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Modeling data is the way we—scientists—believe that infor-
mation should be explained and handled. Indeed, models 
play a central role in practically every task in signal and 

image processing and machine learning. Sparse representation 
theory (we shall refer to it as Sparseland) puts forward an emerg-
ing, highly effective, and universal model. Its core idea is the 
description of data as a linear combination of few atoms taken 
from a dictionary of such fundamental elements.

Our prime objective in this article is to review a recently 
introduced [1] model-based explanation of deep learning, which 
relies on sparse modeling of data. We start by presenting the 
general story of Sparseland, describing its key achievements. 
We then turn to describe the convolutional-sparse-coding (CSC) 
model and present a multilayered (ML) extension of it, both 
being special cases of the general sparsity-inspired model. We 
show how ML-CSC leads to a solid and systematic theoretical 
justification of the architectures used in deep learning, along 
with a novel ability of analyzing the performance of the result-
ing machines. As such, this work offers a unique and first of 
its kind theoretical view for a field that has been, until recently, 
considered as purely heuristic.

Introduction
The field of sparse and redundant representations has made a 
major leap in the past two decades. Starting with a series of 
infant ideas and few mathematical observations, it grew to 
become a mature and highly influential discipline. Sparseland 
puts forward a universal mathematical model for describing the 
inherent low dimensionality that may exist in natural data sourc-
es. This model suggests a description of signals as linear combi-
nations of few columns, called atoms, from a given redundant 
matrix, termed dictionary. In other words, these signals admit 
sparse representations with respect to their corresponding dic-
tionary of prototype signals.

The Sparseland model gradually became central in signal and 
image processing and machine-learning applications, leading to 
state-of-the-art results in a wide variety of tasks and across many 
different domains. A partial explanation for the great appeal that 
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this model has had is based on the theoretical foundations that 
accompany its construction, providing a solid support for many 
of the developed algorithms arising in this field. Indeed, in the 
broad scientific arena of data processing, Sparseland is quite 
unique due to the synergy that exists between theory, algorithms, 
and applications.

This article embarks from the story of Sparseland to discuss 
two recent special cases of it—CSC and ML-CSC. As we shall 
see, these descendant models pave a clear and surprising highway 
between sparse modeling and deep-learning architectures. This 
article’s main goal is to present a novel theory for explaining deep 
(convolutional) neural networks and their origins, all through the 
language of sparse representations.

Clearly, our work is not the only one nor the first to theoreti-
cally explain deep learning. Indeed, various such attempts have 
already appeared in the literature (e.g., [2]–[13]). Broadly speak-
ing, this knowledge stands on three pillars—the architectures 
used, the algorithms and optimization aspects involved, and the 
data these all serve. A comprehensive theory should cover all 
three, but this seems to be a tough challenge. The existing works 
typically cover one or two of these pillars, such as in the follow-
ing examples:

■■ Architecture: The work by Giryes et. al. [9], showed that the 
used architectures tend to preserve distances, and explained 
the relevance of this property for classification. The work 
reported in [7] and [8] analyzed the capacity of these architec-
tures to cover a specific family of functions.

■■ Algorithms: Vidal’s work [5] explained why local minima are 
not to be feared, as they may coincide with the objective’s 
global minimum. Chaudhari and Soatto proved [6] that the 
stochastic gradient descent algorithm induces an implicit reg-
ularization that is related to the information-bottleneck objec-
tive [3].

■■ Data: Bruna and Mallat [4] motivated the architectures by the 
data invariances that should be taken care of. Baraniuk’s team 
[2] developed a probabilistic generative model for the data 
that, in turn, justifies the architectures used.
In this context we should note that our work covers the data by 

modeling it, and the architectures as emerging from the model. 
Our work is close in spirit to [2] but also markedly different.

A central idea that will accompany us in this article refers to 
the fact that Sparseland and its aforementioned descendants are 
all generative models. By this we mean that they offer a descrip-
tion of the signals of interest by proposing a synthesis procedure 
for their creation. We argue that such generative models facilitate 
a systematic pathway for algorithm design, while also enabling 
a theoretical analysis of their performance. Indeed, we will see 
throughout this article how these two benefits go hand in hand. 
By relying on the generative model, we will analyze certain feed-
forward convolutional neural networks (CNNs), identify key theo-
retical weaknesses in them, and then tackle these by proposing 
new architectures. Surprisingly, this journey will lead us to some 
of the well-known feed-forward CNNs used today.

Standing at the horizon of this work is our desire to present 
what is called the ML convolutional sparse modeling idea, as 
it will be the grounds on which we derive all the previously 

mentioned claimed results. Thus, we take this as our running 
title and build the article, section by section, focusing each time 
on another word in it. We start by explaining better what we 
mean by the term modeling, and then move to describe sparse 
modeling, essentially conveying the story of Sparseland. Then 
we shift to convolutional sparse modeling, presenting this 
model along with a recent and novel analysis of it that relies on 
local sparsity. We conclude by presenting ML convolutional 
sparse modeling, tying this to the realm of deep learning, just 
as promised. 

Before we start our journey, a few comments are in order.
1)	 Quoting Ron Kimmel (Computer Science Department at the 

Technion–Israel), this grand task of attaching a theory to deep 
learning behaves like a magic mirror, in which every research-
er sees himself. This explains the so-diverse explanations that 
have been accumulated, relying on information theory [3], 
passing through wavelets and invariances [4], proposing a 
sparse modeling point of view [1], and going all the way to 
partial differential equations [10]. Indeed, it was David 
Donoho (Department of Statistics at Stanford University) who 
strengthened this vivid description by mentioning that this 
magical mirror is taken straight from Cinderella’s story, as it is 
not just showing to each researcher his/her reflection, but also 
accompanies this with warm compliments, assuring that their 
view is truly the best.

2)	 This article focuses mostly on the theoretical sides of the 
models we shall discuss, but without delving into the proofs 
for the theorems we will state. This implies two things: 1) less 
emphasis will be put on applications and experiments; and 2) 
the content of this article is somewhat involved due to the del-
icate theoretical statements brought, so be patient.

3)	 Echoed in this article is a keynote talk given by Michael Elad 
during the 2017 IEEE International Conference on Image 
Processing in Beijing, as we follow closely this lecture, both 
in style and content. The recent part of the results presented 
(on CSC and ML-CSC) can be found in [1] and [14], but the 
description of the path from Sparseland to deep learning as 
posed here differs substantially.

Modeling

Our data is structured
Engineers and researchers rarely stop to wonder about our core 
ability to process signals—we simply take it for granted. Why is 
it that we can denoise signals? Why can we compress them, or 
recover them from various degradations, or find anomalies in 
them, or even recognize their content? The algorithms that tack-
le these and many other tasks—including separation, segmenta-
tion, identification, interpolation, extrapolation, clustering, 
prediction, synthesis, and many more—all rely on one funda-
mental property that only meaningful data sources obey: they 
are all structured. 

Each source of information we encounter in our everyday 
lives exhibits an inner structure that is unique to it, and which 
can be characterized in various ways. We may allude to redun-
dancy in the data, assume it satisfies a self-similarity property, 
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suggest it is compressible due to low entropy, or even mention the 
possibility of embedding it into a low-dimensional manifold. No 
matter what the assumption is, the bottom line is the same—the 
data we operate on is structured. This is true for images of vari-
ous kinds: video sequences; audio signals; three-dimensional 
(3-D) objects given as meshes or point clouds; financial time 
series; data on graphs, as is the case in social or traffic networks; 
text files such as e-mails and other documents; and more. In fact, 
we could go as far as stating that if a given 
data is unstructured (e.g., being independent 
and identically distributed random noise), it 
would be of no interest to us, since process-
ing it would be virtually futile.

So, coming back to our earlier question, 
the reason we can process data is the afore-
mentioned structure, which facilitates this 
ability in all its manifestations. Indeed, the 
fields of signal and image processing and 
machine learning are mostly about identi-
fying the structure that exists in a given information source, 
and then exploiting it to achieve the processing goals. This 
brings us to discuss models and the central role they play in 
data processing.

