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Abstract—Modern data introduces new challenges to classic sig-
nal processing approaches, leading to a growing interest in the field
of graph signal processing. A powerful and well-established model
for real world signals in various domains is sparse representation
over a dictionary, combined with the ability to train the dictionary
from signal examples. This model has been successfully applied to
graph signals as well by integrating the underlying graph topology
into the learned dictionary. Nonetheless, dictionary learning meth-
ods for graph signals are typically restricted to small dimensions
due to the computational constraints that the dictionary learning
problem entails, and due to the direct use of the graph Laplacian
matrix. In this paper, we propose a graph-enhanced multi-scale dic-
tionary learning algorithm that applies to a broader class of graph
signals, and is capable of handling much higher dimensional data.
We incorporate the underlying graph topology both implicitly, by
forcing the learned dictionary atoms to be sparse combinations
of graph-wavelet functions, and explicitly, by adding direct graph
constraints to promote smoothness in both the feature and man-
ifold domains. The resulting atoms are thus adapted to the data
of interest, while adhering to the underlying graph structure and
possessing a desired multi-scale property. Experimental results on
several datasets, representing both synthetic and real network data
of different nature, demonstrate the effectiveness of the proposed
algorithm for graph signal processing even in high dimensions.

Index Terms—Sparse representation, dictionary learning, graph
signal processing, graph Laplacian, double-sparsity, manifold
structure, graph wavelets.

I. INTRODUCTION

IN RECENT years, the field of graph signal processing has
been gaining momentum. By merging concepts of spectral

graph theory and harmonic analysis, it aims at extending clas-
sical signal processing approaches to signals having a complex
and irregular underlying structure. Such signals emerge in nu-
merous modern applications of diverse sources, such as trans-
portation, energy, biological-, social-, and sensor-networks [1],
[2]. In all these cases and many others, the underlying structure
of the data could be represented using a weighted graph, such
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that its vertices (or nodes) represent the discrete data domain,
and the edge weights reflect the pairwise similarities between
these vertices. The data itself resides on the graph, that is, every
graph signal is a function assigning a real value to each vertex.

As in classical signal processing, a model for graph signals
is key for handling various processing tasks, such as solving
inverse problems, sampling, compression, and more. A popular
and highly effective such model for real world signals in differ-
ent domains is sparse representation [3]. This model assumes
the availability of a dictionary, which could be either analytic
(constructed) or trained from signal examples. Indeed, the work
reported in [4]–[6] has deployed this breed of models to graph
signals, and this paper aims at extending these contributions by
proposing better performing algorithms, while also allowing the
processing of high-dimensional graphs, which earlier methods
fail to handle.

A fundamental ingredient in the use of the sparse represen-
tations model is dictionary learning. Classic dictionary learning
methods such as the method of optimal directions (MOD) [7]
and K-SVD [8] are generally structure agnostic. In order to bet-
ter support graph signals, the work in [4]–[6] extended these
methods by integrating the underlying graph topology into the
learned dictionary. More specifically, the work reported in [4],
[5] imposed a parametric structure on the trained dictionary,
relying on the graph topology. Whereas [4] learns a collection
of shift-invariant graph filters, [5] restricts the dictionary to a
concatenation of polynomials of the graph Laplacian matrix.

In [6], we have developed a framework for dictionary learn-
ing with graph regularity constraints in both the feature and
manifold domains, which we referred to as Dual Graph Regu-
larized Dictionary Learning (DGRDL). Furthermore, our pro-
posed scheme suggests the additional ability of inferring the
graph topology within the dictionary learning process. This is
important in cases where this structure is not given, yet known
to exist.

The DGRDL algorithm and its extensions to a supervised
setting [9], [10] already exhibit very good performance in vari-
ous applications. Nevertheless, a significant limitation of these
methods is their poor scalability to high dimensional data, which
is limited by the complexity of the training problem as well as
by the use of the large graph Laplacian matrices. This problem
is in fact not specific to DGRDL but common to all current
dictionary learning methods for graph signals, that were shown
to accommodate graphs with no more than a few hundreds of
nodes. For instance, the scalability of the polynomial method [5]
is also limited by the complexity of the involved optimization
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problem as well as by the need to compute different powers of
the large graph Laplacian matrix.

This limitation might be addressed by constructing analytic
multi-scale transforms. Indeed, incorporating multi-scale prop-
erties in the dictionary is vital for representing large signals,
and could reveal structural information about the signals at
different resolution levels. Following this reasoning, classical
wavelets have been generalized from the Euclidean domain to
the graph setting in a number of different ways. Examples in-
clude the diffusion wavelets [11], spectral graph wavelets [12],
lifting based wavelets [13], multi-scale wavelets on balanced
trees [14], permutation based wavelets [15], wavelets on graphs
via deep learning [16] and a multi-scale pyramid transform for
graph signals [17].

Such transform-based dictionaries offer an efficient imple-
mentation that makes them less costly to apply than structure-
agnostic trained dictionaries. However, while accounting for
the underlying topology and possessing the desired multi-scale
property, these transforms are not adapted to the given data,
limiting their performance in real life applications.

In order to combine both the adaptability and the multi-
scale property, while enabling treatment of higher dimensional
signals, we propose infusing structure into the learned dictio-
nary by harnessing the double sparsity framework [18] with a
graph-Haar wavelet base dictionary. As such, the proposed ap-
proach benefits from the multi-scale structure and the topology-
awareness that this base dictionary brings, along with the ability
to adapt to the signals. It can thus be viewed as a fusion of the
analytic and the trainable paradigms.

Beyond its implicit presence through the constructed wavelet
basis, the underlying data geometry is also added explicitly via
direct graph regularization constraints, promoting smoothness
in both the feature and manifold domains. Finally, we devise
a complete scheme for joint learning of the graph, and hence
the graph-wavelet basis, along with the dictionary. By doing so,
we essentially replace the pre-constructed wavelet basis with an
adaptive one, iteratively tuned along the dictionary learning pro-
cess. The resulting algorithm, termed Graph Enhanced Multi-
Scale dictionary learning (GEMS), leads to atoms that adhere
to the underlying graph structure and possess a desired multi-
scale property, yet they are adapted to capture the prominent
features of the data of interest. A special configuration of this
method, termed GEMS-HD, further reduces the computational
complexity to support a high-dimensional setting, thus enabling
treatment of graphs that are an order of magnitude larger com-
pared with current graph dictionary learning techniques.

