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Models play an important role in inverse problems, serving as the prior for representing the original sig-
nal to be recovered. REgularization by Denoising (RED) is a recently introduced general framework for
constructing such priors using state-of-the-art denoising algorithms. Using RED, solving inverse problems
is shown to amount to an iterated denoising process. However, as the complexity of denoising algorithms
is generally high, this might lead to an overall slow algorithm. In this paper, we suggest an accelerated
technique based on vector extrapolation (VE) to speed-up existing RED solvers. Numerical experiments
validate the obtained gain by VE, leading to substantial savings in computations compared with the orig-
inal fixed-point method.
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1. Introduction

Inverse problems in imaging address the reconstruction of clean
images from their corrupted versions. The corruption can be a blur,
loss of samples, downscale or a more complicated operator (e.g., CT
and MRI), accompanied by a noise contamination. Roughly speak-
ing, inverse problems are characterized by two main parts: the first
is called the forward model, which formulates the relation
between the noisy measurement and the desired signal, and the
second is the prior, describing the log-probability of the destina-
tion signal.

In recent years, we have witnessed a massive advancement in a
basic inverse problem referred to as image denoising [1–6].
Indeed, recent work goes as far as speculating that the perfor-
mance obtained by leading image denoising algorithms is getting
very close to the possible ceiling [7–9]. This motivated researchers
to seek ways to exploit this progress in order to address general
inverse problems. Successful attempts, as in [10–12], suggested
an exhaustive manual adaptation of existing denoising algorithms,
or the priors used in them, treating specific alternative missions.
This line of work has a clear limitation, as it does not offer a flex-
ible and general scheme for incorporating various image denoising
achievements for tackling other advanced image processing tasks.
This led to the following natural question: is it possible to suggest
a general framework that utilizes the abundance of high-
performance image denoising algorithms for addressing general
inverse problems? Venkatakrishnan et al. gave a positive answer
to this question, proposing a framework called Plug-and-Play Pri-
ors (P3) method [13–15]. Formulating the inverse problem as an
optimization task and handling it via the Alternating Direction
Method of Multipliers (ADMM) scheme [16], P3 shows that the
whole problem is decomposed into a sequence of image denoising
sub-problems, coupled with simpler computational steps. The P3

scheme provides a constructive answer to the desire to use
denoisers within inverse problems, but it suffers from several
key disadvantages: P3 does not define a clear objective function,
since the regularization used is implicit; Tuning the parameters
in P3 is extremely delicate; and since P3 is tightly coupled with
the ADMM, it has no flexibility with respect to the numerical
scheme.

A novel framework named REgularization by Denoising (RED)
[17] proposes an appealing alternative while overcoming all these
flaws. The core idea in RED is the use of the given denoiser within
an expression of regularization that generalizes a Laplacian
smoothness term. The work in [17] carefully shows that the gradi-
ent of this regularization is in fact the denoising residual. This, in
turn, leads to several iterative algorithms, all guaranteed to con-
verge to the global minimum of the inverse problem’s penalty
function, while using a denoising step in each iteration.
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The idea of using a state-of-the-art denoising algorithm for con-
structing an advanced prior for general inverse problems is very
appealing.1 However, a fundamental problem still exists due to the
high complexity of typical denoising algorithms, which are required
to be activated many times in such a recovery process. Indeed, the
evidence from the numerical experiments posed in [17] clearly
exposes this problem, in all the three methods proposed, namely
the steepest descent, the fixed-point (FP) strategy and the ADMM
scheme. Note that the FP method is a parameter free and the most
efficient among the three, and yet this approach too requires the
activation of the denoising algorithms dozens of times for a comple-
tion of the recovery algorithm.

Our main contribution in this paper is to address these difficul-
ties by applying vector extrapolation (VE) [18–20] to accelerate the
FP algorithm shown in [17]. Our simulations illustrate the effec-
tiveness of VE for this acceleration, saving more than 50% of the
overall computations involved compared with the native FP
method.

The rest of this paper is organized as follows. We review RED
and its FP method in Section 2. Section 3 recalls the Vector Extrap-
olation acceleration idea. Several experiments on image deblurring
and super-resolution, which follows the ones given in [17], show
the effectiveness of VE, and these are brought in Section 4. We con-
clude our paper in Section 5.

2. REgularization by Denoising (RED)

This section reviews the framework of RED, which utilizes
denoising algorithms as image priors [17]. We also describe its
original solver based on the Fixed Point (FP) method.