Identifying structure via models
An appealing approach for identifying structure in a given infor-
mation source is imposing a (parametric) model on it, explicitly 
stating a series of mathematical properties that the data is 
believed to satisfy. Such constraints lead to a dimensionality 
reduction that is so characteristic of models and their modus ope-
randi. We should note, however, that models are not the only 
avenue for identifying structure—the alternative being a non-
parametric approach that simply describes the data distribution 
by accumulating many of its instances. We will not dwell on this 
option in this article, as our focus is on models and their role in 
data processing.

Consider the following example, brought to clarify our discus-
sion. Assume that we are given a measurement vector ,y Rn!  
and all that is known to us is that it is built from an ideal signal 
of some sort, ,x Rn!  contaminated by white additive Gauss-
ian noise of zero mean and unit variance, i.e., ,y x e= +  where 

~ ( , ) .0e IN  Could we propose a method to clean the signal y  
from the noise? The answer is negative! Characterizing the noise 
alone cannot suffice for handling the denoising task, as there are 
infinitely many possible ways to separate y into a signal and a 
noise vector, where the estimated noise matches its desired statis-
tical properties.

Now, suppose that we are given additional information on the 
unknown ,x  believed to belong to the family of piece-wise con-
stant (PWC) signals, with the tendency to have as few jumps as 
possible. In other words, we are given a model for the underlying 
structure. Could we leverage this extra information to denoise ?y  
The answer is positive—we can seek the simplest PWC signal that 
is closest to y in such a way that the error matches the expected 
noise energy. This can be formulated mathematically in some 
way or another, leading to an optimization problem whose solu-

tion is the denoised result. What have we done here? We imposed 
a model on our unknown, forcing the result to be likely under the 
believed structure, thus enabling the denoising operation. The 
same thought process underlies the solution of almost any task in 
signal and image processing and machine learning, either explic-
itly or implicitly.

As yet another example for a model in image processing and 
its impact, consider the JPEG compression algorithm [15]. We 

are well aware of the impressive ability of this 
method to compress images by factor of ten to 
20 with hardly any noticeable artifacts. What 
are the origins of this success? The answer 
is twofold: the inner structure that exists in 
images, and the model that JPEG harnesses to 
exploit it. Images are redundant, as we already 
claimed, allowing for the core possibility of 
such compression to take place. However, the 
structure alone cannot suffice to get the actual 
compression, as a model is needed to capture 

this redundancy. In the case of JPEG, the model exposes this 
structure through the belief that small image patches (of size 8 × 8 
pixels) taken from natural images tend to concentrate their energy 
in the lower-frequency part of the spectrum once operated upon 
by the discrete cosine transform (DCT). Thus, few transform coef-
ficients can be kept while the rest can be discarded, leading to the 
desired compression result. One should nevertheless wonder, will 
this algorithm perform just as well on other signal sources? The 
answer is not necessarily positive, suggesting that every informa-
tion source should be fitted with a proper model.

The evolution of models
A careful survey of the literature in image processing reveals an 
evolution of models that have been proposed and adopted over 
the years. We will not provide here an exhaustive list of all of 
these models, but we do mention a few central ideas such as 
Markov random fields for describing the relation between neigh-
boring pixels [16], Laplacian smoothness of various sorts [17], 
total variation [18] as an edge-preserving regularization, wave-
lets’ sparsity [19], [20], and Gaussian mixture models (GMMs) 
[21], [22]. With the introduction of better models, performance 
improved in a wide front of applications in image processing.

Consider, for example, the classic problem of image denois-
ing, on which thousands of papers have been written. Our ability 
to remove noise from images has advanced immensely over the 
years. Indeed, the progress made has reached the point where this 
problem is regarded by many in our field as nearly solved [23], 
[24]. Performance in denoising has improved steadily over time, 
and this improvement was enabled mostly by the introduction of 
better and more effective models for natural images. The same 
progress applies to image deblurring, inpainting, superresolution, 
compression, and many other tasks.

In our initial description of the role of models, we stated that 
these are expressing what the data is believed to satisfy, eluding 
to the fact that models cannot be proven to be correct, just as a 
formula in physics cannot be claimed to describe our world per-
fectly. Rather, models can be compared and contrasted, or simply 

This article’s main goal 
is to present a novel 
theory for explaining deep 
(convolutional) neural 
networks and their origins, 
all through the language of 
sparse representations.
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tested empirically to see whether they fit reality sufficiently well. 
This is perhaps the place to disclose that models are almost always 
wrong, as they tend to explain reality in a simple manner at the 
cost of its oversimplification. Does this mean that models are nec-
essarily useless? Not at all. While they do carry an error in them, 
if this deviation is small enough, then such models are priceless 
and extremely useful for our processing needs. How small is small 
enough? This is a tough question that has not been addressed in 
the literature. Here we will simply be satisfied with the assump-
tion that this error should be substantially smaller compared to 
the estimation error the model leads to. Note that, often times, 
the acceptable relative error is dictated by the 
application or problem that one is trying to 
solve by employing the model.

For a model to succeed in its mission of 
treating signals, it must be a good compromise 
between simplicity, reliability, and flexibility. 
Simplicity is crucial since this implies that 
algorithms harnessing this model are relative-
ly easy and pleasant to work with. However, 
simplicity is not sufficient. We could suggest, 
for example, a model that simply assumes 
that the signal of interest is zero. This is the 
simplest model imaginable, and yet it is also 
useless. So, next to simplicity, comes the second force of reliabil-
ity—we must offer a model that does justice to the data served, 
capturing its true essence. The third virtue is flexibility, implying 
that the model can be tuned to better fit the data source, thus err-
ing less. Every model is torn between these three forces, and we 
are constantly seeking simple, reliable, and flexible models that 
improve over their predecessors.

Models—Summary
Models are central for enabling the processing of structured 
data sources. In image processing, models take a leading part 
in addressing many tasks, such as denoising, deblurring, and 
all the other inverse problems, compression, anomaly detec-
tion, sampling, recognition, separation, and more. We hope 
that this perspective on data sources and their inner structure 
clarifies the picture, putting decades of research activity in the 
fields of signal and image processing and machine learning in 
a proper perspective.

In the endless quest for a model that explains reality, one 
that has been of central importance in the past two decades is 
Sparseland. This model slowly and consistently carved its path 
to the lead, fueled by both great empirical success and impressive 
accompanying theory that added a much needed color to it. We 
turn now to present this model. We remind the reader that this is 
yet another station in our road toward providing a potential expla-
nation of deep learning using sparsity-inspired models.

Sparse modeling

On the origin of sparsity-based modeling
Simplicity as a driving force for explaining natural phenomena 
has a central role in sciences. While Occam’s razor is perhaps 

the earliest of this manifestation (though in a philosophical or 
religious context), a more recent and relevant quote from 
Wrinch and Jeffrey (1921) [25] reads: “The existence of simple 
laws is, then, apparently, to be regarded as a quality of nature; 
and accordingly we may infer that it is justifiable to prefer a 
simple law to a more complex one that fits our observations 
slightly better.”

When it comes to the description of data, sparsity is an ulti-
mate expression of simplicity, which explains the great attraction 
it has. While it is hard to pinpoint the exact appearance of the 
concept of sparsity in characterizing data priors, it is quite clear 

that this idea became widely recognized with 
the arrival of the wavelet revolution that took 
place during the late 1980s and early 1990s. 
The key observation was that this particular 
transformation, when applied to many differ-
ent signals or images, produced representa-
tions that were naturally sparse. This, in turn, 
was leveraged in various ways, both empiri-
cally and theoretically. Almost in parallel, 
approximation theorists started discussing 
the dichotomy between linear and nonlinear 
approximation, emphasizing further the role 
of sparsity in signal analysis. These are the 

prime origins of the field of Sparseland, which borrowed the 
core idea that signal representations should be redundant and 
sparse, while putting aside many other features of wavelets, such 
as (bi)orthogonality, multiscale analysis, frame theory interpre-
tation, and more.