An early version of this work appeared in [19], introduc-
ing the core idea of graph sparse-dictionary learning accom-
panied with preliminary experiments. This work extends the
above in several important ways: (i) The introduction of the
explicit regularity along with the modifications to the overall al-
gorithm; (ii) The derivation of a joint-learning of the topology;
and (iii) The addition of extensive new experiments demonstrat-
ing the strengths of the new algorithms. As these experiments
show, the proposed dictionary structure brings along piece-
wise smoothness and localization properties, making it more

suitable for modeling graph data of different nature and differ-
ent dimensions.

To summarize, in this paper we propose GEMS - a novel
dictionary learning algorithm for graph signals, improving over
the algorithms presented in [6], [19], and enabling treatment
of much larger graphs. For medium-sized graphs consisting of
hundreds of nodes, GEMS yields superior results to other graph
dictionary learning methods. For larger graphs consisting of
thousands or even tens-of-thousands of nodes, all existing dic-
tionary learning methods fail. For such dimensions, we offer a
simplified and efficient configuration termed GEMS-HD, sig-
nificantly increasing the range of treatable data dimensions.

The outline of the paper is as follows: In Section II, we com-
mence by delineating the background for graph signal process-
ing. Consequently, we revisit our DGRDL algorithm for graph
signals, and present the incorporation of a sparse dictionary
model, including a detailed description of the base dictionary
construction procedure. In Section III we consider the task of
training the dictionary from examples and derive the foundation
of the GEMS algorithm for doing so. Section IV introduces the
adaptation of the graph Laplacian, as well as the wavelet base
dictionary, along the learning process. All these components to-
gether assemble the complete GEMS framework. We then eval-
uate the performance of the proposed algorithm in Section V,
and conclude in Section VI.

II. SPARSE DICTIONARY LEARNING FOR GRAPH SIGNALS

A. Preliminaries

A weighted and undirected graph G = (V, E ,W ) consists
of a finite set V of N vertices (or nodes), a finite set E ⊂
V × V of weighted edges, and a weighted adjacency matrix
W ∈ RN ×N . The entry wij represents the weight of the edge
(i, j) ∈ E , reflecting the similarity between the nodes i and
j. In general, wij is non-negative, and wij = 0 if the nodes i
and j are not directly connected in the graph. Additionally, for
undirected weighted graphs with no self-loops, W is symmetric
and wii = 0 ∀i.

The graph degree matrix Δ is the diagonal matrix whose
i-th diagonal entry computes the sum of weights of all edges
incident to the i-th node, i.e. having Δii =

∑
j wij . The combi-

natorial graph Laplacian matrix, representing the second-order
differential operator on the graph, is then given by L = Δ − W .

Given a topological graph, we refer to graph signals as func-
tions f : V → R assigning a real value to each vertex. Any
graph signal is therefore a vector in RN , whose i-th entry is the
measurement corresponding to the i-th graph node.

The regularity of a graph signal f can be measured using the
Laplacian L [20] in terms of the graph Dirichlet energy,

fT Lf =
1
2

N∑

i=1

N∑

j=1

wij (fi − fj )2 . (1)

When this measure of variation is small, indicating that strongly
connected nodes have similar signal values, the signal is con-
sidered smooth with respect to the given graph.
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B. Introducing the Sparse Dictionary Model

The standard dictionary learning problem is formulated as

arg min
D,X

‖Y − DX‖2
F

s.t. ‖xi‖0 ≤ T ∀i, ‖dj‖2 = 1 ∀j,
(2)

where Y ∈ RN ×M is the data matrix containing the training ex-
amples in its columns, X ∈ RK×M is the corresponding sparse
coefficients matrix, D ∈ RN ×K is an overcomplete dictionary
with normalized columns (atoms), and T is a sparsity threshold.
The i-th column of the matrix X is denoted xi .

In order to account for the data geometry, the dual graph reg-
ularized dictionary learning (DGRDL) algorithm [6] introduces
graph regularity constraints in both the feature and manifold
domains. The DGRDL problem is thus given by

arg min
D,X

‖Y − DX‖2
F + αTr(DT LD) + βTr(XLcX

T )

s.t. ‖xi‖0 ≤ T ∀i, (3)

where L ∈ RN ×N denotes the topological graph Laplacian, ac-
counting for the underlying inner structure of the data, and
Lc ∈ RM ×M is the manifold Laplacian, representing correla-
tion between different signals within the training set. Imposing
smoothness with respect to both graphs encourages the atoms
to preserve the underlying geometry of the signals and the rep-
resentations to preserve the data manifold structure.

As mentioned in the introductory section, a significant limi-
tation of DGRDL is poor scalability to high dimensional data,
which is limited by the complexity of training, storing, and de-
ploying the explicit dictionary D. To better accommodate higher
dimensional graphs, we leverage the double sparsity approach
[18] and propose employing a sparsity model of the dictionary
atoms over a base dictionary, i.e. defining the dictionary as a
product D = ΦA, where Φ is some known (perhaps analytic or
structured) base dictionary, and A is a learned sparse matrix,
having P non-zeros per column.

Integrating this structure into the DGRDL scheme, we obtain
the following graph-enhanced multi-scale (GEMS) dictionary
learning problem:

arg min
A,X

‖Y − ΦAX‖2
F + αTr(AT ΦT LΦA)

+ βTr(XLcX
T )

s.t. ‖xi‖0 ≤ T ∀i,

‖aj‖0 ≤ P ∀j, ‖Φaj‖2 = 1 ∀j.

(4)

Despite the formulation resemblance, the combination of the
atom sparsity constraint and the graph regularization introduces
new challenges, leading to a new algorithm derivation that is
significantly different from both [6] and [18]. The solution can
be obtained by alternating optimization over A and X , as will
be detailed in the next section.

While the double sparsity framework allows flexibility in the
dimensions of Φ and A and it is not generally necessary for Φ
to be square, we here choose to use an orthogonal transform.

