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Classic super-resolution has long relied on very exact motion estimation for
the recovery of sub-pixel details. As a highly accurate motion field is hard
to obtain for general scenes, classic super-resolution has been known to be
limited to specific cases, where the motion is of a global nature. In this chap-
ter, we present a recently developed family of algorithms that shatters this
barrier. These novel algorithms relax the requirement of a one-to-one motion
field, and replace it with a simple, probabilistic motion estimation. The proba-
bilistic motion field is integrated into the classic (and heavily investigated) SR
framework, and ultimately results in a very simple family of algorithms. The
obtained paradigm gets an algorithmic structure that resembles that of the
nonlocal means, and as such, leads to a localized and easily parallelizable pro-
cedure. Despite their simplicity, the obtained algorithms are nevertheless very
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98 Super-Resolution Imaging

powerful in handling the most general scenes, with the probabilistic motion
estimation enabling the handling of challenging motion patterns. The result-
ing image sequences are of high quality, and contain few artifacts. These novel
algorithms open the door to a new era in super-resolution that bypasses the
limiting traditional reliance on explicit motion estimation for super-resolution.

4.1 Introduction

Super-Resolution Reconstruction (SRR) proposes a fusion of several low qual-
ity images {yt}T

t=1 into one higher quality result x, which has better optical
resolution than the input images. A wide variety of SRR algorithms have been
developed in the past two decades – see [13] for a list of representatives of this
vast literature. A popular model used for relating the measurements to the
super-resolved image, assumes that {yt}T

t=1 are generated from x through a
sequence of operations that includes (i) geometrical warps Ft, (ii) a linear
space-invariant blur H , (iii) a decimation step represented by D, and finally
(iv) an additive zero-mean white and Gaussian noise nt that represents both
measurements noise and model mismatch1 [7]. All of these operators are lin-
ear, each represented by a matrix multiplying the image they operate on. We
assume hereafter that H and D are identical for all images in the sequence.
Mathematically, the relationship between the high-quality image x and the
measurements {yt}T

t=1 is given by

yt = DHFtx + nt for t = 1, 2, . . . , T. (4.1)

The recovery of x from {yt}T
t=1 is thus an inverse problem, combining denois-

ing, deblurring, scaling-up operation, and fusion of the different images, all
merged to one. We treat y1 as our reference image, and aim to reconstruct x
as its super-resolved version (this implies that F1 = I).

SRR relies on the assumption that D, H , and Ft are known, or can be
reliably estimated from the given data. In particular, such reconstruction relies
on the ability to estimate the motion in the scene with a subpixel accuracy,
so as to enable the merger of the different image sampling grids properly.
Many SRR algorithms start with such an estimating of the motion in the
sequence (e.g., [9, 15, 1, 7, 6]), or couple it with the recovery process, as a
joint-estimation task [8, 19, 16].

Highly accurate general motion estimation, known as optical flow, is a
severely under-determined problem. Various artifacts, and an output image
that is even inferior to the given measurements, are often the result of using

1In [7], the model mismatches are represented as an iid Laplacian distribution, with
L1 penalization as to obtain robustness to outliers. In our work, we choose a Gaussian
model, which simplifies the algorithmic development. Nevertheless, a robustness to outliers
is obtained by the probabilistic approach, as will be discussed later, in Section 3.
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an inaccurately estimated motion within one of the existing SRR algorithms.
In order to estimate the motion with enough accuracy to lead to a successful
reconstruction of a super-resolved image, some simplifying assumptions as to
the structure of the motion field must be made, such as global warps or rigid
bodies. This had led to the commonly agreed and unavoidable conclusion
that general content movies are not likely to be handled well by classical SRR
techniques.

Recently, several papers have tried to circumvent this problem by avoid-
ing explicit motion estimation altogether [13, 17]. The method in [17] relies
on extending the steerable kernel method to multiframe super-resolution. The
method in [13] generalizes the very successful nonlocal means (NLM) [2] de-
noising method to performing super-resolution. The derivation of the SRR
algorithm in [13], termed NLM-SR, is done by defining an energy functional
that explains the NLM, and then modifying it to serve the SRR task. Both
methods do not explicitly estimate the motion, and both are shown to be able
to handle general content video sequences quite successfully.

In this chapter we approach the explicit-motion-estimation-free SRR from
a different perspective. Our starting point is the classic SRR, as in [7]. We
then replace the bijective motion between pixels in each pair of images with
a probabilistic motion field. This simple and alternative derivation is shown
to lead to the same line of algorithms that are proposed in [13]. Furthermore,
the framework proposed here allows different extensions, such as a treatment
of spatio-temporal re-sampling problems. We show this adaptation in general,
and demonstrate its applicability on the de-interlacing problem.