Signs of Sparseland appeared already in the early and mid-
1990s, with the seminal papers on greedy- (Zhang and Mallat, 
[26]) and relaxation-based (Chen, Donoho, and Saunders, [27]) 
pursuit algorithms, and even the introduction of the concept of 
dictionary learning by Olshausen and Field [28]. However, it is 
our opinion that this field was truly born only few years later, in 
2000, with the publication of the paper by Donoho and Huo [29], 
which was the first to show that the basis pursuit (BP) is prov-
ably exact under some conditions. This work dared and defined 
a new language, setting the stage for thousands of follow-up 
papers. Sparseland started with a massive theoretical effort, 
which slowly expanded and diffused to practical algorithms and 
applications, leading in many cases to state-of-the-art results in 
a wide variety of disciplines. The knowledge in this field as it 
stands today relies heavily on numerical optimization and linear 
algebra, and parts of it have a definite machine-learning flavor.

Introduction to Sparseland
So, what is this model? How can it capture structure in a data 
source? Let us demonstrate this for 8 × 8 image patches, in the 
spirit of the description of the JPEG algorithm mentioned pre-
viously. Assume that we are given a family of patches extracted 
from natural images. The Sparseland model starts by preparing 
a dictionary—a set of atom patches of the same size, 8 × 8 pix-
els. For example, consider a dictionary containing 256 such 
atoms. Then, the model assumption is that every incoming 
patch could be described as a linear combination of only few 
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atoms from the dictionary. The word few 
here is crucial, as every patch could be easi-
ly described as a linear combination of 64 
linearly independent atoms, a fact that leads 
to no structure whatsoever.

Let’s take a closer look at this model, 
as depicted in Figure 1(a). We started with 
a patch of size 8 × 8 pixels, thus 64 values. 
The first thing to observe is that we have 
converted it to a vector of length 256 carry-
ing the weights of each of the atoms in the 
mixture that generates this patch. Thus, our 
representation is redundant. However, this vector is also very 
sparse, since only few of the atoms participate in this construc-
tion. Imagine, for example, that only three atoms are used. In 
this case, the complete information about the original patch is 
carried by six values: three stating which atoms are involved, 
and three determining their weights. Thus, this model manages 
to reduce the dimensionality of the patch information, a key 
property in exposing the structure in our data.

An interesting analogy can be drawn between this model 
and our world’s chemistry. The model’s dictionary and its atoms 
should remind the reader of Mendeleev’s periodic table. In our 
world, every molecule is built of few of the fundamental elements 
from this table, and this parallels our model assumption that states 
that signals are created from few atoms as well. As such, we can 
regard the Sparseland model as an adoption of the core rational of 
chemistry to data description.

Let’s make the Sparseland model somewhat more precise, 
and introduce notations that will serve us throughout this arti-

cle [30]. The signal we operate on is denoted 
by ,x Rn!  and the dictionary D  is a matrix 
of size ,n m#  in which each of its m  col-
umns is an atom. The sparse and redundant 
representation is the vector ,Rm!c  which 
multiplies D  to create ,x  i.e., ,x Dc=  as 
shown in Figure 1(b). The vector c  has only 
few (say, k ) nonzeros, and thus it creates a 
linear combination of k  atoms from D  to 
construct .x  We shall denote by 0c  the 
number of nonzeros in .c  This 0,  is not a 
formal norm as it does not satisfy the homo-

geneity property. Nevertheless, throughout this article, we shall 
refer to this as a regular norm, with the understanding of its 
limitations. So, put formally, here is the definition of Sparse-
land signals.

Definition
The set of Sparseland signals of cardinality k  over the dictionary 
D is defined as , .kDM" ,  A signal x belongs in ,kDM" , if it 
can be described as ,x Dc=  where .k0 #c

Observe that this is a generative model in the sense that it 
describes how (according to our belief) the signals have been cre-
ated from k  atoms from .D  We mentioned previously that mod-
els must be simple to be appealing, and, in this spirit, we must 
ask: Can the Sparseland model be considered as simple? Well, the 
answer is not so easy, since this model raises major difficulties in 
its deployment, and this might explain its late adoption. In the fol-
lowing, we mention several such difficulties, given in ascending 
order of complexity.

γ1 γ2 γ3

Σ D γ x

m

n

(a) (b)

Figure 1. The decomposition of an image patch into its three building blocks—atoms from the dictionary. This model can be expressed as ,D xc =  where 
|| || .30c =

Sparseland has a 
universal ability to 
describe information 
content faithfully and 
effectively, due to the 
exponential number 
of possible supports 
that a reasonable-sized 
dictionary enables.
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Sparseland difficulties: Atom decomposition
The term atom-decomposition refers to the most fundamental 
problem of identifying the atoms that construct a given signal. 
Consider the following example: We are given a dictionary hav-
ing 2,000 atoms, and a signal known to be composed of a mix-
ture of 15 of these. Our goal now is to identify these 15 atoms. 
How should this be done? The natural option to consider is an 
exhaustive search over all the possibilities of choosing 15 atoms 
out of the 2,000, and checking per each whether they fit the mea-
surements. The number of such possibilities to check stands on 
an order of . ,e2 4 37+  and even if each of this takes 1 ps, bil-
lions of years will be required to complete this task!

Put formally, atom decomposition can be described as the fol-
lowing constrained optimization problem:

	 .min   . .  s t x D0c c=
c

� (1)

This problem seeks the sparsest explanation of x  as a linear 
combination of atoms from .D  In a more practical version of the 
atom-decomposition problem, we may assume that the signal we 
get, ,y  is an e-contaminated version of ,x  and then the optimiza-
tion task becomes

	 .min   . .  s t y D0 2 #cc e-
c

� (2)

Both (1) and (2) are known to be NP-hard, implying that their 
complexity grows exponentially with the number of atoms in .D  
So, are we stuck?

The answer to this difficulty came in the form of approxima-
tion algorithms, originally meant to provide exactly that—an 
approximate solution to the previously given problems. In this 
context, we mention greedy methods such as the orthogonal 
matching pursuit (OMP) [31] and the thresholding algorithm, and 
relaxation formulations such as the BP [27].

While it is beyond the scope of this article to provide a 
detailed description of these algorithms, we will say a few 
words on each, as we will return to use them later when we 
get closer to the connection to neural networks. BP takes the 
problem posed in (2) and relaxes it by replacing the 0,  by an 1,

-norm. With this change, the problem is convex and manageable 
in reasonable time.

Greedy methods such as the OMP solve the problem posed 
in (2) by adding one nonzero at a time to the solution, trying to 
reduce the error y D 2c-  as much as possible at each step, 
and stopping when this error goes below .e  The threshold-
ing algorithm is the simplest and crudest of all pursuit 
methods—it multiplies y  by ,DT  and applies a simple shrink-
age on the resulting vector, nulling small entries and leaving the 
rest almost untouched.

Figure 2 presents an experiment in which these three 
algorithms were applied on the scenario we described previ-
ously, in which D  has 2,000 atoms, and an approximate atom 
decomposition is performed on noisy signals that are known 
to be created from few of these atoms. The results shown sug-
gest that these three algorithms tend to succeed rather well in 
their mission.

Sparseland difficulties: Theoretical foundations
Can the success of the pursuit algorithms be explained and justi-
fied? One of the grand achievements of the field of Sparseland is 
the theoretical analysis that accompanies many of these pursuit 
algorithms, claiming their guaranteed success under some condi-
tions on the cardinality of the unknown representation and the 
dictionary properties. Hundreds of papers offering such results 
were authored in the past two decades, providing Sparseland 
with the necessary theoretical foundations. This activity essen-
tially resolved the atom-decomposition difficulty to the point 
where we can safely assume that this task is doable—reliably, 
efficiently, and accurately.

Let us illustrate the theoretical side of Sparseland by provid-
ing a small sample from these results. We bring one such rep-
resentative theorem that discusses the terms of success of the 
BP. This is the first among a series of such theoretical results 
that will be stated throughout this article. Common to them all 
is our sincere effort to choose the simplest results, and these 
will rely on a simple property of the dictionary D called the 
mutual coherence.

