pass filters not only increase system cost but lower
image contrast and sharpness. These optical low-pass filters can remove some, but not
all color artifacts from the demosaicking process. Figure 19.6c shows a simulated low-
resolution image which was presmoothed by a Gaussian low-pass digital filter simulating
the effects of an optical low-pass filter prior to downsampling. The demosaicked version
of this captured image is shown in Figure 19.6f. The demosaicked image contains fewer
color artifacts than Figure 19.6e; however, it has lost some high-frequency details.

The residual aliasing artifacts amplified by the demosaicking algorithm motivated the ap-
plication of multiframe resolution enhancement algorithms. We describe these algorithms
in the next section.

19.2.2 Multiframe Superresolution

A relatively recent approach to dealing with aliasing in imaging systems is to combine
multiple aliased images with some phase modulation between them to reconstruct a single
high resolution image free of (or with significantly less) aliasing artifacts with improved
SNR.3 Such methods have been studied extensively for monochromatic imaging [26], [27],
[28] and are commonly known as multiframe resolution enhancement (superresolution)
algorithms, which produce sharp images with less noise and higher spatial resolution than
the capture images.

The standard model for such algorithms assumes that a single monochromatic low-
resolution aliased image in a set of N images is defined by

m(k) = DHF(k)g+v(k),k = 0 . . .N−1 (19.5)

where m(k) is the kth captured monochrome image. In this case, g represents the unknown
high resolution monochromatic image. In the context of the sequential multiframe demo-
saicking approach, the captured images m(k) are obtained by extracting one of the color
channels from the demosaicked images. In other words, m(k) is either ŵR(k) or ŵG(k) or
ŵB(k) and g is either xR, or xG, or xB. As before, F(k) is a warping operator capturing the
relative motion between the kth frame and the anchor frame k = 0 and v(k) represents the
additive noise in the image system. The matrix H represents the blurring associated with
the optical point spread function and D represents the downsampling operator reflecting
the limited spatial resolution associated with the image sensor. In effect, the downsam-
pling operator is the cause of the aliasing artifacts observed in the final image. While we
do not address the motion estimation in full detail in this chapter, an appendix provides a
brief discussion about this topic, with an emphasis on the need to estimate the cross-motion
between the N frames jointly to avoid accumulated error.

3Signal to noise ratio (SNR) is defined as 10log10
σ2

σ 2
n

, where σ2, σ2
n are variance of a clean frame and noise,

respectively.
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(a) (b) (c)

FIGURE 19.7

Superresolution experiment on real image data. Twenty-six low quality images were combined to produce a

higher quality image. One captured image is shown in (a). The red square section of (a) is zoomed in (b).

Superresolved image in (c) is the high quality output image.

(a) (b) (c)

FIGURE 19.8

Superresolution experiment on real image data. Seventeen low quality images from a digital X-ray machine

were combined to produce a higher quality image. One captured image is shown in (a). The red square section

of (a) is zoomed in (b). Superresolved image in (c) is the high quality output image.

Early studies of superresolution showed that the aliasing artifacts in the low-resolution
images enable the recovery of the high-resolution fused image, provided that a relative
sub-pixel motion exists between the under-sampled input images [29].

Figure 19.7 shows an example of the resulting image after applying superresolution pro-
cessing to a collection of images taken by a commercial digital still camera. The appli-
cation of superresolution is not restricted to optical imaging. An example is illustrated in
Figure 19.8, where seventeen images captured by a Siemens digital X-ray imaging system
were fused to create the shown high resolution X-ray image [30]. Figure 19.8a shows one
of the input images, a selected region of which is zoomed in Figure 19.8b for a closer exam-
ination. A factor of three superresolved image of Figure 19.8a is zoomed in Figure 19.8c,
showing a significant reduction in aliasing artifacts.



512 Single-Sensor Imaging: Methods and Applications for Digital Cameras

The multiframe superresolution problem was first addressed in Reference [29], where the
authors proposed a frequency domain approach, later extended by others [31]. Although
the frequency domain methods are computationally cheap, they are very sensitive to noise
and modelling errors [26]. Also, by design, these approaches handle only pure translational
motion.

Another popular class of methods solves the problem of resolution enhancement in the
spatial domain. The noniterative spatial domain data fusion approaches are studied in Ref-
erences [32], [33], and [34]. The iterative methods are based on construction of a cost
function, which is minimized in an iterative function minimization approach. The cost
function is of the form

Ω(g) = J0(g,{m(k)})+P(g) (19.6)

where J0(g,{m(k)}) is the data penalty term that measures the closeness of the observed
data {m(k)} to the predicted measurements using an estimate of the image g. The P(g)
term represents the prior information about the unknown signal g, as described before.