The structure of the chapter is as follows. Section 4.2 describes a classic
SRR formulation, as used in [9, 15, 1, 7, 6], on which we build our even-
tual algorithm. Section 4.3 presents the use of probabilistic motion within the
framework of classic SRR, and develops the proposed algorithm. The adap-
tation to other re-sampling tasks is also described in this section. Section 4.4
provides results for SRR and de-interlacing, demonstrating the abilities of the
proposed method. The key contributions of this work are outlined in Section
4.5, with several directions of possible future work also suggested. We note
that a preliminary version of this chapter has appeared in [12].

4.2 Classic Super-Resolution: Background

Using the model in Equation (14.6), one can seek the most likely high resolu-
tion image, given the existing low-resolution images (and the known decima-
tion, blur, and transformations). This image is called the Maximum-Likelihood
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(ML) estimate of x, and is obtained by minimizing the penalty function

ε2ML (x) =
1
2

T∑
t=1

‖DHFtx− yt‖22 (4.2)

with respect to x. Minimization of (4.2) leads to

∂ε2ML(x)
∂x

=
T∑

t=1

FT
t HT DT (DHFtx− yt) = 0. (4.3)

Denoting A =
∑T

t=1 FT
t HT DT DHFt and b =

∑T
t=1 FT

t HT DT yt, we face a
linear system of equations Ax̂ML = b.

In many cases the measurements are not sufficient for recovering x. In
such cases, the constraints matrix A is singular or possibly ill-conditioned,
and regularization is required. The Maximum A-posteriori Probability (MAP)
estimation proposes a penalty of the form

ε2MAP (x) = ε2ML (x) + λ ·R(x), (4.4)

where the functional R is a regularization term that adds an algebraic sta-
bility to the inversion of A. Beyond the gained stability, R is also a way of
incorporating prior knowledge about the sought x, such as spatial smoothness,
sparsity of its wavelet representation, minimum entropy, etc.. In this work we
force spatial smoothness, by choosing the Total Variation (TV) prior, that
accumulates the gradients norms with �1 [14]. Thus, the MAP estimate in our
case becomes the minimizer of

ε2MAP (x) =
1
2

T∑
t=1

‖DHFtx− yt‖22 + λ ·TV (x), (4.5)

which is typically obtained by an iterative algorithm [9, 15, 8, 1, 7, 6, 19, 16].
This is the core technique we build upon.

The operators D, H , and Ft are assumed to be known in all of the above
discussions. The decimation D is dependent on the resolution scale-factor we
aim to achieve, and as such, it is easily fixed. In this work we shall assume
that this resolution factor is an integer s ≥ 1 in both axes. The blur H refers
to the camera PSF in most cases, and therefore it is also accessible. Even if it
is not, the blur is typically dependent on a small number of parameters, and
those, in the worst case, can be manually set.

While D and H are relatively easy to obtain, this is not the case of Ft.
The warp operators depend on the scene and require highly accurate motion
estimation for their construction. Since such accuracy is hard to obtain in
general, classical SRR algorithms often assume a simple motion pattern, such
as pure translation or global affine warp. Such constraints stabilize the motion
estimation, as they substantially reduce the number of parameters to be esti-
mated, allowing greater accuracy in the estimation (if indeed the motion field
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obeys these assumptions). Attempts to embed the motion estimation (with-
out assuming a specific structure) within the SRR process have been made,
with little success [8, 19, 16]. As already mentioned, inaccurately estimated
motion within SRR often leads to disturbing artifacts that cause the output
to be inferior even when compared to a simple interpolated version of y1. This
fact motivated a quest for bypassing explicit motion estimation, as indeed
practiced in [13, 17].

4.3 The Proposed Algorithm

4.3.1 The New Formulation

We now aim to integrate the notion of probabilistic motion estimation into
the classic SRR formulation introduced in the previous section. Before we
dive into the formulation, we note that when the motion is of a global nature,
and therefore lends itself to an accurate estimation, motion-estimation-based
techniques are likely to obtain better results than the proposed algorithm
in many cases. In other cases, the usage of the proposed algorithm makes
of intra-image redundancy may bring better results even compared to the
motion-compensated algorithms. As such sequences comprise only a small
subset of the sequences to be super-resolved, we don’t continue this discussion
further, and rather tackle general motion sequences by using the probabilistic
motion estimation technique, which we now describe.

The starting point is the observation that the warp operator Ft considers
a bijective (one-to-one) correspondence between pixels in the reference and
the t-th image, and as such, it introduces sensitivity to errors. We replace this
motion field with a probabilistic one that assigns each pixel in the reference
image with many possible correspondences in all the images in the sequence
(including itself), each with an assigned probability of being correct.