Definition
Given the dictionary ,D Rn m! #  assume that the columns of this 
matrix, di i

m
1=" ,  are 2, -normalized. The mutual coherence 

( )Dn  is defined as the maximal absolute inner product between 
different atoms in D [32]:

	 ( ) .maxD d diT j
i j m1

n =
1# #

� (3)

Clearly, ( )0 1D# #n  and, as we will see, the smaller this 
value is, the better our theoretical guarantees become. We note 
that other characterizations of D exist and have been used quite 
extensively in developing the theory of Sparseland. These 
include the restricted isometry property (RIP) [33], the exact 
recovery condition (ERC) [34], the Babel function [35], the 
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Figure 2. An illustration of OMP, BP, and thresholding in approximating 
the solution of the atom decomposition problem, for a dictionary with 
2,000 atoms.
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Spark [36], and others. As mentioned previously, we stick with 
( )Dn  in this article due to its simplicity, and this may come at 

the cost of getting weaker guarantees.
We are now ready to state our first theorem: The story starts 

with an arbitrary sparse vector c  that generates a Sparseland sig-
nal .x Dc=  We get a noisy version of this signal, ,y x e= +  and 
our goal is to obtain an evaluation of a sparse representation that 
should be as close as possible to the original .c  The following 
result claims that BP is guaranteed to provide such performance.

Theorem 1
Given ,y D ec= +  where e  is an energy-bounded noise, 

,e 2 # e  and c  is sufficiently sparse,

	
( )

,
4
1 1 1

D0 1c
n

+c m � (4)

then the BP solution, given by

	 .  ,arg min   .s t D y1 2 #c c c e= -
c

t � (5)

leads to a stable result,

	
( ) ( )

.
1 4 1

4
D2

0

2
#c c

cn
e-

- -
t � (6)

A few comments are in order:
■■ Observe that if we assume ,0e =  then Theorem 1 essentially 

guarantees a perfect recovery of the original .c
■■ The result stated is a worst-case one, claiming a perfect recov-

ery under the conditions posed and for an adversarial noise. 
Far stronger claims exist, in which the noise model is more 
realistic (for example, random Gaussian), and then the lan-
guage is changed to a probabilistic statement (i.e., success 
with probability close to 1) under much milder conditions 
(see, for example, [37] and [38]).

■■ The literature on Sparseland offers many similar such theo-
rems, either improving Theorem 1, or referring to other pur-
suit algorithms. 

Sparseland difficulties: The quest for the dictionary
Now that we are not so worried anymore about solving the prob-
lems posed in (1) and (2), we turn to discuss a far greater difficul-
ty—how can we get the dictionary ?D  Clearly, everything that 
we do with this model relies on a proper choice of this matrix. 
Sweeping through the relevant data processing literature, we 
may see attempts to 

■■ use the Sparseland model to fill-in missing parts in natural 
images [39], [40]

■■ deploy this model for audio processing (e.g., [41] and [42])
■■ plan to exploit it for processing seismic data [43], [44]
■■ process volumes of hyperspectral imaging [45], [46]. 

Each of these applications and many others out there call for a 
separate and adapted dictionary, so how can D  be chosen 
or found?

The early steps in Sparseland were made using known trans-
forms as dictionaries. The intuition behind this idea was that 
carefully tailored transforms that match specific signals or have 

particular properties could serve as the dictionaries we are after. 
Note that the dictionary represents the inverse transform, as it 
multiplies the representation to construct the signal. In this spirit, 
wavelets of various kinds were used for one-dimensional (1-D) 
signals [19], two-dimensional (2-D) DCT for image patches, and 
curvelets [47], contourlets [48], and shearlets [20] were suggested 
for images.

While seeming reasonable and elegant, this approach was 
found to be quite limited in real applications. The obvious reasons 
for this weakness were the partial match that exists between a cho-
sen transform and true data sources, and the lack of flexibility in 
these transforms that would enable them to cope with special and 
narrow families of signals (e.g., face images, or financial data). 
The breakthrough in this quest of getting appropriate dictionaries 
came in the form of dictionary learning. The idea is quite simple: 
if we are given a large set of signals believed to emerge from a 
Sparseland generator, we can ask what is the best dictionary that 
can describe these sparsely. In the past decade, we have seen a 
wealth of dictionary-learning algorithms, varied in their compu-
tational steps, in their objectives, and in their basic assumptions 
on the required .D  These algorithms gave Sparseland the neces-
sary boost to become a leading model, due to the added ability 
to adapt to any data source, and match to its content faithfully. 
In this article, we will not dwell too long on this branch of work, 
despite its centrality, as our focus will be the model evolution we 
are about to present.

Sparseland difficulties: Model validity
We are listing difficulties that the Sparseland model encoun-
tered, and, in this framework, we mentioned the atom-decompo-
sition task and the pursuit algorithms that came to resolve it. We 
also described the quest for the dictionary and the central role of 
dictionary-learning approaches in this field. Beyond these, per-
haps the prime difficulty that Sparseland poses is encapsulated 
in the following questions: Why should this model be trusted to 
perform well on a variety of signal sources? Clearly, images are 
not made of atoms, and there is no dictionary behind the scene 
that explains our data sources. So, what is the appeal in this spe-
cific model?

The answers to those questions are still being built, and they 
take two possible paths. On the empirical front, Sparseland has 
been deployed successfully in a wide variety of fields and for vari-
ous tasks, leading time and again to satisfactory and even state-
of-the-art results. So, one obvious answer is the simple statement 
“We tried it, and it works!” Again, a model cannot be proven to be 
correct, but it can be tested with real data, and this is the essence 
of this answer.

The second branch of answers to the natural repulse from 
Sparseland has been more theoretically oriented, tying this model 
to other, well-known and better established, models, showing that 
it generalizes and strengthens them. Connections have been es-
tablished between Sparseland and Markov random field models, 
GMMs, and other union-of-subspaces constructions [30]. Indeed, 
the general picture obtained from the answers previously given 
suggests that Sparseland has a universal ability to describe infor-
mation content faithfully and effectively, due to the exponential 
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number of possible supports that a reasonable-sized diction-
ary enables.

Sparseland difficulties: Summary
The bottom line to all of this discussion is the fact that, as 
opposed to our first impression, Sparseland is a simple yet flexi-
ble model, and one that can be trusted. The difficulties men-
tioned have been fully resolved and answered constructively, 
and today we are armed with a wide set of algorithms and sup-
porting theory for deploying Sparseland successfully for pro-
cessing signals.

The interest in this field has grown impressively over the 
years, and this is clearly manifested by the exponential growth of 
papers published in the arena. Another testimony to the interest 
in Sparseland is seen by the wealth of books published in the past 
decade in this field—see [19], [30], and [49]–[56]. This attention 
brought us to offer a new massive open online course (MOOC), 
covering the theory and practice of this field. This MOOC, given 
under edX, started in October 2017, and already has more than 
2,000 enrolled students. It is expected to be open continuously 
for all those who are interested in getting to know more about 
this field.

Local versus global in sparse modeling
We now discuss the practicalities of deploying Sparseland in 
image processing. The common practice in many of such algo-
rithms, and especially the better performing ones, is to operate 
on small and fully overlapping patches. The prime reason for 
this mode of work is the desire to harness dictionary-learning 
methods, and these are possible only for low-dimensional signals 
such as patches. The prior used in such algorithms is therefore 
the assumption that every patch extracted from the image is 
believed to have a sparse representation with respect to a com-
monly built dictionary.

After years of using this approach, questions started surfac-
ing regarding this local model assumption, and the underlying 
global model that may operate behind the scene. Consider the 
following questions, all referring to a global signal X  that is 
believed to obey such a local behavior—having a sparse rep-
resentation with respect to a local dictionary D for each of its 
extracted patches:

■■ How can such a signal be synthesized?
■■ Do such signals exist for any D?
■■ How should the pursuit be done to fully exploit the believed 

structure in ?X
■■ How should D be trained for such signals?

These tough questions started being addressed in recent works 
[14], [57], and this brings us to our next section, in which we dive 
into a special case of Sparseland—the CSC model, and resolve 
this global-local gap.