Therefore, in our setting, Φ ∈ RN ×N is the base dictionary
and A ∈ RN ×K is a redundant (K > N ) column-wise sparse
matrix.

We emphasize that while A is a redundant matrix, identical in
size to the general unstructured dictionary D in (3), the dictio-
nary update is now constrained by the number of non-zeros in
the columns of A. Consequently, the sparse dictionary requires
training of merely P · K parameters rather than N · K, where
P � N . Hence learning in this case is feasible even given lim-
ited training data or high signal dimensions.

Overall, the sparse dictionary has a compact representation
and provides efficient forward and adjoint operators, yet it can
be effectively trained from given data even when the dimensions
are very large. Therefore, it naturally bridges the gap between
analytic dictionaries, which have efficient implementations yet
lack adaptability, and standard trained dictionaries, which are
fully adaptable but non-efficient and costly to deploy.

C. Graph-Haar Wavelet Construction

The success of the sparse dictionary model heavily depends
on a proper choice of the base dictionary Φ. In order to bring the
double sparsity idea to the treatment of graph signals, we ought
to define Φ such that it reflects the graph topology. Following
our previous work [19], we choose to construct a Haar-like
graph wavelet basis. As an initial step, and in order to expose
the inherent multi-scale structure of the data, the underlying
graph should be converted to a hierarchical tree by spectral
partitioning.

Spectral graph partitioning methods are commonly based on
the Fiedler vector [21], which is the eigenvector corresponding
to the smallest non-zero eigenvalue of the graph Laplacian ma-
trix L. The Fiedler vector bisects the graph into two disjoint yet
covering sets of nodes based on the sign of the corresponding
vector entry. Explicitly, denote the Fiedler vector for the �-th
partition by v�

f , then the bisection results in two separate sets:

Ω�
1 =

{
i|v�

f [i] ≥ 0
}

,

Ω�
2 =

{
i|v�

f [i] < 0
}

.
(5)

By applying the spectral bisection procedure recursively, in
a coarse-to-fine manner (until reaching individual nodes or a
constant-polarity Fiedler vector), full partitioning is obtained
and the graph can be traversed into a hierarchical tree [22].

We note that the Fiedler vector itself may be efficiently com-
puted using the power-method or Lanczos algorithm [23], with-
out having to compute the full eigendecomposition of L. Fur-
thermore, only a few iterations of these methods typically suffice
as the bisection only depends on the sign pattern of the Fiedler
vector and not on its precise values.

The proposed bisection approach is demonstrated in Figure 1,
where the first two hierarchies of partition are presented for the
Minnesota road network graph.

Equipped with the tree representation of the given data, we
can now construct an orthonormal Haar-like wavelet basis. That
is, each basis function consists of constant values in each set,
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Fig. 1. The first partition hierarchies illustrated on the Minnesota road network
graph.

with the constants chosen so as to satisfy the orthogonality
(meaning, in this case, that the sum of all entries should be zero)
and normalization requirements. Explicitly, the first function is
constant over the graph

φ0 [i] =
1√
N

∀i, (6)

and the �-th partition induces the function

φ� [i] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
|Ω �

2 |√
|Ω �

1 |
√

|Ω �
1 |+ |Ω �

2 |
i ∈ Ω�

1 ,

−
√

|Ω �
1 |√

|Ω �
2 |
√

|Ω �
1 |+ |Ω �

2 |
i ∈ Ω�

2 ,

0 else.

(7)

The accumulated set of basis functions {φ�}� constitutes the
columns of the matrix Φ that will serve as our base dictionary.

Not only is Φ orthogonal by construction, but also the data
geometry was captured by a hierarchical tree of increasingly
refined partitions. This achieves the desired localization of the
constructed basis functions, and consequently, of their sparse
linear combinations, which constitute the atoms of D = ΦA.

We note that a similar graph-Haar wavelet basis was proposed
in [14]. However, the work in [14] assumes the given data is
readily encoded as a balanced hierarchical tree, whereas we
propose an efficient partitioning to traverse the graph into a tree,
which is additionally not required to be balanced. This enables
using such graph-Haar basis in practice.

Finally, we emphasize again that while our general scheme
could incorporate any overcomplete or more sophisticated
graph-wavelet construction, these would be significantly more
costly to implement, especially as larger graphs are concerned.
The orthogonal basis here proposed introduces the desired multi-
scale properties while being simple and efficient in terms of both
construction and deployment. Though Φ itself is non-redundant,
when combined with a redundant sparse matrix A it leads to
an effective dictionary D that can represent a wide class of
problems.

III. THE GRAPH ENHANCED MULTI-SCALE DICTIONARY

LEARNING ALGORITHM (GEMS)

A. The Overall Learning Formulation

For derivation simplicity, we assume in this section that the
graph Laplacian and wavelet basis are given, and focus on the
task of training the dictionary. In the next section, we shall con-
sider the complementary task of learning the graph Laplacian.

To solve the graph-enhanced multi-scale dictionary learning
problem posed in (4), we develop a K-SVD like learning scheme,
based on an alternating minimization approach. Recall that the
K-SVD iteration consists of two main steps. The first is sparse
coding of the signals in Y , given the current dictionary D = ΦA,
to obtain X . Optimizing (4) over X yields the graph regularized
sparse coding problem:

arg min
X

‖Y − ΦAX‖2
F + βTr(XLcX

T )

s.t. ‖xi‖0 ≤ T ∀i.
(8)

which could be solved using our previously proposed GRSC
algorithm [6, Algorithm 2] when setting D = ΦA.

The second step is updating the dictionary atoms given the
sparse representations in X . Note that unlike DGRDL, our struc-
tural constraint is here imposed directly on A, which is addition-
ally required to preserve column-wise sparsity. This necessitates
major modifications of the dictionary update procedure.

The dictionary update is performed one atom at a time, op-
timizing the target function for each atom individually while
keeping the remaining atoms fixed. To devise the update rule
for the j-th atom, let

‖Y − ΦAX‖2
F =

∥
∥
∥
∥
∥
Y −

∑

i

Φaix
T
i

∥
∥
∥
∥
∥

2

F

= ‖Ej − Φajx
T
j ‖2

F ,

(9)
where xT

j denotes the j-th row of X and we have defined the
error matrix without the j-th atom as Ej = Y − ∑

i �=j Φaix
T
i .