Can this become useful for super-resolution for handling general motion
patterns? We now offer one possible way that illustrates that it can. We start
by analyzing the operator Ft, which represents the motion field between the
first image and image t, by indicating for each pixel in the first image its des-
tination in image t. Equivalently, the motion field can be described by listing
a single 2D translation vector for each pixel, independently of other pixels.
Therefore, the entire motion field is represented as a collection of various dis-
placement vectors, one for each pixel.

If the size of the maximal translation is at most D pixels, then the set
of all the possible displacements are covered by a set of M = (2D + 1)2

displacements. By defining {Fm}M
m=1 to be this set of global translations,2 we

2For simplicity, we shall use a set of integer displacements only.
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can write the following equation

Ftx =
M∑

m=1

Qm,tFmx, (4.6)

which describes the action of warping the image x based on the operator Ft.
The matrices {Qm,t}M

1 are diagonal weighting ones, containing ones along
the main diagonal for pixels whose motion is the displacement Fm, namely
[dx(m), dy(m)], and zeros for the rest of the pixels. Using such a decompo-
sition, even the most complicated of motion fields can be represented by a
linear combination of global translations.

While we have replaced the single warping operator with a linear com-
bination of global translation (representing the same general motion field),
a one-to-one relationship between pixels in both images is still implied by
this notation. The next natural step for introducing a probabilistic motion
field is to relax the definition of Qm,t, where varying confidences per pixel
and per motion trajectory are reflected by continuous values. This leads to
a newly defined super-resolution penalty that replaces the use of Ft by their
decompositions as in (4.6).

While this seems like a worthy path to consider, we slightly divert from
this approach, seeking yet a simpler algorithm. We modify the ML formulation
posed in Equation (4.2) by proposing the following probabilistic ML (PML)
penalty3

ε2PML (x) =
1
2

M∑
m=1

T∑
t=1

‖DHFmx− yt‖2Wm,t
. (4.7)

The same intuition, although applied differently, is used in proposing this
penalty. Rather than accumulate the various global translations to form the
effect of Ft as in Equation (4.6), we accumulate the least-squares errors that re-
sult from such global displacements,4 and assign a weight matrix Wm,t to each.
Notice that the weights used in Equation (4.7) are different from those intro-
duced in (4.6). Whereas Qm,t are defined for each pixel in the high resolution
image, Wm,t are also diagonal matrices, but defined over the low-resolution
grid. We shall proceed with the assumption that Wm,t are known, and revisit
their computation in Section 4.3.5.

Even though this formulation contains only global translations, it should
be noted that using the same rational that has led to Equation (4.6), it can
represent any complex motion field. A known motion field can be re-created by
properly assigning the values of Wm,t to be 1s for those pixels whose motion
is Fm and zeros for all others.

One particular interpretation of the above expression is a marginalization
of the least-squared error term with respect to the motion probability density

3We use the notation ‖a‖2
W = aT Wa.

4It is possible to use other sets of warps, such as ones that allow rotations as well.
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function, in a way that resembles the concept proposed in [11]. However, the
authors of [11] perform such a marginalization in order to avoid inaccuracies
in the motion estimation, and their integration is only performed over the
parameters of a global motion model. In our case, very similar to the video
denoising scenario, we handle local motion, and the probabilistic viewpoint
contributes both to a better handling of the estimated motion inaccuracies
and also to the noise reduction.

As a final point in this section, we return to the matter of robustness.
The usage of the above PML has another distinct advantage of robustifying
the algorithm to outliers. Suppose one of the images in the low-resolution set
is in fact an outlier, and does not belong in the sequence. Since this outlier
image does not match the rest of the images, the pixels in it will be assigned
zero weights. This can be understood qualitively from the weights reflecting
the matching of the patch. In Section 4.3.5 the computation of the weights is
discussed, demonstrating how outliers are indeed assigned zero (or negligible)
weights. Effectively, since all pixels in an outlier image are ignored, and are not
considered in the minimization – they are indeed treated as outliers. The same
logic can be applied to local outliers, such as transmission errors, graphics,
boundaries, and more.

4.3.2 Separating the Blur Treatment

Our task is the minimization of a functional that has two terms: ε2PML (x)
and a regularization (e.g., TV). Rather than handling this problem directly,
we decompose it, following the methods developed in [4, 7, 6]. Since both H
and Fm are space-invariant operators, they can be assumed to have a block-
circulant structure (assuming a cyclic boundary treatment), and as such, they
commute. Thus, defining z = Hx, we separate the estimation into two stages,
first concentrating on estimating the “blurry” high resolution image z by
minimizing

ε2PML (z) =
1
2

M∑
m=1

T∑
t=1

‖DFmz − yt‖2Wm,t
, (4.8)

which is the fusion step. The second step is applying a conventional deblurring
step, that minimizes

ε2DB (x) = ‖Hx− z‖22 + λ ·TV (x). (4.9)