Convolutional sparse modeling

Introducing the CSC model
The CSC model offers a unique construction of signals based on 
the following relationship:

	 * .X di
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=
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Note that all of our equations and derivations will be built under 
the assumption that the treated signals are 1-D, but this model 
and all our derivations apply to 2-D and even higher dimensions 
just as well. In our notations, X RN!  is the constructed global 
signal, the set d Ri i

m n
1 !=" ,  are m local filters of small support 

,n N%^ h  and Ri
N!C  are sparse vectors convolved with their 

corresponding filters. For simplicity and without loss of generali-
ty, we shall assume hereafter that the convolution operations 
used are all cyclic. Adopting a more intuitive view of the CSC 
model, we can say that X  is assumed to be built of many 
instances of the small m  filters, spread all over the signal 
domain. To be exact, the flipped version of the filters are the 
ones shifted in all spatial locations, since this flip is part of the 
convolution definition. This spread is obtained by the convolu-
tion of di  by the sparse feature map .iC

And here is another, more convenient, view of the CSC model. 
We start by constructing m circulant matrices ,C Ri

N N! #  rep-
resenting the convolutions by the filters .di  Each of these matrices 
is banded, with only n populated diagonals. Thus, the global sig-
nal X can be described as
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The concatenated circulant matrices form a global dictionary 
,D RN mN! #  and the gathered sparse vectors iC  lead to the 

global sparse vector .RmN!C  Thus, just as said previously, 
CSC is a special case of Sparseland, built around a very struc-
tured dictionary being a union of banded and circulant matrices. 
Figure 3 presents the obtained dictionary D, where we permute 
its columns to obtain a sliding block diagonal form. Each of the 
small blocks in this diagonal is the same, denoted by DL—this 
is a local dictionary of size ,n m#  containing the m  filters as 
its columns.

Why should we consider the CSC?
Why are we interested in the CSC model? Because it 
resolves the global-local gap we mentioned previously. Sup-
pose that we extract an n-length patch from X  taken in 
location .i  This is denoted by multiplying X  by the patch-
extractor operator , .R p R XRi

n N
i i! =#  Using the relation 

,X DC=  we have that .p R X R Di i i C= =  Note that the 
multiplication R Di  extracts n  rows from the dictionary, and 
most of their content is simply zero. To remove their empty 
columns, we introduce the stripe extraction operator 
S R( )
i

n m mN2 1! #-  that extracts the nonzero part in this set  
of rows: .R D R DS Si i i

T
i=  Armed with this definition, we 

observe that pi  can be expressed as Ω .p R DS Si i i
T

i icC= =  
The structure of ,Ω  referred to as the stripe dictionary, 
appears in Figure 3, showing that Ω R DSi i

T=  is a fixed 
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matrix regardless of .i  The notation Si ic C=  stands for a 
stripe of ( )n m2 1-  elements from .C

And now we get to the main point of all of this description: 
As we move from location i to ,i 1+  the patch p R Xi i1 1=+ +  
equals .Ω i 1c +  The stripe vector i 1c +  is a shifted version of ic  
by m elements. Other than that, we observe that the extracted 
patches are all getting a sparse description of their content with 
respect to a common dictionary ,Ω  just as assumed by the locally 
operating algorithms. Thus, CSC furnishes a way to make our 
local modeling assumption valid, while also posing a clear global 
model for .X  In other words, the CSC model offers a path toward 
answering all of the questions that we have posed in the context of 
the global-local gap.

CSC: New theoretical foundations
Realizing that CSC may well be the missing link to all of the 
locally operating image processing algorithms, and recalling that 
it is a special case of Sparseland, we should wonder whether the 
classic existing theory of Sparseland provides sufficient founda-
tions for it as well. Using Theorem 1 to the case in which the sig-
nal we operate upon is ,Y D EC= +  where E 2 # e and D is 
a convolutional dictionary, the condition for success of the BP is
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Interestingly, the Welch bound offers a lower bound on the best 
achievable mutual coherence of our dictionary [58], being

	 ( )
( )

.
m n

m
2 1 1

1D $n
- -
- � (10)

For example, for m 2=  filters of length ,n 200=  this value is 
. ,0 035.  and this value necessarily grows as m  is increased. 

This implies that the bound for success of the BP stands on 
. .7 30 1C  In other words, we allow the entire vector C  to 

have only seven nonzeros (independently of ,N  the size of X) for 

the ability to guarantee that BP will recover a close-enough 
sparse representation. Clearly, such a statement is meaningless, 
and the unavoidable conclusion is that the classic theory of 
Sparseland provides no solid foundations whatsoever to the 
CSC model.

The recent work reported in [14] offers an elegant way to 
resolve this difficulty, by moving to a new, local, measure of spar-
sity. Rather than counting the number of nonzeros in the entire 
vector ,C  we run through all the stripe representations, Si ic C=  
for , , , , ,i N1 2 3 f=  and define the relevant cardinality of C as 
the maximal number of nonzeros in these stripes. Formally, this 
measure can be defined as follows.

Definition
Given the global vector ,C  we define its local cardinality as

	 .max,
s

i0 0i N1
cC =3

# #
� (11)

In this terminology, it is an ,0, 3  measure since we count number 
of nonzeros, but also maximize over the set of stripes. The super-
script s stands for the fact that we sweep through all the stripes 
in ,C  skipping m elements from ic  to .i 1c +

Intuitively, if ,
s
0C 3  is small, this implies that all the stripes 

are sparse, and thus each patch in ,X DC=  has a sparse represen-
tation w.r.t. the dictionary .Ω  Recall that this is exactly the model 
assumption we mentioned previously when operating locally. 
Armed with this local-sparsity definition, we are now ready to 
define CSC signals, in the same spirit of the Sparseland definition:

Definition
The set of CSC signals of cardinality k  over the convolutional 
dictionary D  is defined as , .D kS" ,  A signal X  belongs to 

,D kS" , if it can be described as ,X DC=  where .k,
s
0 #C 3

Could we use these new notions of the local sparsity and the 
CSC signals in order derive novel and stronger guarantees for the 

RiX

DL
γ i

n

(2n – 1)m

Ω

Figure 3. The global CSC model.
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success of pursuit algorithms for the CSC model? The answer, as 
given in [14], is positive. We now present one such result, among 
several others that are given in that work, referring in this case 
to the BP algorithm. We note that the notation E ,

p
2 3  stands 

for computing the 2, -norm on fully overlapping sliding patches 
(hence the letter “p”) extracted from ,E  seeking the most ener-
getic patch. As such, this quantifies a local measure of the noise, 
which serves the following theorem.

Theorem 2
Given ,Y D EC= +  and C that is sufficiently locally sparse,

	
( )

,
3
1 1 1

D,
s
0 1

n
C +3 c m � (12)

the BP algorithm

	 arg min
2
1 Y D 2

2
1mC C C= - +

C

t � (13)

with 4 E ,
p
2m = 3  satisfies the following:

■■ The support of Ct  is contained in that of the original .C
■■ The result is stable: . .7 5 E ,

p
2#C C- 3 3

t

■■ Every entry in C bigger than .7 5 E ,
p
2 3  is found.

■■ The solution Ct  is unique.
Note that the expression on the number of nonzeros permitted 

is similar to the one in the classic Sparseland 
analysis, being ( / ( )) .O 1 Dn  However, in this 
theorem this quantity refers to the allowed 
number of nonzeros in each stripe, which 
means that the overall number of permit-
ted nonzeros in C  becomes proportional to 

.O N^ h  As such, this is a much stronger and 
more practical outcome, providing the neces-
sary guarantee for various recent works that used the BP with the 
CSC model for various applications [59]–[64].

CSC: Operating locally while getting global optimality
The last topic we would like to address in this section is the mat-
ter of computing the global BP solution for the CSC model while 
operating locally on small patches. As we are about to see, this 
serves as a clarifying bridge to traditional image processing algo-
rithms that operate on patches. We discuss one such algorithm, 
originally presented in [65]—the slice-based pursuit.