Along with the j-th atom we update its corresponding row
of coefficients xT

j . To preserve the representation sparsity con-
straints, this update uses only the subset of signals in Y whose
sparse representations use the current atom. Denote by Ωj the
indices of the subset of signals using the j-th atom.

For notation simplicity, let us denote by E, gT , LR
c the re-

stricted versions of Ej , x
T
j , Lc (respectively) limited to the sub-

set Ωj , and let a = aj . The target function to be minimized for
updating the j-th atom with its corresponding coefficients is
therefore

arg min
a,gT

‖E − ΦagT ‖2
2 + αaT ΦT LΦa + βgT LR

c g

s.t. ‖a‖0 ≤ P, ‖Φa‖2 = 1.

(10)

Note that the atom update in [18] may be seen as a special
case of Equation (10) obtained for α = β = 0. Therefore, we
shall utilize similar derivation steps to those employed in [18],
while generalizing the results to integrate the additional graph
constraints.
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To optimize over the atom a, one needs to solve

arg min
a

‖E − ΦagT ‖2
2 + αaT ΦT LΦa

s.t. ‖a‖0 ≤ P, ‖Φa‖2 = 1.
(11)

To approximate the solution of this problem, we solve (11) with-
out the norm constraint on Φa, followed by a post-processing
step that transfers energy between a and g to achieve ‖Φa‖2 = 1
while keeping the product agT fixed. This choice is justified if
the regularization coefficient α is small such that the chosen
support of a is not impacted by the normalization.

According to Lemma 1 in [18], ‖E − ΦagT ‖2
2 = ‖Eg −

Φa‖2
2 as long as gT g = 1. Following a similar derivation, if

‖g‖2 = 1 Equation (11) is equivalent to

arg min
a

‖Eg − Φa‖2
2 + αaT ΦT LΦa s.t. ‖a‖0 ≤ P.

(12)
By applying a preprocessing step of normalizing g to unit length,
we can therefore further simplify the problem. This step is valid
as it will only result in a scaled version of a, which is afterwards
re-normalized by balancing between a and g.

B. Dictionary Update via OMP-Like Algorithm

One possible solution of (12) leverages the orthogonality of
Φ, by which the problem is equivalent to

arg min
a

‖ΦT Eg − a‖2
2 + αaT Ma s.t. ‖a‖0 ≤ P (13)

where to simplify notation, we have denoted M = ΦT LΦ.
We can devise a greedy atom pursuit algorithm for this prob-

lem, similar to the Orthogonal Matching Pursuit (OMP) [24].
The energy to minimize for each element in the vector a will
here include a penalty for its correlation with all previously
selected elements as reflected through the matrix M .

At the k-th iteration, we have ‖a‖0 = k − 1 and we seek the
k-th entry to be added. The current residual is r = ΦT Eg − a.
The cost of choosing to add the j-th vector entry (assuming it
was not yet included) with coefficient value zj is

εj = ‖r − ej zj‖2
2 + α(a + ej zj )T M(a + ej zj ), (14)

where ej denotes the j-th canonical vector. Note that the j-th
entry in both a and r is assumed nulled.

If this entry is chosen, the optimal coefficient value would be

z∗j = arg min
zj

εj =
rj − αaT Mj

1 + αMjj
(15)

where Mjj = eT
j Mej is the j-th diagonal entry of M , and

Mj = Mej is the j-th column of M .
Reorganizing εj and plugging in z∗j , we obtain

ε∗j = − (rj − αaT Mj )2

1 + αMjj
+ ‖r‖2

2 + αaT Ma. (16)

The minimum over j is attained when the term (rj −αaT Mj )2

1+αMj j

is maximal,1 and the corresponding j∗-th entry will be added

1As a sanity check, notice that for α = 0 this term is simply r2
j hence the

maximum is reached when j∗ = arg maxj |rj |, in consistency with the classic
OMP.

to the vector a with entry value z∗j . Repeating the above de-
scribed process for P iterations, the complete sparse atom a is
assembled.

The result could be further improved by adding an orthogo-
nalization step, in which the determined support is kept fixed
and the coefficient values z∗j are replaced globally using least-
squares. Explicitly, denote by aR ,MR,ΨR the versions of a,M
and Ψ = ΦT Eg restricted to the subset of entries Ω chosen by
the greedy process. Then solving

arg min
aR

‖ΨR − aR‖2
2 + α(aR )T MRaR

(17)

leads to the optimized entries aR = (I + αMR )−1ΨR at the
support Ω, composing the final atom a.

C. Dictionary Update via ADMM

While OMP is equipped with an efficient implementation that
significantly reduces runtime, a better result can be obtained by
seeking a different solution for (12). The approach we take
here relies on the alternating direction method of multipliers
(ADMM) [25], and is similar in spirit to the GRSC pursuit
algorithm developed for DGRDL [6].

In this approach, we split the non-convex sparsity constraint
to an auxiliary variable b, and Equation (12) is reformulated as

arg min
a,b

‖Eg − Φa‖2
2 + αaT Ma

s.t. a = b, ‖b‖0 ≤ T,
(18)

where we have again denoted M = ΦT LΦ.
The augmented Lagrangian is then given by

Lρ(a, b, u) = f(a) + g(b) + ρ‖a − b + u‖2
2 (19)

where f(a) = ‖Eg − Φa‖2
2 + αaT Ma, g(b) = I(‖b‖0 ≤ P )

for an indicator function I(), and u is the scaled dual form
variable.

The iterative solution consists of sequential optimization steps
over each of the variables. Namely, in the k-th iteration
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a(k) = arg min
a

‖Eg − Φa‖2
F + αaT Ma

+ρ‖a − b(k−1) + u(k−1)‖2
2 ,

b(k) = arg min
b

I(‖b‖0 ≤ P ) + ρ‖a(k) − b + u(k−1)‖2
2 ,

u(k) = u(k−1) + a(k) − b(k) .
(20)

Substituting the sub-optimization problems with their closed-
form solutions results in
⎧
⎪⎪⎨

⎪⎪⎩

a(k) =
(
ΦT Φ + αM + ρI

)−1 (
ΦT Eg + ρ(b(k−1) − u(k−1))

)

b(k) = SP

(
a(k) + u(k−1)

)

u(k) = u(k−1) + a(k) − b(k)

(21)
where SP is a hard-thresholding operator, keeping only the P
largest magnitude entries of its argument vector.