This two-step process is sub-optimal to the joint treatment, but neverthe-
less leads to a simplified algorithm. As the second step is conventional and
well-known, we focus hereafter on the fusion step. Note that the deblurring
mechanism chosen here is relatively simple and could be replaced by more
advanced techniques, thereby leading to better results.
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4.3.3 The Algorithm: A Matrix-Vector Version

We now focus on the fusion step; the minimization of Equation (4.8). The
derivative of this functional is given by

∂ε2PML (z)
∂z

=
M∑

m=1

T∑
t=1

FT
mDT Wm,t(DFmz − yt), (4.10)

which leads to a linear system of equations. In order to simplify the obtained
expressions, we introduce the following new notations:

W̃m =
T∑

t=1

Wm,t and ỹm =
T∑

t=1

Wm,tyt. (4.11)

The matrix W̃m is s sum of diagonal matrices, and therefore diagonal in itself.
By rearranging and substituting W̃m and ỹm, we obtain

[
M∑

m=1

FT
mDT W̃mDFm

]
z =

M∑
m=1

FT
mDT ỹm. (4.12)

While this linear system of equations seems complicated, we show next that
it can be rewritten for each pixel in z in a closed form, revealing a simple
structure that leads to a stable solution.

4.3.4 The Algorithm: A Pixel-Wise Version

The Right-Hand-Side (RHS) in Equation (4.12) is an image of the same size
as z. Furthermore, as we are about to show, the matrix multiplying z on the
Left-Hand-Side (LHS) is a diagonal positive definite matrix. Thus, we can
turn the above vector-matrix formulation into a pixel-wise one.

Since the RHS is an image of the same size as z, we start by looking
at how a specific pixel at location [i, j] in the RHS is constructed. A spe-
cific Fm shifts by [dx(m), dy(m)]. Therefore, the term FT

mv positions the
[i + dx(m), j + dy(m)]-th element from the image v in the destination [i, j]
(since the transpose has the effect of an inverse displacement). The image
u = DT ỹm is a scale-up version of the low-resolution image ỹm by zero-filling.
Combining the two implies that if the location [i + dx(m), j + dy(m)] is not
an integer multiple of s (the resolution ratio), this location has a zero entry.
Otherwise, the entry is simply ỹm[k, l], where [k, l] = [i+dx(m), j +dy(m)]/s.
Accounting for all the displacements in the set and for all input images, we
get that at location [i, j]

RHS[i, j] =
∑

[k,l]∈N(i,j)

ỹm[k, l], (4.13)

where we have defined the neighborhood set

N(i, j) = {[k, l] | ∀ m ∈ [1, M ], s ·k = i + dx(m), s · l = j + dy(m)} (4.14)
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Plugging the definition of ỹm from Equation (4.11) yields

RHS[i, j] =
∑

[k,l]∈N(i,j)

T∑
t=1

Wm,t[k, l]yt[k, l]. (4.15)

In this expression, Wm,t[k, l] refers to the entry on the main diagonal in Wm,t

that multiplies the [k, l] entry in yt. This formula indicates that each pixel in
the RHS is a weighted sum of pixels, in a neighborhood centered around its
equivalent location in the low-resolution image.

We now turn to discuss the Left-Hand-Side (LHS) in (4.12). The operator
DT W̃mD within this expression is a diagonal matrix that decimates an image
by a factor of s in each axis, weights each pixel by the diagonal weight matrix
W̃m, and then up-scales back the image using the same factor by zero-filling.
When this operator is applied to an image v, a pixel in location [i, j] is nulled
if [i, j]/s is a non-integer (since it is one of the pixels to be zero-filled by DT ),
and is simply weighted otherwise, i.e., it becomes W̃m[i, j] · v[i, j].

When the full operator FT
mDT W̃mDFm is applied to the [i, j]-th pixel in

z, it shifts it to the [i + dx(m), j + dy(m)]-th location, nulls it or weights it
(based on whether [i + dx(m), j + dy(m)]/s is an integer), and finally shifts
the outcome back by [−dx(m),−dy(m)] to its original place, [i, j]. Evidently,
the operator F T

mDT W̃mDFm returns every pixel to its original location. Since
every output pixel depends only on the value of the input pixel in the same
location, this matrix is diagonal. Therefore, each pixel in the LHS is the pixel
in z multiplied by a pixel-specific scalar, and can be computed by

LHS[i, j] =
∑

[k,l]∈N(i,j)

W̃m[k, l]z[i, j] =
∑

[k,l]∈N(i,j)

T∑
t=1

Wm,t[k, l]z[i, j], (4.16)

where we have substituted the definition of W̃m in Equation (4.11). This
expression is similar to Equation (4.15), summing only the weights and serving
as a normalization term. Assuming that this sum is positive (i.e., at least one
weight is non-zero), combining Equations (4.15) and (4.16) leads to a closed
form expression for the [i, j]-th pixel in the estimated z,