The most common data fidelity term is based on minimizing the L2 difference between
the observed data and the predicted data for an estimated image g. The cost function looks
like

J0(g,{m(k)}) =
N−1

∑
k=0

‖DHF(k)g−m(k)‖2
2. (19.7)

The solution to this penalty function is equivalent to the least squares estimate of the image
g, and is the optimal maximum likelihood (ML) solution [35] when noise follows the white
Gaussian model, and when the motion vectors implicit in F(k) are assumed to be known
exactly, and a priori.

One distinct advantage of the spatial-domain approaches is the ability to incorporate
complicated prior information into the estimation process. The most common form of
prior information arises as a type of regularization to the commonly ill-conditioned or ill-
posed estimation problem. This regularization or prior information takes the form of some
assumptions about the spatial variability of the unknown high resolution image g. Many of
the early superresolution algorithms, however, applied rudimentary regularization such as
Tikhonov regularization [36], which describes the smoothness of the image g. A Tikhonov
regularization has the form

P(g) = λ‖Λg‖2
2 (19.8)

where Λ represents a spatial high-pass operator applied to the image g. In other words,
the estimated image will have a reduced high spatial frequency content, depending on the
magnitude of the weighting parameter λ .

The early iterative algorithms used search techniques to minimize cost functions. The
simplest approach to minimize a cost function of the form of Equation 19.6 is to use the
steepest descent (SD) algorithm. In SD, the derivative of Equation 19.6 is computed with
respect to the unknown parameter vector g to update the estimate. The estimate for the
n+1th iteration is updated according to

ĝn+1 = ĝn−β∇xΩ(ĝn) (19.9)

where β is the SD step size. This approach is similar to the iterative back-projection method
proposed in References [5] and [37].
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These spatial domain methods discussed so far were often computationally expensive,
especially when solved via explicit construction of the modelling matrices of Equation 19.5.
The authors of Reference [38] introduced a block circulant preconditioner for solving the
Tikhonov regularized superresolution problem formulated in Reference [36]. In addition,
they addressed the calculation of regularization factor for the under-determined case4 by
generalized cross-validation presented in Reference [39].

Later, a very fast superresolution algorithm for pure translational motion and common
space invariant blur was developed in Reference [33]. This fast approach was based on
the observation that the deblurring can be separated from the merging process of the low-
resolution images, and that merging of the images is obtained simply by shift-and-add
operation. Using these, it was shown that the result is nevertheless ML optimal. Another
interesting observation in this work is the fact that the matrices H, Λ, D, etc., can be ap-
plied directly in the image domain using standard operations such as convolution, masking,
downsampling, and shifting. Implementing the effects of these matrices as a sequence of
operators on the images eliminates the need to explicitly construct the matrices. As we
shall see momentarily, this property helps us develop fast and memory efficient algorithms.

A different fast spatial domain method was recently suggested in Reference [40], where
low-resolution images are registered with respect to a reference frame defining a nonuni-
formly spaced high-resolution grid. Then, an interpolation method called Delaunay tri-
angulation is used for creating a noisy and blurry high-resolution image, which is subse-
quently deblurred. All of the above methods assumed the additive Gaussian noise model.
Furthermore, regularization was either not implemented or it was limited to Tikhonov reg-
ularization. Another class of superresolution techniques uses the projection onto convex
sets (POCS) formulation [41], [42], [43]. The POCS approach allows complicated forms
of prior information such as set inclusions to be invoked.

Recently, a powerful class of superresolution algorithms leverage sophisticated learned-
based prior information. In these algorithms, the prior penalty functions P(g) are derived
from collections of training image samples [44], [45]. For example, in Reference [45]
an explicit relationship between low-resolution images of faces and their known high-
resolution image is learned from a face database. This learned information is later used
in reconstructing face images from low-resolution images. Due to the need for gathering
a vast number of examples, often these methods are only effective when applied to very
specific scenarios, such as faces or text.

Another class of superresolution algorithms focuses on being robust to modelling errors
and different noise. These methods implicitly [46] or explicitly [47], [48] take advantage
of L1 distance metrics when constructing the cost functions. Compared to Equation 19.7,
the methods in References [47] and [48] apply the L1 metric as the data fidelity term

J0(g,{m(k)}) =
N−1

∑
k=0

‖DHF(k)g−m(k)‖1, (19.10)

4In under-determined case, the number of nonredundant low-resolution frames is smaller than the square of
resolution enhancement factor. A resolution enhancement factor of r means that low-resolution images of
dimension Q1 ×Q2 produce a high-resolution output of dimension rQ1 × rQ2. Scalars Q1 and Q2 are the
number of pixels in the vertical and horizontal axes of the low-resolution images, respectively.
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(a) (b) (c)