After a few iterations, the process converges to the desired
sparse atom a = b(k) . Though the ADMM solution is more
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Algorithm 1: Graph-Enhanced Multi-Scale Dictionary
Learning (GEMS).

Inputs: signal set Y , base dictionary Φ, initial dictionary
representation A, target atom sparsity P , target signal
sparsity T , graph Laplacians L and Lc

for k = 1, 2, ... do
� Sparse Coding: apply GRSC [6] to solve (8) for X
� Dictionary Update:

for j = 1, 2, . . . ,K do
– Identify the samples using the j-th atom,

Ωj =
{
i | 1 ≤ i ≤ M , X(k) [j, i] �= 0

}

– Define the operator Pj restricting to columns to the
subset Ωj

– Ej = Y − ∑
i �=j Φaix

T
i

– Set the restricted variables E � EjPj , gT � xT
j Pj

and LR
c � PT

j LcPj

– Normalize g = g
‖g‖2

– Solve (12) for a(using one of the proposed methods)
– Normalize a = a

‖Φa‖2

– g =
(
I + βLR

c

)−1
ET Φa

– Plug the results Aj = a, X(j,Ω j ) = gT

end for
end for
Outputs: A,X

time consuming, it usually leads to better performance in prac-
tice compared with the greedy approach. Consequently, we
have used this variant throughout the experiments described in
Section V.

We should note that this algorithm comes with no conver-
gence or optimality guarantees, since the original problem is not
convex. This can be easily changed if the �0 sparsity constraint
is relaxed by an �1 norm, thus replacing the hard-thresholding
step with a soft-thresholding one.

D. Updating the Coefficients

So far, we have presented two alternative techniques for op-
timizing each atom of the sparse dictionary. Finally, having
updated the atom a, we should update its corresponding coeffi-
cients by solving

arg min
g

‖E − ΦagT ‖2
F + βgT LR

c g (22)

which yields

g =
(
I + βLR

c

)−1
ET Φa. (23)

Combining the pieces, the final atom update process consists
of the following steps: (1) normalize g to unit length; (2) solve
(12) using either the ADMM atom update algorithm or the
OMP-like greedy pursuit proposed above; (3) normalize a to
fulfill ‖Φa‖2 = 1; and (4) update g. The complete algorithm is
detailed in Algorithm 1.

E. Computational Complexity

In the following, we discuss some computational aspects of
the proposed algorithm. In particular, we analyze the complexity
of building the graph-Haar basis Φ, and of computing the matrix
inversions involved in the dictionary learning algorithm.

1) Building Φ: The graph-wavelet base dictionary construc-
tion, as detailed in Section II-C, consists of recursive graph
bisection based on the Fiedler vector. The number of partitions
scales linearly with the number of graph nodes N , and is upper
bounded by N − 1, with the bound obtained when the partition-
ing process reaches individual nodes and not stopped earlier due
to a unipolar Fiedler vector.

Estimating the Fiedler vector for an n-dimensional subgraph
requires O(n2) operations due to matrix-vector multiplications
involved in the power-method iterations. However, the graph is
commonly constructed via a thresholded kernel or as a nearest-
neighbor graph. As a result, the Laplacian matrix is usually
sparse with q non-zeros per row on average. In such case, the
complexity is reduced to O(qn). In terms of the number of
graph edges |E|, having q non-zeros per row of L implies that
|E| = N(q − 1)/2, therefore we deduce that the complexity of
constructing Φ scales linearly with the number of edges O(|E|).

Finally, note that for finer hierarchy levels, the lower com-
plexity of the power-method iteration compensates for the larger
number of partitions, thus the total complexity of building Φ is
O(N log N).

2) Matrix Inversions: One of the computational costly com-
ponents in our algorithm is the involved matrix inversions. How-
ever, exploiting the sparsity of both the representations and the
atoms, and restricting the operations to the given support, the
matrices to be inverted are in fact typically small.

Concerning the coefficient update in Equation (23), the matrix
to be inverted is restricted to the subset of indices correspond-
ing to the signals choosing a specific atom. Given the typical
redundancy of the dictionary, this number is much smaller than
the total number of signals M .

Considering Equation (17), since the atom a has only P non-
zero entries and only the values on the determined support are
updated, this amounts to inverting a P × P matrix, followed by
multiplication with a P -dimensional vector. The complexity is
thus O(P 3), which is independent of N .

Alternatively, using the ADMM-based atom update of Equa-
tion (21) requires inverting an N × N matrix for optimizing a,
implying a complexity of O(N 3). However, as the matrix to
be inverted is symmetric positive-definite, this cost can be sig-
nificantly reduced. Following the analysis in [6], we could pre-
compute the eigendecomposition of the positive semi-definite
Laplacian, L = V ΛV T , where Λ is a diagonal matrix and V
is orthogonal. By construction, Φ is also an orthogonal matrix.
Therefore,

(
ΦT Φ + αM + ρI

)−1
=

(
αΦT LΦ + (ρ + 1)I

)−1

= ΦT V (αΛ + (ρ + 1)I)−1 V T Φ.
(24)

The complexity of inverting a diagonal matrix is O(N), and
combined with the matrix multiplications the total complexity



YANKELEVSKY AND ELAD: FINDING GEMS: MULTI-SCALE DICTIONARIES FOR HIGH-DIMENSIONAL GRAPH SIGNALS 1895

is O(N 2), which is far lower than a direct matrix inversion.
While the eigendecomposition of L still necessitates O(N 3)
operations, it can be carried out once and should not be repeated
for every atom at every dictionary update iteration.