ẑ[i, j] =

∑
[k,l]∈N(i,j)

∑T
t=1 Wm,t[k, l]yt[k, l]

∑
[k,l]∈N(i,j)

∑T
t=1 Wm,t[k, l]

, (4.17)

where m is related to [k, l] through [i, j] + [dx(m), dy(m)] = [k, l]. The re-
semblance to the fusion algorithm in NLM-SR is evident (see Equation (30)
in [13]). Just as explained there, the similarity of the final algorithm to the
NLM stands out, but there is a subtle difference between the two, related to
the domain of averaging. The proposed algorithm differs considerably from an
interpolation followed by application of NLM. A visual comparison between
the two in the experimental section will demonstrate the difference.
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4.3.5 Computing the Weights

In the development of the closed-form formula for z, we assumed that
the weighting matrices Wm,t[i, j] are known. We now turn to explain how
Wm,t[i, j] are computed, in order to complete the description of the algorithm.
Observing Equation (4.8), these weights are supposed to encompass the fit,
per pixel, of the desired high resolution image z after being transformed by
Fm and decimated by D, with the input image yt. Thus, the weights could be
related to the error DFmz − yt. Since the pixel value in itself is not enough
to properly estimate the fit, we propose to use some spatial support for each
pixel instead of computing the difference on a single pixel. Defining Ri,j as an
operator that extracts a patch of a fixed and predetermined size (say q × q
pixels) from an image, the weights are computed by

Wm,t[i, j] = exp

{
−
‖Ri,j (DFmz − yt)‖22

2σ2

}
(4.18)

· f

(√
(dx(m))2 + (dy(m))2 + (t− 1)2

)
.

This formula is composed of the two independent parts. The first yields a
value that is inversely proportional to the Euclidean distance between the
transformed image DFmz and the input image yt, computed over some sup-
port around each pixel. This term reflects the per-pixel fit of the displacement
(after decimation). The second term reflects a decreasing confidence in large
spatial and temporal displacements, and adds a decaying weight as a function
of the displacement and time shift magnitudes versus the reference frame. The
function f can be chosen as any monotonically non-increasing function (e.g.,
box function or Gaussian bell).

The computation of the weights relies on the knowledge of the unknown
z. Instead, at the beginning, the weights are computed by using an estimated
version of z, such as a scaled-up version of the reference frame y1. This scale-
up is done using a conventional image interpolation algorithm such as bilinear,
bicubic, or the Lanczos method. As this is only a crude version of the desired
outcome, the process can be iterated, using the newly estimated image ẑ to
obtain more accurate weights that contribute to an improved outcome. In our
tests we employ two such iterations only.

The method in which the weights are computed is reminiscent of clas-
sic block-matching based SR algorithms (e.g., [3]). However, there is a key
difference between these algorithms and the one proposed here. In both ap-
proaches, block-matching is used to crudely estimate the probability of each
trajectory. However, in classic block-matching based SR, only the most likely
of those trajectories is selected, while all other trajectories are ignored. In
the proposed algorithm, all trajectories are considered together, in a proba-
bilistic framework, reflecting the varying confidences of the trajectories. This
difference is what enables the proposed algorithm to handle complex scenarios
where highly accurate motion estimation is not currently possible.
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As said earlier, outliers are to be assigned zero weights. Outliers are char-
acterized by very different patches. Therefore, the block distance in Equation
4.18 is very large, which through the inverse exponent is translated to a neg-
ligible weight. Thus, the outliers are indeed assigned practically zero weight,
and are effectively ignored.

4.3.6 Other Resampling Tasks

In this section we describe how the proposed framework can be adapted to
other re-sampling tasks, such as de-interlacing, inpainting and more, and start
by explaining this extension intuitively. Re-sampling tasks can be considered
as computing pixel values for only some of the pixels in each image (“missing
pixels”). For example, the de-interlacing task may be viewed as providing
pixel values only for the even rows in the odd-numbered fields, as well as for
the odd rows in the even-numbered fields. Formulating this idea, given each
input image (or field) yt, it can be linked to the original (unknown) image
Yt using a masking operator Mt : yt = MtYt. Simply put, Mt discards all
unsampled pixels. It is a binary matrix, with as many rows as the number of
pixels in yt and as many columns as pixels in Yt, with entries of ones indicating
which pixels are to be kept. Note that yt contains only sampled pixels. In the
in-painting case, it contains only the unmasked pixels.