2.1. Inverse problems as optimization tasks

From an estimation point of view, the signal x is to be recovered
from its measurements y using the posterior conditional probabil-
ity PðxjyÞ. Using maximum a posterior probability (MAP) and the
Bayes’ rule, the estimation task is formulated as:

x�MAP ¼ argmax
x

PðxjyÞ

¼ argmax
x

PðyjxÞPðxÞ
PðyÞ

¼ argmax
x

PðyjxÞPðxÞ

¼ argmin
x

� logfPðyjxÞg � log PðxÞ:

The third equation is obtained by the fact that PðyÞ does not
depend on x. The term � logfPðyjxÞg is known as the log-
likelihood ‘ðy; xÞ. A typical example is

‘ðy; xÞ , � logfPðyjxÞg ¼ 1
2r2 kHx� yk22 ð1Þ

referring to the case y ¼ Hxþ e, where H is any linear degradation
operator and e is a white mean zero Gaussian noise with variance
r2. Note that the expression ‘ðy; xÞ depends on the distribution of
the noise.2 Now, we can write the MAP optimization problem as

x�MAP ¼ argmin
x

‘ðy; xÞ þ aRðxÞ ð2Þ

where a > 0 is a trade-off parameter to balance ‘ðy; xÞ and RðxÞ.
RðxÞ , � log PðxÞ refers to the prior that describes the statistical
nature of x. This term is typically referred to as the regularization,
1 Firstly, it enables utilizing the vast progress in image denoising for solving
challenging inverse problems as explained above. Secondly, RED enables utilizing the
denoiser as a black-box.

2 White Gaussian noise is assumed throughout this paper.
as it is used to stabilize the inversion by emphasizing the features
of the recovered signal. In the following, we will describe how
RED activates denoising algorithms for composing RðxÞ. Note that
Eq. (2) defines a wide family of inverse problems including, but
not limited to, inpainting, deblurring, super-resolution, [21] and
more.

2.2. RED and the fixed-point method

Define f ðxÞ as an abstract and differentiable denoiser.3 RED sug-
gests applying the following form as the prior:

RðxÞ ¼ 1
2
xT x� f ðxÞð Þ; ð3Þ

where T denotes the transpose operator. The term xT x� f ðxÞð Þ is an
image-adaptive Laplacian regularizer, which favors either a small
residual x� f ðxÞ, or a small inner product between x and the resid-
ual [17]. Plugged into Eq. (2), this leads the following minimization
task:

min
x

EðxÞ , ‘ðy; xÞ þ a
1
2
xT x� f ðxÞð Þ: ð4Þ

The prior RðxÞ of RED is a convex function and easily differenti-
ated if the following two conditions are met:

� Local Homogeneity: For any scalar c arbitrarily close to 1, we
have f ðcxÞ ¼ cf ðxÞ.

� Strong Passivity: The Jacobian rxf ðxÞ is stable in the sense that
its spectral radius is upper bounded by one, qðrxf ðxÞÞ 6 1.

Surprisingly, the gradient of EðxÞ is given by

rxEðxÞ ¼ rx‘ðy; xÞ þ a x� f ðxÞð Þ: ð5Þ

As discussed experimentally and theoretically in [17,
Section 3.2, many of the state-of-the-art denoising algorithms sat-
isfy the above-mentioned two conditions, and thus the gradient of
(4) is simply evaluated through (5). As a consequence, EðxÞ in
Eq. (4) is a convex function if ‘ðx; yÞ is convex, such as in the case
of (1). In such cases any gradient-based algorithm can be utilized
to address Eq. (4) leading to its global minimum.

Note that evaluating the gradient of EðxÞ calls for one denoising
activation, resulting in an expensive operation as the complexity of
good-performing denoising algorithms is typically high. Because of
the slow convergence speed of the steepest descent and the high
complexity of ADMM, the work reported in [17] suggested using
the FP method to handle the minimization task posed in Eq. (4).
The development of the FP method is rather simple, relying on
the fact that the global minimum of (4) should satisfy the first-
order optimality condition, i.e., rx‘ðy; xÞ þ a x� f ðxÞð Þ ¼ 0. For the
FP method, we utilize the following iterative formula to solve this
equation:

rx‘ðy; xkþ1Þ þ a xkþ1 � f ðxkÞð Þ ¼ 0: ð6Þ

The explicit expression of the above for ‘ðy; xÞ ¼ 1
2r2 kHx� yk22 is

xkþ1 ¼ 1
r2 H

T H þ aI
� ��1 1

r2 H
T y þ af ðxkÞ

� �
; ð7Þ

where I represents the identity matrix.4 The convergence of the FP
method is guaranteed since
3 This denoising function admits a noisy image x, and removes additive Gaussian
noise form it, assuming a prespecified noise energy.