To present this algorithm, we break C into small nonoverlap-
ping blocks of length m each, denoted as ia  and termed needles. 
A key observation this method relies on is the ability to decom-
pose the global signal X into the sum of small pieces, which we 
call slices, given by .s Di L ia=  By positioning each of these in 
their location in the signal canvas, we can construct the full vec-
tor :X
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By being the transposed of the patch-extraction operator, 
R Ri
T N n! #  places an n-dimensional patch into its correspond-

ing location in the N-dimensional signal X by padding it with 

N n-  zeros. Then, armed with this new way to represent ,X  the 
BP penalty can be restated in terms of the needles and the slices,
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This problem is entirely equivalent to the original BP penalty, 
being just as convex. Using the alternating direction method of 
multipliers (ADMM) [66] to handle the constraints (see the 
details in [65]), we obtain a global pursuit algorithm that iterates 
between local BP on each slice (that is easily managed by least-
angle regression (LARS) [67] or any other efficient solver), and 
an update of the slices that aggregates the temporal results into 
one estimated global signal. Interestingly, if this algorithm ini-
tializes the slices to be patches from Y  and applies only one 
such round of operations, the resulting process aligns with the 
patch-based sparsity-inspired image denoising algorithm [68]. 
Figure 4 shows the slices and their corresponding patches in an 
image, and as can be clearly seen, the slices are simpler and thus 
easier to represent sparsely.

The aforementioned scheme can be extended to serve for the 
training of the CSC filters, .DL  All that is needed is to insert a 
“dictionary-update” stage in each iteration, in which we update 

DL  based on the given slices. This stage can 
be performed using the regular K-SVD algo-
rithm [69] or any other dictionary-learning 
alternative, where the patches to train on are 
these slices. As such, the overall algorithm 
relies on local operations and can therefore 
leverage all the efficient tools developed for 
Sparseland over the last 15 years, while still 

solving the global CSC model—its learning and pursuit.

ML convolutional sparse modeling
At last, we arrive to the main serving of this article: connecting 
Sparseland and the CSC model to deep learning and CNNs. Pre-
liminary signs of this connection could already be vaguely  
identified, as there are some similarities between these two 
disciplines. More specifically, both involve the presence of con-
volution operations, sparsifying operations such as shrinkage or 
rectified linear unit (ReLU), and both rely on learning from data 
to better fit the treatment to the given information source.

These early signs did not go unnoticed, and they motivated a 
series of fascinating contributions that aimed to bring an expla-
nation to CNNs. For instance, Bruna and Mallat [4] borrowed  

(a)

(b)

Figure 4. A comparison between (a) patches and (b) their respective 
slices, extracted from natural images. As can be seen, the slices are much 
simpler, and thus easier to represent sparsely.

The CSC model offers a 
path toward answering all 
of the questions that we 
have posed in the context 
of the global-local gap.
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elements from wavelet theory to demonstrate how one can build a 
network of convolutional operators while providing invariance to 
shifts and deformations—properties that deep CNNs are claimed 
to have. Another interesting line of work comes from the observa-
tion that several pursuit algorithms can be decomposed as several 
iterations of linear operators and a nonlinear threshold, and there-
fore allow for a CNN-based implementation. The seminal learned 
iterative soft thresholding algorithm (LISTA) [70] showed that 
one can indeed train such a network by unrolling iterative shrink-
age iterations, while achieving significantly faster convergence. 
In fact, CNN-based pursuits can even be shown to outperform 
traditional sparse coding methods in some challenging cases [71]. 
In this section our goal is to make this connection much more 
precise and principled, and thus we start by briefly recalling the 
way CNNs operate.

A brief review of conv-nets
We shall assume that we are given an input image ,Y RN!  of 
dimensions .N N#  A classic feed-forward CNN operates 
on Y by applying series of convolutions and nonlinearities [72]. 
Our goal in this section is to clearly formulate these steps.

In the first layer, Y  is passed through a set of m1  convolu-
tions, using small-support filters of size .n n0 0#  In this case 
as well, these convolutions are assumed cyclic. The output of 
these convolutions is augmented by a bias value and then passed 
through a scalar-wise ReLU of the form ( ) ( , ),maxz z0ReLU =  
and the result Z1  is stored in the form of a 3- D tensor of size 

,N N m1# #  as illustrated in Figure 5. In matrix-vector 
form, we could say that Y has been multiplied by a convolutional 
matrix W1  of size Nm N1 # , built by concatenating vertically a 
set of m1  circulant matrices of size .N N#  This is followed by the 
ReLU step: ( ) .ReLUZ W Y b1 1 1= +  Note that b1  is a vector of 
length ,Nm1  applying a different threshold per each filter in the 
resulting tensor.

The second layer obtains the tensor Z1  and applies the same 
set of operations: m2  convolutions with small spatial support 

n n1 1#^ h and across all m1  channels, and a ReLU nonlin-

earity. Each such filter weights together (i.e., this implements a 
2-D convolution across all feature maps) the m1  channels of ,Z1  
which explains the length mentioned previously. Thus, the output 
of the second layer is given by ( ),ReLUZ W Z b2 2 1 2= +  where 
W2  is a vertical amalgam of m2  convolutional matrices of 
size .N Nm1#

The story may proceed this way with additional layers shar-
ing the same functional structure. A variation could be pooling or 
stride operations, both coming to reduce the spatial resolution of 
the resulting tensor. In this article, we focus on the stride option, 
which is easily absorbed within the aforementioned description by 
subsampling the rows in the corresponding convolution matrices. 
We note that recent work suggests that pooling can be replaced by 
stride without a performance degradation ([73], [74]).

To summarize, for the two layered feed-forward CNNs, the 
relation between input and output is given by

	 ( ) .Re Ref LU LUY W W Y b b2 1 1 2= + +^ ^ h h � (16)

Introducing the ML-CSC model
We return now to the CSC model with an intention to extend it 
by introducing its ML version. Our starting point is the belief 
that the ideal signal we operate on, ,X  is emerging from the CSC 
model, just as described in the section “Convolutional Sparse 
Modeling.” Thus, ,X D1 1C=  where D1  is a convolutional  
dictionary of size ,N Nm1#  and 1C  is locally sparse, i.e., 

( ),k m n2 1,
s

1 0 1 1 0%C = -3  where m1  is the number of filters 
in this model and n0  is their length.

We now add another layer to this signal: We assume that 1C  
itself is also believed to be produced from a CSC model of a simi-
lar form, ,D1 2 2C C=  where D2  is another convolutional diction-
ary of size ,Nm Nm1 2#  and ( ),k m n m2 1,

s
2 0 2 2 1 1%C = -3  

where m2  is the number of filters in this model and n1  is their 
length. This structure can be cascaded in the same manner for 
K  layers, leading to what we refer to as the ML-CSC model. A 
formal definition of this model is given next.

Y Z1 Z2

W1

W2

Figure 5. An illustration of the forward pass of a CNN. The first feature map is given by ( ),ReLUZ W Y b1 1 1= +  where W1  is a convolutional operator.
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Definition 
The set of K-layered ML-CSC signals of cardinalities { ,k1

, , }k kK2 f  over the convolutional dictionaries { , , , }D D DK1 2 f  
is defined as .,DS kM i i

K
i i
K

1 1= ="" ", , , A signal X belongs to this 
set if it can be described as
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Observe that, given the aforementioned relations, one obviously 
gets .X D D DK K1 2g C=  Thus, our overall model is a special 
case of Sparseland, with an effective dictionary being the multi-
plication of all the CSC matrices .{ }Di i

K
1=  It can be shown that 

this effective dictionary has an overall convolutional form, as 
shown in [75], and thus we could even go as far as saying that 
ML-CSC is a special case of the CSC model.