IV. ADAPTIVE BASE DICTIONARY

In cases where the true underlying graph is unknown, it can
be constructed or inferred from the data. Several attempts have
recently been made to learn the underlying graph from data
observations [26]–[30]. In this work, similarly to the approach
we proposed in [6], we could leverage the trained dictionary, that
already processed the input and captured its essence, to adapt
and improve the graph Laplacian estimation. That is, the graph
is learned jointly with the dictionary rather than being learned
directly from the observed signals.

The extension of the proposed GEMS algorithm for this case
is straightforward. When the graph Laplacian is unknown, we
initialize it from the training data Y using some common con-
struction (such as a Gaussian kernel). Based on this initial L,
we construct the base dictionary Φ as described in Section II-C
and run a few iterations of Algorithm 1 without reaching full
convergence. Having at hand an updated sparse matrix A, and
therefore an updated effective dictionary D, we could optimize
the graph Laplacian L such that it leads to smoother atoms over
the graph. Adding some requirements to normalize L and make
it a valid graph Laplacian matrix, the resulting optimization
problem is

arg min
L

αTr(AT ΦT LΦA) + μ‖L‖2
F

s.t. Lij = Lji ≤ 0 (i �= j), L1 = 0, T r(L) = N.
(25)

Note that this is in fact the same problem defined in [6] for the
setting D = ΦA.

By vectorizing L, Equation (25) can be cast as a quadratic
optimization problem with linear constraints, which could be
solved using existing convex optimization tools. As the com-
putational complexity scales quadratically with the number of
nodes N , for very large graphs an approximate solution may be
sought based on splitting methods or using iterative approaches.

The complete GEMS scheme can now be assembled by alter-
nating between the dictionary learning of Algorithm 1 and the
Laplacian learning of Equation (25).

An important consequence of the graph optimization is that
given an updated L, the base dictionary Φ could now be re-
fined as well. By doing so, we effectively replace the fixed
graph-wavelet basis with an adaptive one, which is iteratively
tuned along with the dictionary learning process, thus adding yet
another level of flexibility to the proposed scheme. Having re-
constructed Φ, the dictionary update algorithm can be resumed
for several more iterations. This process of updating L, refining
Φ and then training A and X can be repeated until converging
to a desired output.

It should be emphasized that the Laplacian optimization may
be applied to the manifold Laplacian Lc as well in a similar
manner.

Before diving into the experimental section, we briefly dis-
cuss a special setting of the proposed GEMS scheme obtained
by omitting the explicit regularizations, i.e. setting α = β = 0.
This choice alleviates the additional complexity of updating the
atoms and so further improves the scalability of this method
and enables treatment of very large graphs. The optimization
problem for this setting reduces to

arg min
A,X

‖Y − ΦAX‖2
F

s.t. ‖xi‖0 ≤ T ∀i,

‖aj‖0 ≤ P ∀j, ‖Φaj‖2 = 1 ∀j.

(26)

Nevertheless, the graph Laplacian L is still accounted for im-
plicitly through the construction of Φ. Therefore, an optimized
Laplacian could still enhance our method even in this setting:
by gradually refining the base dictionary along the training pro-
cess, it instigates an adaptive graph-Haar wavelet dictionary. In
that sense, this configuration can be seen as an adaptive ver-
sion of SDL [19], in which the base dictionary Φ is updated
along the training process. We shall henceforth refer to this
high-dimensional setting as GEMS-HD.

V. EXPERIMENTS AND APPLICATIONS

In this section, we demonstrate the effectiveness of the pro-
posed GEMS algorithm on synthetic examples of piecewise-
smooth nature and on real network data, and show its potential
use in various data processing and analysis applications.

A. Synthetic Experiment

We first carry out synthetic experiments, similar to the ones
described in [6], [19]. However, to corroborate the applicability
of GEMS to a broader class of graph signals, the generated data
here complies with a piecewise-smooth model rather than the
global-smooth one used in [6], [19].

Initially, we generated a random graph consisting of N ran-
domly distributed nodes. The edge weights between each pair
of nodes were determined based on the Euclidean distances be-
tween them d(i, j) and using the Gaussian Radial Basis Function

(RBF) wij = exp(−d2 (i,j )
2σ 2 ) with σ = 0.5.

For the data generation, we started by simulating two sets of
globally-smooth graph signals. Each such set was created by
randomly drawing an initial matrix Y0 ∈ RN ×10N and solving

arg min
Y

‖Y − Y0‖2
F + λTr(Y T LY ), (27)

which yields smoothed signals Y = (I + λL)−1Y0 .
Given two such data matrices Y1 and Y2 , we combined them

to generate piecewise-smooth graph signals. For that purpose, a
local neighborhood was randomly chosen for each signal, and its
measurements in that region were taken from Y2 while the rest
were taken from Y1 . Consequently, each signal was normalized
to have unit norm. A subset of 40% of the generated signals was
used for training, leaving the rest for testing.

Using this training data, several dictionaries were learned
including the K-SVD [8], the graph polynomial dictionary
[5], DGRDL [6], and the proposed GEMS with a graph-Haar



1896 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 7, APRIL 1, 2019

Fig. 2. Comparison of the learned dictionaries in terms of normalized RMSE
for representing synthetic data of different dimensions with various sparsity
levels.

base dictionary constructed as in Section II-C. Additionally,
we trained the high-dimensional mode GEMS-HD, for set-
ting α = β = 0. For a fair comparison, all these dictionaries
are of the same size, N × 2N . We also evaluated a direct
use of the constructed graph wavelet basis Φ, whose size is
N × N .

Two setups were tested: the first with a moderate size graph of
N = 256 nodes, and the second with a high-dimensional graph
containing N = 4096 nodes. The dictionaries were trained with
a fixed number of non-zeros in the sparse coding stage (T = 12
and T = 25, respectively). For the presented variants of GEMS,
the respective sparsity levels of the dictionary A were set to
P = 12 for the medium graph and P = 40 for the large one.

The dictionaries were first compared by their ability to obtain
the best m-term approximation of the test data (for different
sparsity levels, both smaller and larger than the number of non-
zeros used during training), and performance was measured in
terms of the normalized Root Mean Squared Error (RMSE),

1√
N M

‖Y − DX‖F .
The representation errors presented in Figure 2a show that for

a moderate size graph, the proposed GEMS yields lower errors
compared with K-SVD, DGRDL, the polynomial method and
the graph-Haar wavelet basis Φ, for all evaluated sparsity levels.