4 This matrix inversion is calculated in the Fourier domain for block-circulant H, or
using iterative methods for the more general cases.
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q
1
r2 H

T H þ aI
� ��1

arxf ðxkÞ
 !

< 1:

Although the FP method is more efficient than the steepest des-
cent and the ADMM, it still needs hundreds of iterations, which
means hundreds of denoising activations, to reach the desired min-
imum. This results in a high complexity algorithmwhich we aim to
address in this work. In the next section, we introduce an acceler-
ated technique called Vector Extrapolation (VE) to substantially
reduce the amount of iterations in the FP method.

3. Proposed method via vector extrapolation

We begin this section by introducing the philosophy of VE in
linear and nonlinear systems and then discuss three variants of
VE5, i.e., Minimal Polynomial Extrapolation (MPE), Reduced Rank
Extrapolation (RRE) and Singular Value Decomposition Minimal
Polynomial Extrapolation (SVD-MPE) [20,22]. Efficient implementa-
tion of these three variants is also discussed. We end this section
by embedding VE in the FP method for RED, offering an acceleration
of this scheme. Finally, we discuss the convergence and stability
properties of VE.

3.1. VE in linear and nonlinear systems

Consider a vector set fxi 2 RNg generated via a linear process,

xiþ1 ¼ Axi þ b; i ¼ 0;1; . . . ; ð8Þ

where A 2 RN�N;b 2 RN and x0 is the initial vector. If qðAÞ < 1, a
limit point x� exists, being the FP of (8), x� ¼ Ax� þ b. We turn to
describe how VE works on such linear systems [23]. Denote
ui ¼ xiþ1 � xi; i ¼ 0;1; . . ., and define the defective vector ei as

ei ¼ xi � x�; i ¼ 0;1; . . . : ð9Þ

Subtracting x� from both sides of (8) and utilizing the fact that
x� is the FP, we have eiþ1 ¼ Aei resulting in

eiþ1 ¼ Aiþ1e0: ð10Þ

We define a new extrapolated vector xðm;jÞ as a weighted aver-
age of the form

xðm;jÞ ¼
Xj
i¼0

cixmþi; ð11Þ

where
Pj

i¼0ci ¼ 1. Substituting (9) in (11) and using (10) andPj
i¼0ci ¼ 1, we have

xðm;jÞ ¼
Xj
i¼0

ci x� þ emþið Þ

¼ x� þ
Xj
i¼0

ciemþi

¼ x� þ
Xj
i¼0

ciA
iem:

ð12Þ

Note that the optimal fcig and j should be chosen so as to forcePj
i¼0ciA

iem ¼ 0. This way, we attain the FP through only one
extrapolation step.

More broadly speaking, given a nonzero matrix B 2 RN�N and an
arbitrary nonzero vector u 2 RN , we can find a unique polynomial
PðzÞ with smallest degree to yield PðBÞu ¼ 0. Such a PðzÞ is called
the minimal polynomial of B with respect to the vector u. Notice
5 We refer the interesting readers to [20] and the references therein to explore
further the VE technique.
that the zeros of PðzÞ are the eigenvalues of B. Thus, assume that
the minimal polynomial of A with respect to em can be represented
as

PðzÞ ¼
Xj
i¼0

cizi; cj ¼ 1 ð13Þ

resulting in PðAÞem ¼ 0. So, we have

Xj
i¼0

ciA
iem ¼

Xj
i¼0

ciemþi ¼ 0: ð14Þ

Multiplying both sides of (14) by A results inPj
i¼0ciAemþi ¼

Pj
i¼0ciemþiþ1 ¼ 0, and thus we receive

Xj
i¼0

ciemþi ¼
Xj
i¼0

ciemþiþ1 ¼ 0: ð15Þ

Subtracting these expressions givesXj
i¼0

ci emþiþ1 � emþið Þ ¼
Xj
i¼0

ci xmþiþ1 � xmþið Þ

¼
Xj
i¼0

ciumþi ¼ 0:

ð16Þ

This suggests that fcig could be determined by solving the lin-
ear equations posed in (16). Once obtaining fcig; fcig are calculated
through ci ¼

ciPj
j¼0

cj
. Note that

Pj
j¼0cj – 0 if I � A is not singular

yielding
Pj

j¼0cj ¼ Pð1Þ – 0. Assuming j is the degree of the mini-
mal polynomial of A with respect to em, we can find a set of fcig
to satisfy

Pj
i¼0ci ¼ 1 resulting in

Pj
i¼0cixmþi ¼ x�. However, the

degree of the minimal polynomial of A can be as large as N, which
in our case is very high. Moreover, we also do not have a way to
obtain this degree with an easy algorithm. Because of these two
difficulties, some approximate methods are developed to extrapo-
late the next vector via the previous ones and we will discuss them
in Section 3.2.

Turning to the nonlinear case, denote F as the FP function to
evaluate the next vector,

xiþ1 ¼ FðxiÞ; i ¼ 0;1; . . . ; ð17Þ

where F is an N-dimensional vector-valued function, F : RN ! RN .
We say x� is a FP of F if x� ¼ Fðx�Þ. Expanding FðxÞ in its Taylor series
yields

FðxÞ ¼ Fðx�Þ þ F 0ðx�Þðx� x�Þ þ Oðkx� x�k2Þ as x ! x�;

where F 0ð�Þ is the Jacobian matrix of Fð�Þ. Recalling Fðx�Þ ¼ x�, we
have

FðxÞ ¼ x� þ F 0ðx�Þðx� x�Þ þ Oðkx� x�k2Þ as x ! x�:

Assuming the sequence x0; x1; . . . converges to x� (if
qðF 0ðxÞÞ < 1), it follows that xi will be close enough to x� for all
large i, and hence

xiþ1 ¼ x� þ F 0ðx�Þðxi � x�Þ þ Oðkxi � x�k2Þ; as i ! 1:

Then, we rewrite this in the form

xiþ1 � x� ¼ F 0ðx�Þðxi � x�Þ þ Oðkxi � x�k2Þ; as i ! 1:

For large i, the vectors fxig behave as in the linear system of the
form ðI � AÞx ¼ b through

xiþ1 ¼ Axi þ b; i ¼ 0;1; . . . ;

where A ¼ F 0ðx�Þ;b ¼ ½I � F 0ðx�Þ�x�. This implies that the nonlinear
system yields the same formula as the linear one and motivates
us to extrapolate the next vector by the previous ones as in linear
systems. Indeed, such an extension has been shown to be successful
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in various areas of science and engineering, e.g., computational fluid
dynamics, semiconductor research, tomography and geometrical
image processing [19,24,20].

3.2. Derivations of MPE, RRE and SVD-MPE

We turn to discuss how to utilize an approximate way to obtain
the next vector by extrapolating the previous ones. Due to the fact
that the degree of the minimal polynomial can be as large as N and
we cannot obtain it, an arbitrary positive number is set as the
degree, being much smaller than the true one. With such a replace-
ment, the linear equations in (16) become inconsistent and there
does not exist a solution for fcig; cj ¼ 1 in the ordinary sense.
Alternatively, we solve instead

min
c

kUm
j ck

2
2; s:t: cj ¼ 1 ð18Þ

where c ¼ c0 � � � cj½ �T and Um
j ¼ um � � � umþj½ �. Then evaluat-

ing ci through ci=
Pi¼j

i¼0ci
� �

results in the next vector

xðm;jÞ ¼
Pj

i¼0cixmþi as a new approximation. This method is known
as Minimal Polynomial Extrapolation (MPE) [25].

The detailed steps for obtaining the next vector through MPE
are shown in Algorithm 1. To solve the constrained problem in
(18), we suggest utilizing QR decomposition with the modified
Gram-Schmidt (MGS) [25,26]. The MGS procedure for the matrix
Um
j is shown in Algorithm 2.
Now, let us discuss the other two variants of VE, i.e., Reduced

Rank Extrapolation (RRE) [25] and SVD-MPE [22]. The main differ-
ence among RRE, MPE and SVD-MPE is at Step 2 in Algorithm 1
regarding the evaluation of fcig. In RRE and SVD-MPE, we utilize
the following methods to obtain fcig:

Algorithm 1. Minimal Polynomial Extrapolation (MPE)

Initialization:
A sequence of vectors fxm; xmþ1; xmþ2; . . . ; xmþjþ1g is
produced by the baseline algorithm (FP in our case).