FIGURE 19.9

The image (a) shows an example low-resolution CFA image processed by the single frame demosaicking algo-

rithm of Reference [9]. The image (b) shows the resulting color image after applying the robust superresolution

algorithm [47] to each of the color channels independently completing the sequential multiframe processing

algorithm, which shows improved resolution with significantly reduced artifacts. Some residual color artifacts,

however, are apparent along the fence. Better reconstruction results are shown in (c), where the multiframe

demosaicking method presented in Section 19.3 has fused the information of ten CFA frames. c© 2007 IEEE

which is the optimal ML solution in the presence of additive white Laplacian noise.
In Reference [47], in the spirit of the total variation criterion [49], [50] and a related

method called the bilateral filter [51], [52], the L1 distance measure was also incorporated
into a prior term called the bilateral total variation (BTV) regularization penalty function,
defined as

P(g) = λ
Lmax

∑
l=−Lmax

Mmax

∑
m=−Mmax

α |m|+|l|‖g−Sl
xSm

y g‖1. (19.11)

where Sl
x and Sm

y are the operators corresponding to shifting the image represented by g by
l pixels in the horizontal and m pixels in the vertical directions, respectively. The param-
eters Mmax and Lmax define the size of the corresponding bilateral filter kernel. The scalar
weight α , 0<α≤1, is applied to give a spatially decaying effect to the summation of the
regularization terms.

Alternative robust superresolution approaches were presented in References [53] and
[54] based on normalized convolution and nonparametric kernel regression techniques. To
achieve robustness with respect to errors in motion estimation, Reference [55] proposed
a novel solution based on modifying camera hardware. Finally, in References [42], [56],
and [57] the superresolution framework has been applied to reduce the quantization noise
resulting from video compression. More comprehensive surveys of monochromatic multi-
frame superresolution methods can be found in References [26], [58], [59], and [60].
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19.2.3 Sequential Processing Example

Figure 19.9 shows an example of the sequential multiframe processing. In this exam-
ple, ten CFA images were synthetically generated using the high resolution image shown
in Figure 19.6a. To produce the simulated CFA images, each color channel of the high
resolution image was blurred by a 5×5 pixel Gaussian blurring kernel with unit standard
deviation. Then, the ten images were taken from this blurry image by subsampling by a
factor of four starting at randomly offset pixels. White Gaussian noise was added to each
of the simulated low-resolution images such that the image had an SNR of 30dB. Each
of the simulated CFA images was processed by the single frame demosaicking algorithm
described in Reference [9].

Figure 19.9a shows an example low-resolution image after single frame demosaicking.
Then, the robust monochromatic superresolution algorithm of Reference [47] was applied
to each of the three color channels independently. The resulting high resolution image is
shown in Figure 19.9b, which shows improvement in resolution and noise reduction. The
high resolution image still, however, contains some color artifacts and has over-smoothing
in some regions. The weakness of these results motivated the use of multiframe demo-
saicking algorithms, an example of which is shown in Figure 19.9c. These techniques are
described in detail in the next section.

19.3 Multiframe Demosaicking

The sequential multiframe processing approach works reasonably well when the amount
of aliasing artifacts is small. With significant color aliasing artifacts, however, the sequen-
tial approach fails to adequately correct all of the color artifacts. Basically, the failure is
traced to the fact that all of the color prior information is applied at the individual (single)
frame processing level during demosaicking. A more complicated, yet robust method per-
forms the demosaicking and superresolution simultaneously. This approach is known as
multiframe demosaicking and has been developed relatively recently [61], [62], [63], [64],
[65], [66], [67]. Note that some of these methods (e.g., References [63] and [66]), not mo-
tivated by superresolution enhancement, were designed primarily for video-demosaicking,
which is described in detail in Chapter 18.

19.3.1 Modelling the Problem

The multiframe demosaicking approach tries to estimate the full-color high resolution
image x using the the set of unprocessed CFA images y(k). In this case, the complete for-
ward data model given by Equation 19.1 is used to reconstruct the full-color high resolution
image x.

The generic MAP multiframe demosaicking approach estimates x by minimizing a cost
function of the form

Ω(x) = J1(x,{y(k)})+P1(x)+P2(x)+P3(x). (19.12)
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This cost function is similar to the superresolution cost function of Equation 19.6 with the
exception that now we have three prior information terms. These multiple terms include
both the spatial and color prior information constraints. In Reference [65], the MAP-based
penalty terms are described as:

1. J1(·, ·): A penalty term to enforce similarities between the raw data and the high-
resolution estimate (data fidelity penalty term).

2. P1(·): A penalty term to encourage sharp edges in the luminance component of the
high-resolution image (spatial luminance penalty term).

3. P2(·): A penalty term to encourage smoothness in the chrominance component of the
high-resolution image (spatial chrominance penalty term).