Fig. 3. Comparison of the learned dictionaries in terms of normalized RMSE
for the task of synthetic data denoising with different noise levels σn with
respect to the data standard deviation σd .

Furthermore, the complete GEMS scheme offers an additional
improvement over GEMS-HD, that only accounts for the graph
implicitly.

The representation errors obtained for a large graph setting are
presented in Figure 2b. For this data dimension, the polynomial
dictionary and DGRDL can no longer train in reasonable time,
and were therefore omitted from the comparison. For computa-
tional reasons, GEMS was also trained only in the GEMS-HD
mode. Nevertheless, it still outperforms K-SVD and the graph
wavelet base dictionary Φ, demonstrating the scalability of the
proposed method to high dimensional data.

Next, the performance of the trained dictionaries was evalu-
ated for the common task of signal denoising, by adding Gaus-
sian noise of different levels σn to the test signals and com-
paring recovery using each of the dictionaries in terms of the
normalized RMSE. Assuming a noisy test signal is modeled as
yi = Dxi + ni where ni denotes the added noise, its denoised
version ŷi = Dx̂i is obtained by seeking the sparse approxima-
tion of yi (denoted x̂i) over each dictionary D with a known
sparsity level T , using OMP.

The results of this experiment are depicted in Figure 3. Simi-
larly to the previous experiment, these results show that GEMS
outperforms the other dictionary models for all the tested noise
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Fig. 4. Demonstrating the top 3 atoms used of each evaluated dictionary. Each column refers to a different dictionary (from left to right): K-SVD [8], Polynomial
[5], DGRDL [6] and GEMS. It can be observed that GEMS yields atoms that obey a piecewise-smooth model as desired.

Fig. 5. Characteristic graph signals demonstrating the daily number of distinct Flickr users that have taken photos at different locations in London. The size and
color of each circle indicate the signal value at that graph node.

levels, and offers a performance boost for graph signal denoising
even in high dimensions.

Additionally, we verify that the proposed dictionary indeed
results in more localized atoms by visualizing the top 3 used
atoms of each of the trained dictionaries. As can be observed in
Figure 4, although all dictionaries were trained from piecewise-
smooth graph signals, the atoms learned by K-SVD are unstruc-
tured and possess a random appearance, the polynomial atoms
are extremely sparse and localized, and the DGRDL atoms vary
more gradually than their K-SVD counterparts, yet they span
the support of the entire graph. The atoms learned by GEMS are
more localized and structured compared with those learned by
K-SVD and DGRDL, though not as localized as the polynomial
atoms. GEMS thus offers a balance between the localization
and smoothness properties, yielding atoms that have the desired
piecewise-smooth nature.

B. Flickr Data

In the sequel, the proposed method was evaluated on real
network data from the Flickr dataset. The dataset consists of

913 signals, representing the daily number of distinct Flickr
users that have taken photos at different geographical locations
around Trafalgar Square in London, between January 2010 and
June 2012. An area of approximately 6 × 6 km was covered
by a grid of size 16 × 16, to a total of N = 256 nodes. The
initial graph Laplacian L was designed by connecting each
node and its 8 nearest neighbors, setting the edge weights to
be inversely proportional to the Euclidean distance between the
nodes.

Each photo acquisition was allocated to its nearest grid
point, so that the graph signals represent the spatially aggre-
gated daily number of users taking photos near each grid lo-
cation. A random subset of 700 signals constitutes the training
set, and the rest were used for testing. All signals were nor-
malized with respect to the one having the maximal energy.
Some typical signals from the Flickr dataset are illustrated in
Figure 5.

For this dataset, the proposed GEMS dictionary was again
compared with K-SVD [8], the graph polynomial dictionary [5]
and DGRDL [6], as well as with the constructed graph-Haar
wavelet basis Φ. All evaluated dictionaries are of the same size
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Fig. 6. Comparison of the learned dictionaries in terms of normalized RMSE
for different applications tested on the Flickr dataset: (a) representation error for
different sparsity levels, (b) denoising error for different noise levels σn with
respect to the data standard deviation σd .

of N × 2N (with the exception of the orthogonal basis Φ whose
dimensions are N × N ) and sparsity thresholds of T = 3 and
P = 10 were used for training.

Similarly to the synthetic experiment, the different dictionar-
ies were evaluated on two tasks: their ability to represent the test
set data with different sparsity levels (number of used atoms),
and their performance in signal denoising with different noise
levels.

The representation errors for this dataset are presented
in Figure 6a, and the corresponding denoising errors in
Figure 6b.

It can be observed that in both tasks, for all sparsity levels
and all noise levels tested, GEMS yields significantly lower
errors compared with K-SVD, the polynomial graph dictio-
nary, and DGRDL. These results coincide with those obtained
for the synthetic experiment. The only exception is the ap-
proximation error using a larger number of atoms (T > 8),
for which the polynomial dictionary achieves slightly bet-
ter results than GEMS. Recall, however, that the polynomial
dictionary training is much more complex and its runtime

is substantially longer, making its use impractical for larger
dimensions.

It should also be emphasized that the performance of GEMS
is expected to further improve as the training set becomes
scarce.

Moreover, the results could be improved by re-training the
dictionaries for every sparsity level. Instead, training was per-
formed once for a fixed T and the generalization ability of the
dictionaries was challenged by evaluating them using different
(both smaller and larger) sparsity levels. Nevertheless, as the
experimental results demonstrate, the trained GEMS model fits
the data very well even in this setting.

In terms of runtime, for this experimental setup GEMS-HD
was 4.2 times faster than DGRDL and 5.8 times faster than the
polynomial method.

C. Uber Pickups in New York City

Next, we consider a larger real network dataset of Uber pick-
ups in New York City [31]. This dataset contains information on
over 4.5 million Uber pickups in New York City from April to
September 2014, with each trip listed by date and pickup time,
as well as GPS coordinates.