Output:
A new vector xðm;jÞ.

1: Construct the matrix

Um
j ¼ xmþ1 � xm; . . . ; xmþjþ1 � xmþj½ � 2 RN�ðjþ1Þ

and then compute its QR factorization via Algorithm 2,
Um
j ¼ QjRj.

2: Denote rjþ1 as the jþ 1th column of Rj without the last
row and solve the following j� j upper triangular system

Rj�1c0 ¼ �rjþ1c0 ¼ c0; c1; . . . ; cj�1½ �T

where Rj�1 is the previous j columns of Rj without the last

row. Finally, evaluate fcig through ciPk

i¼0
ci

� �
.

3: Compute n ¼ n0; n1; . . . ; nj�1½ �T through

n0 ¼ 1� c0; nj ¼ nj�1 � cj; j ¼ 1; . . . ;j� 1

4: Compute g ¼ g0;g1; . . . ;gj�1½ �T ¼ Rj�1n. Then we attain
xðm;jÞ ¼ xm þ Qj�1g as the new initial vector where Qj�1

represents the previous j columns of Qj.
Algorithm 2. Modified Gram-Schmidt (MGS)

Output:Qj and Rj (rij denotes the ði; jÞth element of Rj and qi

and ui represent the ith column of Qj and Um
j ,

respectively.).
1: Compute r11 ¼ ku1k2 and q1 ¼ u1=r11.
2: fori ¼ 2; . . . ;jþ 1do

3: Set uð1Þ
i ¼ ui

4: for j ¼ 1; . . . ; i� 1do

5: rji ¼ qT
j u

ðjÞ
i and uðjþ1Þ

i ¼ uðjÞ
i � rjiqj

6: end for

7: Compute rii ¼ kuðiÞ
i k2 and qi ¼ uðiÞ

i =rii
8: end for
RRE: Solving RT
jRjd ¼ 1 through forward and backward

substitution, we obtain c through dP
i
di
. Actually, such

a formulation of c is the solution of:
min
c

kUm
j ck

2
2; s:t:

X
i

ci ¼ 1: ð19Þ
SVD-MPE: Computing the SVD decomposition of Rj ¼ URVT , we
have c ¼ vjþ1P

i
v i;jþ1

where vjþ1 and v i;jþ1 represent the

last column and the ði;jþ 1Þth element of matrix V ,
respectively.

Here are two remarks regarding RRE, MPE and SVD-MPE:

� Observing the derivations of MPE, SVD-MPE and RRE, we notice
that RRE’s solution must exist unconditionally, while MPE and
SVD-MPE may not exist because the sum of fcig and fv i;jþ1g
in MPE and SVD-MPE may become zero. Thus RRE may be more
robust in practice [24]. However, MPE and RRE are related, as
revealed in [27]. Specifically, if MPE does not exist, we have
xRREðm;jÞ ¼ xRREðm;j�1Þ. Otherwise, the following holds
ljx
RRE
ðm;jÞ ¼ lj�1x

RRE
ðm;j�1Þ þ vjxMPE

ðm;jÞ;lj ¼ lj�1 þ vj

where lj;lj�1 and vj are positive scalars depending only on
xRRE
ðm;jÞ; x

RRE
ðm;j�1Þ and xMPE

ðm;jÞ, respectively. Furthermore, the perfor-
mance of MPE and RRE is similar – both of the methods either
perform well or work poorly [20].

� Observe that we only need to store jþ 2 vectors in memory at
all steps in Algorithm 2. Formulating the matrix Uj

m, we over-
write the vector xmþi with umþi ¼ xmþi � xmþi�1 when the latter
is computed and only xm is always in the memory. Next, umþi

is overwritten by qi; i ¼ 1; . . . ;jþ 1 in computing the matrix
Qj. Thus, we do not need to save the vectors xmþ1; . . . ; xmþjþ1,
which implies that no additional memory is required in running
Algorithm 2.