4. P3(·): A penalty term to encourage homogeneity of the edge location and orientation
in different color bands (spectral dependencies penalty term).

These terms combine several forms of prior information, forming a powerful constraint
when performing multiframe demosaicking. Details about these terms are provided below:

• Data Fidelity Penalty Term
In the multiframe demosaicking case, the data fidelity term must include all three color
channels. Considering the general motion and blur model of Equation 19.1, a reasonable
L2-based multiframe data fidelity penalty term is given by:

J1(x,{y(k)}) = ∑
i=R,G,B

N−1

∑
k=0

‖ADHF(k)xi−yi(k)‖2
2. (19.13)

Essentially, this functional penalizes estimates of the high resolution color image that, when
passed through the forward model of Equation 19.1, differs from the observed image. The
data penalty function, Equation 19.13, works well when the model is accurate (e.g., the
motion estimation produces accurate estimates of the forward imaging model, and the blur
is the correct one). When these are not true, the forward model contains errors, and a more
robust form of Equation 19.13 could be proposed, based on the L1 norm:

J1(x,{y(k)}) = ∑
i=R,G,B

N−1

∑
k=0

‖ADHF(k)xi−yi(k)‖1. (19.14)

This is the full-color generalization of the robust monochromatic superresolution penalty
term of Equation 19.10. As before, this penalty term provides robustness at the expense of
slight increase in computational complexity, and reduced denoising efficiency when applied
to Gaussian noise.

• Spatial Luminance Penalty Term
The human eye is more sensitive to the details in the luminance component of an image
than the details in the chrominance components [13]. It is important, therefore, that the
edges in the luminance component of the reconstructed high-resolution image look sharp.
As explained in Reference [47], the BTV functional of Equation 19.11 produces images
with sharp edges. For the multiframe demosaicking application, we apply the BTV cost
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function to the reconstruction of the luminance component. The luminance image can be
calculated as the weighted sum xL = 0.299xR + 0.597xG + 0.114xB, [14]. This luminance
image is the Y component of the YIQ image format commonly found in video coding.
Using λ1 to denote the strength of the image prior, the BTV luminance regularization term
is then defined as

P1(x) = λ1

Lmax

∑
l=−Lmax

Mmax

∑
m=−Mmax

α |m|+|l|‖xL−Sl
xSm

y xL‖1. (19.15)

• Spatial Chrominance Penalty Term
Spatial regularization is required also for the chrominance channels. However, since the
human visual system is less sensitive to the resolution of these bands, we can apply a
simpler regularization functional, based on the L2 norm, in the form of

P2(x) = λ2
(‖ΛxI‖2

2 +‖ΛxQ‖2
2
)
, (19.16)

where the images xI and xQ are the I and Q portions of the YIQ color representation and
λ2 defines the strength of the image prior. As before, Λ is a spatial high-pass operator such
as derivative, Laplacian, or even identity matrix. Such a penalty term encourages the two
chrominance components to vary smoothly over the high resolution image.

• Spectral Dependency Penalty Term
This penalty term characterizes the spectral or interchannel correlation between the three
channels of the original color images. This penalty function minimizes the mismatch be-
tween locations or orientations of edges across the color bands. Following Reference [12],
minimizing the vector product norm of any two adjacent color pixels forces different bands
to have similar edge location and orientation. Based on the theoretical justifications in Ref-
erence [68], the authors of Reference [12] suggest a pixelwise spectral dependencies cost
function to be minimized. This term has the vector outer product norm of all pairs of neigh-
boring color pixels. With some modifications to what was proposed in Reference [12], our
spectral dependencies penalty term is a differentiable cost function

P3(x) = λ3

1

∑
l,m=−1

[
‖xG¯Sl

xSm
y xB−xB¯Sl

xSm
y xG‖2

2+

‖xB¯Sl
xSm

y xR−xR¯Sl
xSm

y xB‖2
2 +‖xR¯Sl

xSm
y xG−xG¯Sl

xSm
y xR‖2

2

]
, (19.17)

where ¯ is the element by element multiplication operator. The λ3 defines the strength of
the image prior.

As with the monochromatic superresolution case, we minimize the generic full-color
cost function from Equation 19.12 using a type of SD. In each step, the derivative will be
computed with respect to one color channel assuming the other color channels are fixed.
Thus, for the n+1 iteration, the algorithm updates the ith color channel according to

x̂n+1
i = x̂n

i −β∇xiΩ(xn) i = R,G,B (19.18)

where the scalar β is the steepest descent step size. This minimization approach converges
relatively quickly for most image sequences, providing satisfactory results after ten to fif-
teen such iterations.
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(a) (b)

FIGURE 19.10 (See color insert.)