Indeed, ML-CSC injects more structure into the CSC model by 
requiring all the intermediate representations, , , , K1 2 1fC C C -  
to be locally sparse as well. The implication of this assumption is 
the belief that X could be composed in various ways, all leading 
to the same signal. In its most elementary form, X can be built 
from a sparse set of atoms from D1  by .D1 1C  However, the very 
same vector X could be built using yet another sparse set of ele-
ments from the effective dictionary D D1 2  by .D D1 2 2C  Which 
are the atoms in this effective dictionary? Every column in D D1 2  
is built as a local linear combination of atoms from ,D1  whose 
coefficients are the atoms in .D2  Moreover, due to the locality of 
the atoms in ,D2  such combinations are only of atoms in D1  that 
are spatially close. Thus, we could refer to the atoms of D D1 2  

as molecules. The same signal can be described this way using 
,D D D1 2 3  and so on, all the way to .D D DK K1 2g C

Perhaps the following explanation could help in giving intu-
ition to this wealth of descriptions of .X  A human-being body can 
be described as a sparse combination of atoms, but he/she could 
also be described as a sparse combination of molecules, a sparse 
composition of cells, tissues, and even body parts. There are many 
ways to describe the formation of the human body, all leading to 
the same final construction, and each adopting a different resolu-
tion of fundamental elements. The same spirit exists in the ML-
CSC model.

To better illustrate the ML-CSC and how it operates, Figure 6 
presents a three-layered CSC model trained on the MNIST data-
base of handwritten digits. The results presented here refer to a 
dictionary-learning task for the ML-CSC, as described in [75]. 
We will not explain the details of the algorithm to obtain these 
dictionaries, but rather concentrate on the results obtained. This 
figure shows the m 321 =  filters that construct the dictionary 

,D1  and these look like crude atoms identifying edges or blobs. 
It also shows the m 1282 =  filters corresponding to the effective 
dictionary ,D D1 2  and its fundamental elements are elongated 
and curved edges. Note that there is no point in presenting D2

alone as it has almost no intuitive meaning. When multiplied by 
,D1  it results with filters that are referred to as molecules. In the 

same spirit, the ,m 1 0243 =  filters of D D D1 2 3  contain large 
portions of digits as its atoms. Any given digit image could be 
described as a sparse combination over , ,D D D1 1 2  or ,D D D1 2 3  
in each case using different fundamental elements set to form 
the construction.

Pursuit algorithms for ML-CSC signals: First steps
Pursuit algorithms were mentioned throughout this article, mak-
ing their first appearance in the context of Sparseland, and later 

D1 D1D2

D1D2D3

(a) (b)

(c)

Figure 6. An ML-CSC model trained on the MNIST data set. (a) The local filters of the dictionary D1 . (b) The local filters of the effective dictionary 
.D D D( )2

1 2=  (c) Some of the 1,024 local atoms of the effective dictionary ,D( )3  which are global atoms of size .28 28#  
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appearing again in the CSC. The pursuit task is essentially a pro-
jection operation, seeking the signal closest to the given data 
while belonging to the model, be it Sparseland, the CSC model, 
or the ML-CSC. When dealing with a signal X  believed to 
belong to the ML-CSC model, a noisy signal Y X E= +  

E 2 # e^ h is projected to the model by solving the following 
pursuit problem:
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We refer to this as the deep coding problem (DCP). Figure 7 
illustrates a typical result of such a problem, still in the context 
of the MNIST database. As before, we present these without 
diving into the details of how this solution was obtained. See 
[75] for this information. As can be seen, the very same signal 
X  is created by sparsely combining 209 atoms from ,D1  or 
very sparsely combining 47 molecules from ,D D1 2  or 
extremely sparsely merging ten body parts from the dictionary 

.D D D1 2 3

The DCP problem is NP-hard. Indeed, a single layer version 
of it is known to be NP-hard [76], and the additional constraints 
can be merged into an overall problem that can be given the same 

structure as the single layer one, thus exposing its NP-hardness. 
Therefore, just as in the general atom-decomposition problem 
discussed in the section “Sparse Modeling,” approximation algo-
rithms are required for its solution. We are interested in making 
our first steps in developing such a pursuit algorithm, and thus our 
starting point is an adaptation of the thresholding algorithm, due 
to its simplicity.

For a single-layer CSC model (Y D E1 1C= +  where 
),k,

s
1 0 1#C 3  the thresholding algorithm multiplies Y by ,DT

1  
and applies a simple shrinkage on the resulting vector, null-
ing small entries and leaving the rest almost untouched. This 
shrinkage can admit one of several forms, as shown in Fig-
ure 8: hard thresholding, soft thresholding, and one-sided soft 
thresholding, if the representation 1C  is assumed to be non-
negative. Put formally, this implies that the estimated represen-
tation is given by

	 ,D YTT
T

1 11C =t ^ h � (19)

where the operator ( )VTT1  operates element-wise, thresholding 
the entries of the vector V by the values found in the vector .T1

As we add more layers to the CSC model, we can apply the 
thresholding algorithm sequentially, each layer at a time. Thus, 
once 1C  has been estimated, we can now apply a second thresh-
olding algorithm to evaluate 2C  by

	
.D Y

D

DT T

TT
T

T
T

T
T

2

2 1

2 1

2 1

2 CC =

=

t t^

^ ^

h

hh
�

(20)
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∧
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Figure 7. Decompositions of an image from MNIST in terms of its nested sparse features ic  and multilayer convolutional dictionaries .D i
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This can be continued all the way to the K th  layer. Comparing 
(20) with the one written previously for the feed-forward CNN,

	 ( ) ,Y W W Y b bRef ReLU LU2 1 1 2= + +^ ^ h h � (21)

reveals a striking resemblance. These two formulas express the 
same procedure: a set of convolutions applied on ,Y  followed by 
a nonlinearity with a threshold, and proceeding this way as we 
dive into inner layers. The transposed dictionary Di  plays the 
role of a set of convolutions, the threshold Tk  parallels the bias 
vector ,bk  and the shrinkage operation stands for the ReLU. So, 
the inevitable conclusion is this: Assuming that our signals 
emerge from the ML-CSC model, the lay-
ered-thresholding algorithm for decomposing 
a given measurements vector Y is complete-
ly equivalent to the forward pass in CNNs.

The pursuit algorithm we have just pre-
sented, or the forward pass of the CNN for 
that matter, estimates the sparse representa-
tions k k

K
1C =" ,  that explain our signal. Why 

bother computing these hidden vectors? An 
additional assumption in our story is the fact 
that the labels associated with the data we are 
given are believed to depend on these repre-
sentations in a linearly separable way, and thus given ,k k

K
1C =

t" ,  
classification (or regression) is facilitated. In this spirit, a proper 
estimation of these vectors implies better classification results.

ML-CSC: A path to theoretical analysis of CNNs
The conclusion about the relation between the CNN’s forward-
pass and a layered-thresholding pursuit algorithm is thrilling by 
itself, but this connection has far more profound consequences. 
Now that we consider the input signal X as belonging to the 
ML-CSC model ( ,X D kMS i i

K
i i
K

1 1! = = ),"" ", , ,  given a noisy 
version of it, ,Y X E= +  the goal of the pursuit is quite clear—
approximating the sparse representations i i

K
1C =" ,  explaining 

this signal’s construction. Thus, we may pose intriguing new 
questions such as whether the sought representations are stably 
recoverable by the layered-thresholding algorithm.

Put more broadly, the model we have imposed on the input sig-
nals enables a new path of theoretical study of CNNs of unprec-
edented form, analyzing the performance of given architectures, 
and perhaps suggesting new ones in a systematic fashion. In the 
following, we give a taste from this new theoretical path, by ana-
lyzing the performance of the layered-thresholding algorithm, 
and considering alternatives to it.

Let us start by giving an answer to the question posed about 
the prospects of success of the layered-thresholding algorithm, in 
the form of the following theorem.

Theorem 3
Given ,Y X E= +  where ,X D kMS i i

K
i i
K

1 1! = ="" ", , , and E  
is a bounded noise disturbance, if iC  are sufficiently locally sparse,

	
( ) ( )

,D D2
1 1 1 1· ·, max

min

maxi
s

i i

i

i i

i
0 1

n n
eC

C

C

C
+ -3 f p � (22)

then the layered-hard thresholding algorithm (using the proper 
thresholds) finds the correct supports of all these representations, 
and in addition, ,,i i

p
i2
2# eC C- 3

t  where we define 
E ,

p
0 2e = 3  and for ,i K1 # #

	 .D 1·, ,
max

i i
p

i i i
s

i0 1 0ne eC C C= + -3 3-` ^ ^h h j � (23)

Putting many details aside, the main message we get here is 
quite exciting: we obtain a success guarantee for the forward-pass 
of CNN to find the proper locations of the nonzeros in all the rep-
resentations .i i

K
1C =" ,  Furthermore, the conditions for this success 

rely on the local sparsity of these representations and the mutual 
coherence of the dictionaries involved.