3.3. Embedding VE in the baseline algorithm

We introduce VE in its cycling formulation for practical usage.
One cycling means we activate the baseline algorithm to produce
fxig and then utilize VE once to evaluate the new vector as a novel
initial point. Naturally, we repeat such a cycling many times. The
steps of utilizing VE in its cycling mode are shown in Algorithm
3. Few comments are in order:
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� In practice, we utilize VE in its cycling formulation. Specially,
the iterative form shown in Algorithm 3 is named as full cycling
[20]. To save the complexity of computing fcig, one may reuse
the previous fcig, a method known as cycling with frozen ci.
Parallel VE can be also developed if more machines are avail-
able. Explaining details of the last two strategies is out of the
scope of this paper. We refer the reader to [20] for more
information.

� Numerical experience also indicates that cycling with even
moderately large m > 0 will avoid stalling from happening
[28]. Moreover, we also recommend setting m > 0 when the
problem becomes challenging to solve.

� In our case, the termination criterion in Algorithm 3 can be the
number of total iterations (the number of calling of the baseline
algorithm) or the difference between consecutive two vectors.
Furthermore, we also recommend giving additional iterations
to activate the baseline algorithm after terminating the VE,
which can stabilize the accelerated algorithm in practice.
Algorithm 3. Baseline Algorithm + Vector Extrapolation

Initialization:
Choose nonnegative integers m and j and an initial vector
x0. The baseline algorithm is the FP method, as given in (7).

Output:
Final Solution x�.

1: while 1 do
2: Obtain the series of xi through the baseline algorithm

where 1 6 i 6 mþ jþ 1, and save xmþi for 0 6 i 6 jþ 1 to
formulate Uj

m.
3: Call Algorithm 1 to obtain xðm;jÞ.
4: If the termination of the algorithm is satisfied, set

x� ¼ xðm;jÞ and break, otherwise, set xðm;jÞ as the new initial
point x0 and go to Step 2.

5: end while

3.4. Convergence and stability properties

Wemention existing results regarding the convergence and sta-
bility properties of VE for understanding this technique better. A
rich literature has examined the convergence and stability proper-
ties of RRE, MPE and SVD-MPE in linear systems [29,30]. Assuming
the matrix A is diagonalizable, then in the kth iteration xk should
have the form xk ¼ x� þ

Pj
i¼1v ik

k
i where ðki;v iÞ are some or all of

the eigenvalues and corresponding eigenvectors of A, with distinct
nonzero eigenvalues. By ordering ki as jk1j P jk2j P . . ., the follow-
ing asymptotic performance holds for all of the three variants of VE
when jkkj > jkkþ1j:

xðm;jÞ � x� ¼ Oðkmjþ1Þ as m ! 1: ð20Þ

This implies that the sequence fxðm;jÞg1m¼0 converges to x� faster
than the original sequence fxkg.

As shown in (20), for a large m, (8) reduces the contributions of
the smaller ki to the error xðm;jÞ � x�, while VE eliminates the con-
tributions of the j largest ki. This indicates that xðm;jÞ � x� is smal-
ler than each of the errors xmþi � x�; i ¼ 0;1; . . . ;j, when m is large
enough. We mention another observation that an increasing j gen-
erally results in a faster convergence of VE. However, a large j has
to increase the storage requirements and also requires a much
higher computational cost. Numerical experiments indicate that
a moderate j can already works well in practice.

If the following condition is held, we say VE is stable:
sup
m

Xj
i¼0

jcðm;jÞ
i j < 1: ð21Þ

Here, we denote fcig by fcðm;jÞ
i g to show their dependence on m

and j. If (21) holds true, the error in xi will not magnify severely.
As shown in [29–31], MPE and RRE obey such a stability property.

For nonlinear systems, the analysis of convergence and stability
becomes extremely challenging. One of the main results is the
quadratic convergence theorem [23,32,33]. This theorem is built
on one special assumption that j is set to be the degree of the min-
imal polynomial of F 0ðx�Þ. The proof of the quadratic convergence
was shown in [32]. In a following work, Smith, Ford and Sidi
noticed that there exists a gap in the previous proof [23]. Jbilou
et al. suggested two more conditions in order to close the gap [33]:

� The matrix F 0ðx�Þ � I is nonsingular
� F 0ð�Þ satisfies the following Lipschitz condition:
kF 0ðxÞ � F 0ðyÞk 6 Lkx� ykL > 0:

Surprisingly, these two conditions are met by the RED scheme.
The first condition is satisfied by the fact
q
1
r2 H

T H þ aI
� ��1

arxf ðxÞ
 !