Multiframe color superresolution applied to a real data sequence. (a) One of thirty-one low-resolution input

images of size 141×147×3 demosaicked by the single-frame method of Reference [7]. (b) Resulting image

after multiframe demosaicking using the robust data penalty term of Equation 19.14. c© 2007 IEEE

19.3.2 Multiframe Demosaicking Examples

In this section, we present some visual results of the multiframe demosaicking algorithm
described in the previous section. The first example demonstrates the advantages of the
multiframe demosaicking algorithm when dealing with raw CFA images taken directly
from an image sensor. In this example, we acquired thirty-one uncompressed raw CFA
images from a two megapixel CMOS sensor. The (unknown) camera point spread function
(PSF) was modelled as a tapered 5×5 disk PSF. In all examples, to compute the unknown
motion matrices, the raw CFA images were first demosaicked by the single-frame method
from Reference [7]. Then, the luminance component of these images was registered in a
pairwise fashion using the motion estimation algorithm5 described in Reference [70].

Figure 19.10a shows a single low-resolution image after applying the single-frame de-
mosaicking method of Reference [7]. The single-frame demosaicking method exhibits the
typical problems of low-resolution, color aliasing, and sensor noise. Figure 19.10b shows
the resulting image after applying the multiframe demosaicking algorithm directly to the
set of low-resolution CFA images to increase the spatial resolution by a factor of three.

In the second example, we repeated the above experiment using a different camera, cap-
turing twenty-six color filtered images. Figure 19.1a shows a single low-resolution im-
age after applying more complex single-frame demosaicking from Reference [9] and Fig-
ure 19.1b shows the resulting image after applying the multiframe demosaicking algorithm
with the data penalty term of Equation 19.14 directly to the set of low-resolution CFA
images to increase the spatial resolution by a factor of three. Both examples depicted in
Figure 19.1b and Figure 19.10b show improved resolution and almost no color artifacts.

5Application of an accurate multiframe registration technique (see Appendix) for directly registering the CFA
data is described in Reference [69].
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(a) (b)

FIGURE 19.11 (See color insert.)

(a) One of forty captured images which are demosaicked and compressed in an unknown fashion by the imaging

system. These images were used to reconstruct the higher resolution image in (b) by exploiting the multiframe

demosaicking algorithm. c© 2007 IEEE

In the third example, we apply the multiframe demosaicking algorithm to a set of color
images which have already undergone single-frame demosaicking and compression. Fig-
ure 19.11a shows an example low-resolution image which has undergone an unknown de-
mosaicking algorithm followed by compression. Forty such images were combined using
the multiframe demosaicking algorithm to produce the image on the right. This result-
ing image demonstrates the capability of the multiframe demosaicking approach to handle
images later in the imaging pipeline after standard compression. While the results would
presumably be better if the multiframe algorithm had direct access to the raw CFA images,
the final image shows significant improvement over the input image.

19.4 Fast and Dynamic Multiframe Demosaicking

In this section, first we describe the conditions under which the multiframe demosaick-
ing algorithm described in the previous section may be implemented very efficiently (Sec-
tion 19.4.1). Using this fast formulation, in Section 19.4.2 we extend the multiframe demo-
saicking algorithm to dynamic multiframe processing which differs from basic multiframe
demosaicking in that the final result is a high resolution image sequence or video. This is
also known as video-to-video superresolution, which has been addressed in the literature
for the grayscale [71], [72], [73] and color (demosaicked) [74] sequences.

19.4.1 Fast Multiframe Demosaicking

While the iterative method described in the previous section is fast enough for many
practical applications, speeding up the implementation is desirable when handling large



520 Single-Sensor Imaging: Methods and Applications for Digital Cameras

amounts of data. In this section, we describe a fast, two-stage approach to multiframe
demosaicking, in the spirit of the method developed in Reference [75]. The two stage
approach works only when two conditions are satisfied. First, the common system PSF is
spatially invariant. Second, the motion between the low-resolution frames (at least locally)
is translational in nature. When these two conditions are satisfied, the shifting operator
F(k) and the blurring operator H commute. We then define z = Hx as the unknown high-
resolution blurry image. In the fast approach, multiframe demosaicking is divided into the
following two steps:

1. Noniterative data fusion (shift-and-add – see below) provides an estimate of z from
the captured data. The model for this step is

y(k) = ADF(k)z+v(k) (19.19)

2. Iterative deblurring and interpolation provides an estimate of x from the estimate ẑ.

The two-step approach is fast since the first stage is noniterative. After this stage, we
no longer need to store the set of capture images {y(k)}. In essence, the estimate ẑ is a
sufficient statistic with which we can estimate the high resolution image x.