In line with the idea of the probabilistic motion estimation, Yt can be
constructed as a (pixel-wise) weighted average of different transformations of
the target image x. The image x that we seek should be as similar as possible
to each yt, after undergoing each of the transformations and the relevant
masking. This required similarity is weighted on a pixel-wise basis, according
to the (local) probability of the specific transformation having taken place.
Put into the maximum likelihood formulation, a penalty function very similar
to Equation (4.7) arises, where the decimation operator is replaced by Mt,

ε2PML (x) =
1
2

M∑
m=1

T∑
t=1

‖MtHFmx− yt‖2Wm,t
. (4.19)

Minimizing this functional proceeds very similarly to the steps described be-
fore. The treatment of the blur is separated, and a pixel-wise formula for
the values of z is given by Equation (4.17). The difference is in the order of
summation, as the neighborhood N(i, j) of a pixel is now time (and spatial)
dependent. This is because the masking may be different for every image in
the sequence.

The weights for this formula are computed very similarly to the SRR case,
described in Equation (4.18). However, these tasks can benefit from computing
the weights in high-resolution scale. Thus, if we consider that Wm,t is for the
coarse scale, we denote Wm,t = MtW̃m,t, with W̃m,t being the same size as Yt.
The formula for each entry of W̃m,t (when arranged as an image) is therefore
the same as in Equation (4.18), but with Fmz − Yt replacing DFmz − yt.
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In these weights, Yt is an interpolated version of yt (with the interpolation
method depending on the specific task). Of course, these weights should be
computed only for pixels that are kept after the masking Wm,t = MtW̃m,t.

4.4 Experimental Validation

4.4.1 Experimental Results

In this section we demonstrate the abilities of the proposed algorithm in super-
resolving general content sequences. We start with one synthetic (text) se-
quence with global motion that comes to demonstrate the conceptual super-
resolution capabilities of the proposed algorithms. Then we turn to several
real-world sequences with a general motion pattern. The comparison we pro-
vide in most sequences is to a single image upsampling using the Lanczos
algorithm [21, 18], that effectively approximates the Sinc interpolation. Fi-
nally, we demonstrate the adaptation of the algorithm to the de-interlacing
problem.

The first test is a very simple synthetic test, that motion-estimated-based
super-resolution algorithms are expected to resolve well, intended to show
that the proposed algorithm indeed achieves super-resolution. A text image
(in the input range [0, 255]) is used to generate a 9-image input sequence, by
applying integer displacements prior to blurring (using a 3×3 uniform mask),
decimation (by a factor of 1 : 3 in each axis), and the addition of noise (with
std = 2). The displacements are chosen so that the entire decimation space
is covered (i.e., dx = {0, 1, 2} and dy = {0, 1, 2}). The result for this test is
shown in Figure 4.1, including a comparison to both Lanczos interpolation
and the regularized shift-and-add algorithm [5, 7], which is a conventional
motion-estimation-based super-algorithm resolution.

The block size used for computing the weights (R̂) was set to 31 × 31,
since the motion in the sequence is limited to displacements, and a larger
block allows capturing the true displacement better (for real-world sequences,
this size will be greatly reduced, as explained later). The value of σ that
moderates the weights was set to 7.5 (due to the large differences between
white and black values in the scene). Two iterations were ran on the entire
sequence, the first iteration used for computing the weights for the second
iteration.

The similarity between the quality of the classic SR result and the proposed
algorithm is evident. This similarity stems from the large block size used
in the proposed algorithm. This large block size, together with the exiting
global translation, makes the proposed algorithm converge to classic motion-
estimation-based format, as such large blocks basically identify the correct
motion vector for each pixel. We note that such large blocks cannot be used
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(a) (b)

(c) (d)

(e) (f)
FIGURE 4.1: Results for the synthetic text sequence. (a) Original (ground-
truth) image. (b) Pixel replicated image, 13.47dB. (c) Lanczos interpolation,
13.84dB. (d) Deblurred Lanczos interpolation, 13.9dB. (e) Result of shift-and-
add algorithm [5, 7], 18.4dB. (f) Result of proposed algorithm, 18.48dB.

in real-world sequences (shown next), as they do not allow enough adaptation
to the various motion patterns, and therefore much smaller block sizes will be
used.

We now turn to demonstrate the potential of the proposed SRR algorithm
by presenting the results for image sequences with a general motion pattern.
These sequences are also in the input range [0, 255]. Each Low Resolution
(LR) frame is generated from one High Resolution (HR) frame. The HR frame
is blurred using a 3 × 3 uniform mask, decimated by a factor of 1:3 (in each
axis), and then contaminated by additive white zero-mean Gaussian noise with
STD = 2. It is important to note the while the LR images are synthetically
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generated from the HR images (using a known blur kernel and decimation
operator) the motion in the sequence is real, and is not the result of synthetic
manipulations.