To create a graph from this raw data, we sampled the New
York City region on a grid of 150 × 150 points and assigned
each pickup to its nearest grid point, accumulating the num-
ber of pickups in each grid location. Similarly, pickups were
aggregated over time intervals of one hour each, such that the
total number of pickups in a specific hour is a graph signal.
To enrich the graph structure, we selected only the subset of
grid points for which the overall number of pickups exceeded
500, keeping a total of N = 2442 nodes. The weight of the
edge between the nodes i and j was set to wij = exp(−d2 (i,j )

2σ 2 ),
where d(i, j) is the Euclidean distance between their respective
coordinates and σ is a scaling factor proportional to the me-
dian distance. Exemplar signals of this dataset are illustrated in
Figure 7.

Following the previous experiments, we compared GEMS-
HD with K-SVD and DGRDL, which were the leading com-
petitors. The different dictionaries were again trained and
evaluated on the tasks of signal approximation and denois-
ing. Sparsity thresholds of T = 20 and P = 30 were used
for training, and all signals were normalized with respect to
the one having the maximal energy. The results are depicted
in Figure 8, establishing again the advantage of GEMS-HD
over the other compared methods. In terms of runtime, for
this experimental setup GEMS-HD was about 8 times faster
than DGRDL, demonstrating its better scalability to high data
dimensions.

D. Discussion

Just before we conclude this section, we would like to discuss
an additional side benefit of the proposed GEMS algorithm.
The multi-scale nature of the GEMS dictionary may serve data
analysis tasks and be used for capturing important phenomena
in the data. For instance, one might characterize and distinguish
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Fig. 7. Characteristic graph signals demonstrating the hourly number of Uber pickups at different locations in New York City. The size and color of each circle
indicate the signal value at that graph node.

Fig. 8. Comparison of the learned dictionaries in terms of normalized RMSE
for different applications tested on the Uber NYC pickups dataset: (a) represen-
tation error for different sparsity levels, (b) denoising error for different noise
levels σn with respect to the data standard deviation σd .

between different signals based solely on the dictionary atoms
chosen for their approximation. Put differently, some of the
learned patterns may be associated with a specific day of the
week, or a specific time of day.

To demonstrate this idea, we consider the signals measur-
ing the number of Uber pickups during the times 7AM-8AM.
By sparse coding of these signals over the trained dictio-
nary and analyzing the chosen atoms statistics, we can dis-
tinguish between regions that are more active on weekdays
and others that are more active on weekends. Repeating the

experiment for other signal groups reveals the pattern vari-
ability between different hours of the day, as illustrated in
Figure 9.

Naturally, different days and times present with different char-
acteristic patterns. For instance, business district areas tend to
be more active on weekdays and working hours, compared with
touristic areas that are more active at nights and on weekends.
Since different time slots were found to be represented by differ-
ent dictionary atoms, as demonstrated in Figure 9, this indicates
to the richness of the learned dictionary that captures all these
different patterns, as well as hints to a potential use of this
dictionary for data analysis tasks.

As mentioned earlier, another essential property that the pro-
posed dictionary structure introduces is locality and piecewise-
smooth behavior. As advocated in [5], for example, similar lo-
cal patterns may appear at various locations across the network,
and thus learning localized atoms may benefit the processing of
high-dimensional graph signals.

Indeed, graph signals emerging in various real-life appli-
cations are only piecewise-smooth (and not globally-smooth)
over the graph. For instance, while each community in a social
network may have a relatively homogeneous behavior, some
variability could be expected between communities, exhibiting
delicate differences that the graph Laplacian cannot encode.
Similarly, traffic patterns may be different in rural areas com-
pared with urban regions and city centers, with sharper tran-
sitions occurring near city boundaries. Such phenomena are
ill-represented by the graph Laplacian, even when inferred from
the data. Since the Laplacian matrix models the common under-
lying structure of the given signals, it is often unable to account
for the local nature of different network regions. In these cases,
relying on a global smoothness is insufficient, and an alterna-
tive local (piecewise) regularity assumption may better fit such
signals.

To highlight this property, the data in all the experiments pre-
sented above has a localized, clustered, or piecewise-smooth
nature. As demonstrated throughout all the experiments, the
global regularity assumption of DGRDL [6] evidently makes
it suboptimal for representing such signals. However, by relax-
ing this assumption and infusing a multi-scale structure to the
learned dictionary, GEMS better applies to this broader class of
graph signals.
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Fig. 9. Comparing the most active GEMS atoms in representing Uber pickup counts on weekdays (top) and weekends (bottom), at different hours of the day
(from left to right): 7-8AM, 4-5PM, 0-1AM.

VI. CONCLUSIONS

In this paper, we introduced a new dictionary learning algo-
rithm for graph signals that mitigates the global regularity as-
sumption and applies to a broader class of graph signals, while
enabling treatment of higher dimensional data compared with
previous methods.

The core concept of the proposed GEMS method lies in com-
bining a simple and efficient graph-Haar wavelet basis, that
brings a multi-scale nature we deem vital for representing large
signals, with a learned sparse component, that makes it adaptive
to the given data.

The underlying graph topology was incorporated in two man-
ners. The first is implicit, by modeling the learned dictionary
atoms as sparse combinations of graph wavelet functions, thus
practically designing an adaptable multi-scale dictionary. The
second is explicit, by adding direct graph constraints to preserve
the local geometry and promote smoothness in both the feature
and manifold domains.

Furthermore, the complete optimization scheme offers the
ability to refine the graph Laplacian L, as well as the graph-
wavelet basis Φ, as an integral part of the dictionary learning
process.

The effectiveness of the proposed algorithm was demon-
strated through experiments on both synthetic data and real
network data, showing that it achieves superior performance
to other tested methods in data processing and analysis ap-
plications of different nature and different dimensions. While
the imposed dictionary structure already reduces the number of
trainable parameters, the GEMS-HD version that emerges as a
special configuration of GEMS pushes it to accommodate even
higher dimensional graph data, in the order of thousands, or
even tens-of-thousand of nodes.

We believe that graph dictionary learning methods could
scale beyond these dimensions by developing online training
schemes, learning in batches, employing a convolutional model
etc. However at the moment, supporting graphs containing

millions of nodes, which may occur in some realistic scenar-
ios, remains an open challenge for the graph signal processing
community.
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