19.4.1.1 Data Fusion Step

The data fusion step solves the estimation problem for the model in Equation 19.19 in a
noniterative fashion for each color channel independently by using an analytic minima of
a simple data penalty cost function [47]. If the penalty function is based on the L2 norm
penalty function

∑
k
‖yi(k)−DF(k)zi‖2

2, i = R,G,B (19.20)

the fusion step is called the shift-and-add algorithm. In this algorithm, the input images are
upsampled by zero-padding, shifted by the inverse of the translation amount, and averaged
over the set of N images. Figure 19.12 shows a visual example of the shift-and-add process
for one color channel. This is equivalent to the ML estimate of the image z. As shown in
Reference [47], if the robust L1 data fidelity term

∑
k
‖yi(k)−DF(k)zi‖1 i = R,G,B (19.21)

is used, then a pixelwise median operation over the set of frames implements the robust
penalty function of Equation 19.14. This constitutes the robust shift-and-add algorithm,
the result of which is a single image containing estimates of the blurry image z.

As apparent in the fused image in Figure 19.12, the color sampling pattern after shift-
and-add can be quite arbitrary depending on the relative motion of the low-resolution im-
ages. For some pixels we may not have any value, while for some we might have multiple
measurements of one, two, or even all three color bands. Because this sampling pattern
is arbitrary, we rely on the iterative deblurring and interpolation algorithm to restore the
missing information. As an aside, Figure 19.12 partly explains the inferiority of the se-
quential strategy of first demosaicking the low-resolution images followed by superresolu-
tion. Image motion between captured frames will often provide data in some of the pixel
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FIGURE 19.12 (See color insert.)

Diagram showing an example of the shift-and-add process. The input color channel image is upsampled by the

resolution enhancement factor r = 2, and shifted according to the inverse of the image translation. This shifted

image is added and averaged with the other N−1 (in this case 2) upsampled and shifted low-resolution images.

locations lacking color data in a single CFA image. Interpolating the missing pixels for
each individual frame prematurely estimates the missing pixel data thereby limiting the
final performance of multiframe resolution enhancement.

19.4.1.2 Deblurring and Interpolation Step

The second step uses the estimate of the blurry high resolution image ẑ to estimate the
high resolution image x. This step relies on a cost function very similar to that of Equa-
tion 19.12 with the exception that the data penalty term is replaced by

Ω(x, ẑ) = ∑
i=R,G,B

‖Φi (Hxi− ẑi)‖2
2 +P1(x)+P2(x)+P3(x) (19.22)

The matrix Φi (for i = R,G,B) is a diagonal matrix with diagonal values equal to the square
root of the number of measurements that contributed to make each element of ẑi. In this
way, the data fidelity term applies no weight to pixel locations which have no observed data.
On the other hand, those pixels which represent numerous measurements have a stronger
influence on the data fidelity penalty function. Here, we observe that the data fidelity term
no longer requires summation over the set of captured frames, saving a considerable amount
of processing time as well as memory.

19.4.2 Dynamic Multiframe Demosaicking

Armed with the fast implementation of the multiframe demosaicking algorithm, we turn
to apply this algorithm to video sequences. This is called dynamic multiframe demosaick-
ing that produces an image sequence or video with higher resolution. A naive approach to
this problem is to apply the static algorithm on a set of images while changing the reference
frame. However, the memory and computational requirements for the static process are so
taxing as to preclude its direct application to the dynamic case.
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In contrast, we present a dynamic algorithm which takes advantage of the fact that the
resulting high resolution image for the previous time frame t−1 helps predict the solution
for the current time frame t. In this section, we replace the generic frame index k with t
to indicate the temporal ordering of the low-resolution frames. A simple forward model
capturing the temporal relationship of the low-resolution images is

x(t) = F(t)x(t−1)+u(t), (19.23)

and
y(t) = ADH(t)x(t)+v(t). (19.24)

In other words, the current frame is a shifted version of the previous frame with some
additive noise with covariance Cu(t).

The equations given above describe a system in its state-space form, where the state is
the desired ideal image. Thus, a Kalman-filter (KF) [76] formulation can be employed
to recursively compute the optimal estimates (x(t), t ∈ {1, ...,N}) from the measurements
(y(t), t ∈ {1, ...,N}), assuming that D,H, F(t), Cu(t), and Cv(t) (covariance of v(t)) are
known [35], [71], [72]. In the following, we study the application of the causal Kalman fil-
ter, where the estimates are obtained through on-line processing of an incoming sequence.6

To implement the dynamic multiframe demosaicking algorithm in a fast and efficient
manner, we rewrite the state space model Equations 19.23 and 19.24 in terms of z (z(t) =
Hx(t)) as

z(t) = F(t)z(t−1)+ e(t), (19.25)

and
y(t) = ADz(t)+v(t). (19.26)

Note that the first of the two equations is obtained by left multiplication of both sides of
Equation 19.23 by H and using the fact that it commutes with F(t). Thus, the perturbation
vector e(t) is a colored version of u(t), leading to Ce = HCuHT as its covariance matrix.