The degraded sequence is then input to the proposed SRR algorithm. The
results for three such degraded sequences: “Miss-America,” “Foreman” and
“Suzie” appear in Figures 4.2, 4.3, and 4.4 respectively, for the 3rd, 8th, 13th,
18th, 23rd, and the 28th frames of each sequence.5 The window size used for
computing these weights is set to 13×13, to allow handling complex and local
motion patterns (unlike the text example, in which the motion was global).
The search area was manually adapted for each sequence to ensure that the
real motion is within the search area.

Another example along the same lines appears in Figure 4.5. In this test, a
color High-Definition (HD) sequence was blurred by a 2×2 uniform mask, and
downsampled by a factor of 2 (in each axis). The figure shows a portion of one
HD frame and the same portion of the result of the proposed algorithm. Since
this is a color sequence, the images are converted into the YUV colorspace,
and only the Y channel is processed by the proposed algorithm. The U and V
channels are interpolated, and the three components are then converted back
to RGB colorspace to create the final SR result. This example shows that
while the result is not identical to the input, they are of comparable quality.

In order to demonstrate the proposed algorithm on a directly captured se-
quence, we provide another experiment on the sequence “Trevor,” the results
of which are displayed in Figure 4.6. In this case, there is no ground-truth im-
age available to compare to. Therefore, to demonstrate that a super-resolution
effect is indeed achieved, a comparison is made to an interpolated sequence.
This interpolation is obtained by a Lanczos interpolation, followed by NLM
filtering for denoising, and then deblurring. This comparison serves two goals:
(1) It indeed verifies that the proposed algorithm obtains an SR effect; and (2)
it demonstrates the difference between simply running NLM and deblurring
after up-scaling, compared to running the proposed algorithm. This compar-
ison is important, as the two schemes are confusingly similar (see Equation
4.17). Clearly, a far better image is obtained with the proposed algorithm.

In order to demonstrate the generalized algorithm, we apply it to an inter-
laced sequence. We used the Foreman sequence and composed each interlaced
frame from a pair of original frames by taking the odd-numbered rows from
one frame, and the even-numbered rows from the next, resulting in a sequence
with half as many frames. This sequence was also contaminated by additive
white zero-mean Gaussian noise with STD = 2. This generated sequence can
be considered a true interlaced sequence, as no manipulation (e.g., simulated
blurring) of the pixels has been made other than half the pixels being dis-
carded.

The result of processing this sequence with the framework suggested in

5The sequences appearing in this section (input and output) and others from
[13], along with the various parameters used to generate them, can be found at
http://www.cs.technion.ac.il/∼matanpr/NLM-SR.



Super-Resolution with Probabilistic Motion Estimation 111

FIGURE 4.2: Results for the 3rd, 8th, 13th, 18th, 23rd, and the 28th frames from
the “Miss America” sequence. From left to right: pixel-replicated low resolution
image; original image (ground truth); Lanczos interpolation; result of the proposed
algorithm.
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FIGURE 4.3: Results for the 3rd, 8th, 13th, 18th, 23rd, and the 28th frames from
the “Foreman” sequence. From left to right: pixel-replicated low-resolution image;
original image (ground truth); Lanczos interpolation; result of the proposed algo-
rithm.
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FIGURE 4.4: Results for the 3rd, 8th, 13th, 18th, 23rd, and the 28th frames from
the “Suzie” sequence. From left to right: pixel-replicated low resolution image; orig-
inal image (ground truth); Lanczos interpolation; result of the proposed algorithm.
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FIGURE 4.5: A High-Definition sequence. Top: Portion of original HD image.
Bottom: Same portion of SR result (from an input downscaled by 2 in each
axis).
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FIGURE 4.6: Original “Trevor” sequence. Top: Interpolated image. Middle:
Interpolation, followed by NLM processing and deblurring. Bottom: Proposed
algorithm. The right column offers a close-up of a portion of the images.
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Section 4.3.6 appears in Figure 4.7. The initial interlaced sequence was split
into fields, and each field was expanded by a factor of two in the vertical axis
only. The missing rows were interpolated by averaging the rows immediately
above and below each missing row. The masks Mt were designed to discard
the even rows in the odd-numbered images, and the odd rows in the even-
numbered images. 5 interlaced frames (10 fields) were used for processing,
and the search area consisted of 10 pixels in every direction. We display the
results for two iterations (where the first is used for computing the weights
for the second), although the differences are much less dramatic than in the
SRR case. As done above, we also show the results of directly filtering the re-
scaled sequence with the NLM filter, to highlight the difference of the proposed
approach. Note how the staircase effect (on the wall) is much decayed by the
proposed algorithm. It should be noted that the purpose of this test is only to
demonstrate the applicability of the proposed framework to other re-sampling
tasks, without claiming that it out-performs other de-interlacing methods.
Further work is required to compare the proposed technique to existing de-
interlacing algorithms.