< 1:

The second one is also true, due to the assumption in RED that
the denoiser f ðxÞ is differentiable. So we claim that it is possible for
VE to solve RED with quadratic convergence rate.

Although VE can lead to a quadratic convergence rate, trying to
achieve such a rate may not be realistic because j can be as large
as N. However, we may obtain a linear but fast convergence in
practice with even moderate values of m and j, which is also
demonstrated in the following numerical experiments.
4. Experimental results

We follow the same experiments of image deblurring and
super-resolution as presented in [17] to investigate the perfor-
mance of VE in acceleration. The trainable nonlinear reaction diffu-
sion (TNRD) method [6] is chosen as the denoising engine. Mainly,
we choose the FP method as our baseline algorithm. For a fair com-
parison, the same parameters suggested in [17] for different image
processing tasks are set in our experiments.In [17], the authors
compared RED with other popular algorithms in image deblurring
and super-resolution tasks, showing its superiority. As the main
purpose in this paper is to present the acceleration of our method
for solving RED, we omit the comparisons with other popular algo-
rithms. In the following, we mainly show the acceleration of apply-
ing MPE with FP for solving RED first and then discuss the choice of
parameters in VE, i.e.,m and j.In addition, we compare our method
with three other methods, steepest descent (SD), Nesterov’s accel-
eration [34] and Limited-memory BFGS (L-BFGS) [35]. Note that we
need to determine a proper step-size for the above methods [35].
However, evaluating the objective value or gradient in RED is
expensive implying that any line-search method becomes pro-
hibitive. Note that, in contrast, in our framework as described in
Algorithm 3 does not suffer from such a problem. In the following,
we manually choose a fixed step-size for getting a good conver-
gence behavior. Finally, we compare the difference among RRE,
MPE and SVD-MPE. All of the experiments are conducted on a
workstation with Intel(R) Xeon(R) CPU E5-2699 @2.20 GHz.



Fig. 1. Reconstruction results of different algorithms in various iterations for the uniform kernel. From left to right: Blurred one !#20!#40!#60!#80! Ground truth.

6 The goal of this paper is to investigate the performance of solving RED with VE
rather than the restoration results. Therefore, we present the recovered PSNR versus
iteration or running time. One can utilize some no-reference quality metrics like
NFERM [36] and ARISMc [37] to further examine the restoration results.
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4.1. Image deblurring

In this experiment, we degrade the test images by convolving
with two different point spread functions (PSFs), i.e., 9� 9 uniform
blur and a Gaussian blur with a standard derivation of 1:6. In both
of these cases, we add an additive Gaussian noise with r ¼

ffiffiffi
2

p
to

the blurred images. The parameters m and j in Algorithm 3 are
set to 0 and 5 for the image deblurring task. Additionally, we apply
VE to the case where the baseline algorithm is SD, called SD-MPE,
with the parameters m and j are chosen as 0 and 8. The value of
the cost function and peak signal to noise ratio (PSNR) versus iter-
ation or CPU time are given in Figs. 2 and 36. These correspond to
both a uniform and a Gaussian blur kernels, all tested on the



Fig. 2. Image Deblurring - Uniform Kernel, ‘‘Starfish” Image.

Fig. 3. Image Deblurring - Gaussian Kernel, ‘‘Starfish” Image.

Fig. 4. Image Super-Resolution, ‘‘Plant” Image.
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‘‘starfish” image.Clearly, we observe that SD is the slowest algorithm.
Surprisingly, SD-MPE and Nesterov’s method yield almost the same
convergence speed, despite their totally different scheme. Moreover,
We note that FP is faster than L-BFGS, Nesterov’s method and SD-
MPE. Undoubtedly, FP-MPE is the fastest one, both in terms of iter-
ations and CPU time, which indicates the effectiveness of MPE’s
acceleration.To provide a visual effect, we show the change in recon-
Table 1
The number of iterations with different images for FP and FP-MPE in image deblurring ta

Image Butterfly Boats C. Man House

Deblurring: Uniform
RED: FP-TNRD 200 200 200 200

RED: FP-MPE-TNRD 60 55 55 80

Deblurring: Gaussian
RED: FP-TNRD 200 200 200 200

RED: FP-MPE-TNRD 70 65 55 65
structed quality of different algorithms in Fig. 1. Clearly, the third
column of FP-MPE achieves the best reconstruction faster, while
other methods need more iterations to obtain a comparable result.