The following defines the forward Kalman propagation and update equations [35] that
account for a causal (on-line) process. We assume that at time t− 1 we already have the
mean-covariance pair, (ẑ(t−1),Π̂(t−1)), and those should be updated to account for the
information obtained at time t. We start with the covariance matrix update based on Equa-
tion 19.25:

Π̃(t) = F(t)Π̂(t−1)FT (t)+Ce(t), (19.27)

where Π̃(t) is the propagated covariance matrix (initial estimate of the covariance matrix at
time t). The KF gain matrix is given by

K(t) = Π̃(t)(AD)T [Cv(t)+ADΠ̃(t)DT ]−1. (19.28)

Based on K(t), the updated state vector mean is computed by

ẑ(t) = F(t)ẑ(t−1)+K(t)[y(t)−ADF(t)ẑ(t−1)]. (19.29)

6A closely related noncausal processing mode, where every high-resolution reconstructed image is derived as
an optimal estimate incorporating information from all the frames in the sequence, is studied in Reference [74].
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ẑ
G

(t)

ẑ
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FIGURE 19.13

Block diagram representation of the fast dynamic multiframe demosaicking process.

The final stage requires the update of the covariance matrix, based on Equation 19.26 as
follows:

Π̂(t) = Cov(ẑ(t)) = [I−K(t)AD]Π̃(t). (19.30)

More on the meaning of these equations and how they are derived can be found in Refer-
ences [35] and [77].

While in general the above equations require the propagation of intolerably large matrices
in time, if we refer to Ce(t) as a diagonal matrix, then Π̃(t) and Π̂(t) are diagonal matrices.
Following References [71] and [72], if we choose a matrix σ2

e I ≥ Ce(t), it implies that
σ 2

e I−Ce(t) is a positive semi-definite matrix, and there is always a finite σe that satisfies
this requirement. Replacing Ce(t) with this majorizing diagonal matrix, the new state-space
system in Equations 19.25 and 19.26 simply assumes a stronger innovation process. The
effect on the KF is to rely less on the temporal relation in Equation 19.25 and more on the
measurements in Equation 19.26. Since Ce(t) is diagonal, Equations 19.27, 19.28, 19.29,
and 19.30 can be implemented on an extremely fast pixel-by-pixel basis [74].

The output of the temporal Kalman filter equations (Equations 19.27, 19.28, 19.29,
and 19.30) is an estimate of the blurred high resolution video sequence ẑ(t). We refer
to this as the dynamic shift-and-add sequence. At this point, we apply the iterative deblur-
ring and interpolation step described earlier. The iterative deblurring of the blurry image
ẑ(t) for time t is accomplished by minimizing the cost function

Ω(x(t)) = J′1(x(t), ẑ(t))+P1(x(t))+P2(x(t))+P3(x(t)) (19.31)
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(a) (b) (c)

(d) (e) (f)

FIGURE 19.14

The images in the left column show frames #1 (top) and #69 (bottom) of the 74-frame low-resolution CFA

image sequence. The second column shows the results after the recursive dynamic shift-and-add processing

increasing their resolution by a factor of three in each direction. The right column shows the images after

iteratively deblurring the dynamic shift-and-add images. We observe that the dynamic shift-and-add performs

much of the work, while the subsequent deblurring restores the final details to the images.

using the forward shifted version of the previous estimate F(t)x̂(t−1) as the initial guess.
By relying on the shifted high resolution estimate from the previous frame x̂(t− 1) as an
initial guess, very few iterations are required for subsequent frames.

Figure 19.13 shows the block diagram describing fast dynamic multiframe demosaick-
ing. The algorithm uses only the forward causal processing model; however, it can be
extended to consider both forward filtering and smoothing, as described in References [65]
and [78].

19.4.3 Example of Dynamic Multiframe Demosaicking

We present an example demonstrating the dynamic multiframe demosaicking algorithm.
As before, we used seventy-four uncompressed, raw CFA images from a video camera
(based on Zoran 2MP CMOS Sensors). The upper and lower images in the left column
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of Figure 19.14 show the low-resolution frames (frames number 1, and 69, respectively)
demosaicked by the method in Reference [7]. The central images show the resulting color
images after the recursive dynamic shift-and-add processing [74]. Some of the resolu-
tion has been restored at this point. The images in the right column show the iteratively
deblurred versions of the shift-and-add images. Overall, the final image sequences show
significant improvement over the original sequence.