4.4.2 Computational Complexity

The complexity of the algorithm is essentially the same as that of the NLM
algorithm, with the addition of a deblurring process, which is negligible com-
pared to the fusion stage. The core of the algorithm, which also requires most
of the computations, is computing the weights. In a nominal case in which
a search area of 31 × 31 low-resolution pixels in the spatial domain, and 15
images in the temporal axis, we have ≈ 14, 000 pixels in this spatiotemporal
window. For each pixel in the search area, the block difference is computed,
with a block size of 13× 13 (high-resolution) pixels. Thus, there is a total of
almost 2, 400, 000 operations per pixel. Performing this amount of calculations
for every pixel makes the algorithm irrelevant for practical implementations,
and therefore the computational load must be reduced. In this section we de-
scribe a few possible speed-up options for the proposed algorithm. Several of
the methods to speed-up the NLM algorithm were suggested originally in [10],
and were adopted in our simulations:

1. Computing the weights can be done using block differences in the low-
resolution images, instead of on the interpolated images. This saves a
factor of ≈ s2. This can be applied for the first iteration, resulting in
only a small loss of quality.

2. Computing fast estimations for the similarity between blocks, such as
the difference between the average gray level or the average direction of
the gradient, can eliminate many nonprobable destinations from further
processing. Such an approach was suggested in [10], and was found to
be very effective for the original NLM algorithm.
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(a) (b)

(c) (d)

(e) (f)
FIGURE 4.7: De-Interlacing Results. (a) Original (ground-truth) image. (b)
Interlaced image. (c) Row Averaging, 29.87dB. (d) Row Averaging followed
by NLM processing, 29.93dB. (e) Proposed algorithm first iteration, 30.69dB.
(f) Proposed algorithm second iteration, 30.71dB.
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3. If the patch used to compute the weights is rectangular and with uni-
form weights, the special structure of the patch can be used to dramati-
cally speed up the computation of the weights. The Integral Image [20].
(II (x, y) =

∑x
i=1

∑y
j=1 I (i, j)) can be used to compute the block dif-

ferences using only a small constant number of calculations per pixel,
regardless of block size. Fortunately, there is only a slight effect on the
quality of the outputs of using such a patch structure.

4. A coarse-to-fine approach, transferring only high likelihood destinations
from the coarse level, reduces the effective search area for each pixel,
thus reducing the number of required calculations.

5. Since it is more likely that large spatial displacements will appear when
the temporal distance is large, using a small search area in nearby frames
and enlarging it as the temporal distance grows, can reduce the effective
search area and thus the total number of calculations.

6. Since most of the algorithm is local in nature, it lends itself easily to
parallelization. As 4 and 8 processor configurations are currently widely
available, this can be used for speeding up the algorithm by about one
order of magnitude. Furthermore, as parallel hardware such as Graphical
Processing Units (GPUs) are very common and powerful, with program-
ming tools making implementations on such hardware easier than before,
the parallelistic nature of this algorithm might allow a great speed-up
by an implementation on such processing units.

These suggested speed-up methods can reduce the complexity by at least 3 to
4 orders of magnitude without a noticeable drop in the quality of the outputs.
This makes the proposed algorithm practical.

As for the memory requirements, the proposed algorithm uses approxi-
mately as much memory as required to hold the entire processed sequence in
the high-resolution scale, and is usually not a limitation. However, some of the
speed-up methods suggested do require more memory, so a trade-off between
memory requirements and run-time may be needed.

4.5 Summary

In NLM-SR [13], an earlier work, an explicit-motion-estimation-free SRR algo-
rithm was developed by extending the NLM filter to SRR reconstruction. This
chapter approaches the same task from a different perspective, basing it on a
probabilistic and crude motion estimation instead. Interestingly, this approach
(under some assumptions) leads to the same algorithm as in NLM-SR. How-
ever, since the formulation described here relies on the classic super-resolution
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framework and on the imaging model, we believe it is more intuitive. We give
several examples of the abilities of the proposed algorithm in super-resolving
various sequences.

Another benefit of this formulation is that it allows for different exten-
sions than those proposed in [13]. In this chapter, we have shown that this
framework can in fact be adapted to any re-sampling task. We have given one
example of de-interlacing, showing the validity of this adaptation. This ex-
ample shows than even sequences with large, highly nonrigid motion patterns
can be successfully de-interlaced by the proposed framework.

While the results of the proposed algorithm are encouraging, we believe
further research is needed in order to extract the full potential of this family of
algorithms. We note that in developing the algorithm, we have made several
choices such as relying on integer displacements, only in order to simplify the
development of the algorithm, and to arrive at an algorithm that is relatively
simple to understand and implement. Avoiding such compromises will result
in a more complex algorithm, but one that might also bring about better
results.
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