Additional nine test images suggested in [17] are also included
in our experiments, in order to investigate the performance of VE
further. In this experiment we focus on the comparison between
FP-MPE and FP for the additional images. We run the native FP
method 200 iterations first anddenote the final image by x�.
Clearly, the corresponding cost-value is Eðx�Þ. We activate Algo-
rithm 3 with the same initial value as used in the FP method to
examine how many iterations are needed to attain the same or
lower objective value than Eðx�Þ. The final number of iterations
with different images are given in Table 1. Clearly, an acceleration
is observed in all the test images in the image deblurring task. .

4.2. Image super-resolution

We generate a low resolution image by blurring the ground
truth one with a 7� 7 Gaussian kernel with standard derivation
1:6 and then downsample by a factor of 3. Afterwards, an additive
Gaussian noise with r ¼ 5 is added to the resulting image. The
same parameters m and j used in the deblurring task for FP-MPE
are adopted here. For SD-MPE, the parameters m and j are set to
1 and 10, respectively. We choose ‘‘Plants” as our test image
because it needs more iterations for FP-MPE to converge. As
observed from Fig. 4, while L-BFGS and the Nesterov’s method
are faster than the FP method, our acceleration method (FP-MPE)
is quite competitive with both. Furthermore, we investigate all of
the test images as shown in [17] to see how many iterations are
needed for MPE to achieve the same or lower cost compared with
the FP method. The results are shown in Table 2. As can be seen,
sk to attain the same cost.

Parrot Lena Barbara Starfish Peppers Leaves

kernel, r ¼
ffiffiffi
2

p

200 200 200 200 200 200
50 50 55 50 55 55

kernel, r ¼
ffiffiffi
2

p

200 200 200 200 200 200
55 80 45 55 95 80



Table 2
The number of iterations with different images for FP and FP-MPE in image super-resolution task to attain the same cost.

Super-Resolution, scaling =3; r ¼ 5

Image Butterfly Flower Girl Parth. Parrot Raccoon Bike Hat Plants

RED: FP-TNRD 200 200 200 200 200 200 200 200 200
RED: FP-MPE-TNRD 60 65 50 70 55 60 60 50 70

Fig. 5. Exploring the robustness to the choice of the parameters in MPE, and the
difference among the three VE schemes. All these graphs correspond to the test
image ‘‘Plants” for the single image super-resolution task.
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MPE works better than the FP method indicating an effective accel-
eration for solving RED.
4.3. The choice of the parameters and the difference among RRE, MPE
and SVD-MPE

Conclude by discussing the robustness to the choice of param-
eters m and j for the MPE algorithm. To this end, the single image
super-resolution task is chosen as our study. Furthermore, we
choose to demonstrate this robustness on the ‘‘Plants” image since
it required the largest number of iterations in the MPE recovery
process. As seen from Figs. 5(a)–(c), MPE always converges faster
than the regular FP method with different m and j. Moreover,
we also observe that a lower objective value is attained through
MPE. Notice that MPE has some oscillations because it is not a
monotonically accelerated technique. However, we still see a lower
cost is achieved if additional iterations are given.

In part (d) of Fig. 5, an optimal pair of m and j is chosen for
MPE, RRE and SVD-MPE for the single image super-resolution task
with the ‘‘Plants” image.7 We see that all three methods yield an
acceleration and a lower cost, demonstrating the effectiveness of
the various variants of VE. Moreover, we see that SVD-MPE con-
verges faster at the beginning, but MPE yields a lowest eventual cost.
5. Conclusion

The work reported in [17] introduced RED – a flexible frame-
work for using arbitrary image denoising algorithms as priors for
7 The optimal m and j are obtained by searching in the range ½0;10� with j P 2,
seeking the fastest convergence for these three methods.
general inverse problems. This scheme amounts to iterative algo-
rithms in which the denoiser is called repeatedly. While appealing
and quite practical, there is one major weakness to the RED scheme
– the complexity of denoising algorithms is typically high which
implies that the use of RED is likely to be costly in run-time. This
work aims at deploying RED efficiently, alleviating the above
described shortcoming. An accelerated technique is proposed in
this paper, based on the Vector Extrapolation (VE) methodology.
The proposed algorithms are demonstrated to substantially reduce
the number of overall iterations required for the overall recovery
process. We also observe that the choice of the parameters in the
VE scheme is robust.
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