19.5 Conclusion

In this chapter, we discussed superresolution and demosaicking as two important inverse
problems in imaging. More significantly, we presented a unified approach for simultane-
ously solving these two interrelated problems. We illustrated how using the robust L1 norm
for the data fidelity term makes the proposed methods robust to errors in both measure-
ments and in modelling. Furthermore, we used the bilateral regularization of the luminance
term to achieve sharp reconstruction of edges; meanwhile the chrominance and spectral
dependencies cost functions were tuned to remove color artifacts from the final estimate.

While the implementation of the resulting algorithms may appear complex at first blush,
from a practical point of view, all matrix-vector operations in the proposed methods are im-
plementable as simple image operators, making the methods practically feasible and pos-
sibly useful for implementation on specialized or general purpose hardware within com-
mercially available cameras. Furthermore, as these operations are locally performed on
pixel values on the HR grid, parallel processing may also be used to further increase the
computational efficiency.

As we have pointed out, accurate subpixel motion estimation is an essential part of any
image fusion process such as the proposed simultaneous multiframe superresolution and
demosaicking. While multiscale methods based upon the optical flow or phase correla-
tion principles are adequate, they are not specifically tailored or appropriate for estimating
motions between color-filtered images. In fact, there is currently no significant body of
literature that addresses the problem of estimating subpixel motion between Bayer filtered
images. This gap in the literature needs to be filled, which could result in improved versions
of the algorithms suggested in this chapter. More broadly, a new paradigm (Reference [25])
along the lines is needed in which accurate subpixel motion estimation is performed jointly
inside and along with the overall superresolution/demosaicking problem, instead of what
has traditionally been a preprocessing step.
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Appendix: Motion Estimation

The first step in solving the multiframe demosaicking problem is estimating the motion
between the collection of CFA images. Numerous image registration techniques have been
developed throughout the years [80]. Of these, optical flow [81], [82], and correlation-
based methods [83] are among the most popular.

While the detailed description of these techniques is out of the scope of this chapter, we
note that these methods are mainly developed to estimate the relative motion between a
pair of frames. For cases where several images are to be registered with respect to each
other (e.g., superresolution applications), two simple strategies are commonly used. The
first is to register all frames with respect to a single reference frame [47]. This may be
called the anchoring approach, as illustrated in Figure 19.15a. The choice of a reference or
anchor frame is rather arbitrary, and can have a severe effect on the overall accuracy of the
resulting estimates. This caveat aside, overall, this strategy is effective in cases where the
camera motion is small and random (e.g., small vibrations of a gazing camera).

The other popular strategy is the progressive registration method [32], [78], where images

(a) (b)

FIGURE 19.15

Common strategies used for registering frames of a video sequence. (a) Fixed reference (“anchored”) estima-

tion. (b) Pairwise (“progressive”) estimation.
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The consistent motion property dictates that the motion between any pair of frames must be the composition

of the motion between two other pairs of frames.

in the sequence are registered in pairs, with one image in each pair acting as the reference
frame. For instance, taking a causal view with increasing index denoting time, the ith frame
of the sequence is registered with respect to the (i + 1)th frame and the (i + 1)th frame is
registered with respect to the (i + 2)th frame, and so on, as illustrated in Figure 19.15b.
The motion between an arbitrary pair of frames is computed as the combined motion of the
above incremental estimates. This method works best when the camera motion is smooth.
However, in this method, the registration error between two “nearby” frames is accumu-
lated and propagated when such values are used to compute motion between “far away”
frames. Neither of the above approaches takes advantage of the important prior information
available for the multiframe motion estimation problem. This prior information constrains
the estimated motion vector fields as defined in the following.

To begin, let us define Fi, j as the operator which maps (registers) frames indexed i and j
as follows:

yi = Fi, j{y j},
where yi and y j are the lexicographic reordered vector representations of frames i and j.
Now given a sequence of N frames, precisely N(N−1) such operators can be considered.
Regardless of considerations related to noise, sampling, and the finite dimensions of the
data, there is an inherent intuitive relationship between these pair-wise registration opera-
tors. This condition dictates that the operator describing the motion between any pair of
frames must be the composition of the operators between two other pairs of frames. More
specifically, as illustrated in Figure 19.16, taking any triplet of frames i, j, and k, we have
the motion consistency condition as:

∀i, j,k ∈ {1, ...,N}, Fi,k = Fi, j ◦F j,k. (19.32)

Using these types of constraints provides a means for reliable estimation of the sub-pixel
motions and hence the warping operators. While a detailed discussion will be out of the
scope of this paper, we shall note that the constrained motion property has been success-
fully implemented in different guises and for various applications such as mosaicking [84],
motion estimation [85], [86], [87], and superresolution/demosaicking [25], [69], [82], [88],
[89], [90], [91], [92].
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