On the downside, however, we do see sev-
eral problems with the aforementioned result. 
First, observe that the conditions for success 
depend on the contrast factor min max

i iC C  
between the smallest and the largest nonzero 
in the representations. This implies that, for 
high-contrasted vectors, the conditions for 
success are much stricter. This sensitivity is 
not an artifact of the analysis, but rather a true 
and known difficulty that the thresholding 
algorithm carries with it.

Another troubling issue is an error growth that is seen as we 
proceed through the layers of the model. This growth is expected, 
due to the sequentiality of the layered-thresholding algorithm, 
propagating the errors and magnifying them from one layer to 
the next. Indeed, another problem is the fact that even if E is zero, 
namely, we are lucky to operate on a pure ML-CSC signal, the 
layered-thresholding algorithm induces an error in the inner lay-
ers, just as well.

ML-CSC: Better pursuit and implications
In the previously given analysis, we have exposed good features 
of the layered thresholding, alongside some sensitivities and 
weaknesses. Recall that the thresholding algorithm is the 
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Figure 8. Hard-, soft-, and one-sided soft-thresholding operators.

Assuming that our signals 
emerge from the ML-CSC 
model, the layered-
thresholding algorithm 
for decomposing a given 
measurements vector Y is 
completely equivalent to 
the forward pass in CNNs.
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simplest and crudest possible pursuit for sparsity-based signals. 
Why should we stick to it, if we are aware of better techniques? 
This takes us to the next discussion, in which we propose an 
alternative layered pursuit, based on the BP.

Consider the first layer of the ML-CSC model, described by 
the relations X D1 1C=  and .k,

s
1 0 1#C 3  This is, in fact, a reg-

ular CSC model, for which Theorem 2 provides the terms of suc-
cess of the BP, when applied on a noisy version of such a signal, 

.Y X E= +  Thus, solving

	 Y Darg min
2
1

1 1 1 2
2

1 1 1
1

mC C C= - +
C

t � (24)

with a properly chosen 1m  is guaranteed to perform well, giving 
a stable estimate of .1C

Consider now the second layer in the ML-CSC model, char-
acterized by D1 2 2C C=  and .k,

s
2 0 2#C 3  Even though we are 

not given ,1C  but rather a noisy version of it, ,1Ct  our analysis of 
the first stage provides an assessment of the noise power in this 
estimate. Thus, a second BP can be performed,

	 Darg min
2
1

2 1 2 2 2

2
2 2 1

2
mC C CC = - +

C

t t � (25)

with a properly chosen ,2m  and this again leads to a guaranteed 
stable estimate of .2C

We may proceed in this manner, proposing the layered-BP 
algorithm. Interestingly, such an algorithmic structure, coined 
deconvolutional networks [77], was proposed in the deep-learn-
ing literature in 2010, without a solid theoretical justification. 
Could we offer such a justification, now that our point of view is 
model based? The following theorem offers terms for the success 
of the layered-BP algorithm.

Theorem 4
Given ,Y X E= +  where ,X D kMS i i

K
i i
K

1 1! = ="" ", , , and E  
is a bounded noise disturbance, if iC  are sufficiently local-
ly sparse,

	
( )

,D3
1 1 1

,i
s

i
0 1

n
C +3 c m � (26)

then the layered BP (using the proper coefficients im ) is guaran-
teed to perform well:

■■ The support of iCt  is contained within that of the original iC  
for all .i K1 # #

■■ The estimation is stable,

	 ,,i i
p

i2 # eC C- 3
t � (27)

where

	 . ·     .E i K7 5 1, ,i
i p

i
p

j

i

2 0
1

6 # #e C= 3 3
=

% � (28)

■■ Every entry in iC  greater than / ,i i
p
0e C 3  is detected and 

included in the support, for all .i K1 # #

As we can see, the terms of success of the layered BP are far 
better than those of the layered thresholding. In particular, this 
method is no longer sensitive to the contrast of the nonzeros in ,iC  
and in addition, if E is zero, then this algorithm leads to a perfect 
recovery of all the sparse representations. On the down side, how-
ever, this algorithm also leads to an error growth as we dive into 
the layers if .E 0!  This is an artifact of our choice to perform the 
pursuit layer-wise sequentially, rather than holistically solving the 
entire problem in parallel. Indeed, the work reported in [75] offers 
an alternative, free of this flaw.

The last topic we would like to discuss in this section is the 
matter of the actual algorithm to use when implementing the lay-
ered-BP. Our goal is the solution of this chain of problems:

	 ,Darg min
2
1

k k k k
k

K
1 2

2
1

1
mC C C C= - +-

=C

t t$ . � (29)

where we have defined .Y0C =t

An appealing approximate solver for the core BP problem 
Y Dmin 1 2 2

2
1mC C- +C ^ h  is the iterative soft threshold-

ing algorithm (ISTA) [78], which applies the following iterative 
procedure (assuming the dictionary has been normalized so that 

)12< =D<  

	 .D Y DTt t T t1 1C CC = + -m
- -t t t^ ^ hh � (30)

Thus, if each of the K  layers of the model is managed using J  
iterations of the ISTA algorithm, and these steps are unfolded to 
form a long sequential process, we get an architecture with ·K J  
layers of a linear convolution operation followed by an element-
wise nonlinearity, very much reminiscent of the recurrent neural 
network structure. For example, for a model with K 01=  layers 
and using J 50=  iterations of ISTA, the network obtained con-
tains 500 layers (with a recurrent structure), and this gives a very 
illuminating perspective to the depth of typical networks.

Observe that our insight, as developed here, suggests that each 
J  iterations in this scheme should use the same dictionary ,Dk  
and thus when learning the network we can force this parameter 
sharing, reducing the number of overall learned parameters by 
factor 50. Moreover, recalling the comment on LISTA networks 
and their advantage in terms of number of unfolding [70], if 
one frees the convolutional operators from being defined by the 
respective dictionary, such a network could be implemented with 
significantly fewer layers.

Concluding remarks

Summary
We started this article by highlighting the importance of models 
in data processing, and then turned to describe one of these in 
depth: Sparseland, a systematic and highly effective such model. 
We then moved to CSC, with the hope to better treat images and 
other high-dimensional signals while operating locally, and 
accompanied this migration with the introduction of a new theo-
ry to substantiate this model. This brought us naturally to the 
ML-CSC, which gave us a bridge to the realm of deep learning. 
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Specifically, we have shown that handling 
ML-CSC signals amounts to CNNs of vari-
ous forms, all emerging naturally as deploy-
ments of pursuit algorithms. Furthermore, we 
have seen that this new way of looking at 
these architectures can be accompanied by 
an unprecedented ability to study their per-
formance, and identify the weaknesses and 
strengths of the ingredients involved. This 
was the broad story of this article, and there 
are two main take-home messages emerging 
from it.

■■ The backbone of our story is three para-
metric models for managing signals: 
Sparseland, CSC, and ML-CSC. All three are generative 
models, offering an explanation of the data by means of how 
it is synthesized. We have seen that this choice of models is 
extremely beneficial for both designing algorithms for serving 
such signals, and enabling their theoretical analysis.

■■ The ML-CSC model puts forward an appealing way to 
explain the motivation and origin of some common deep-
learning architectures. As such, this model and the line of 
thinking behind it poses a new platform for understanding and 
further developing deep-learning solutions. We hope that this 
work will provide some of the foundations for the much-
desired theoretical justification of deep learning.

Future research directions and open problems
The ideas we have outlined in this article open up numerous new 
directions for further research. Some of the more promising ones 
are given next.

■■ Dictionary learning: A key topic that we have deliberately 
paid less attention to in this article is the need to train the 
obtained networks to achieve their processing goals. In the 
context of the ML-CSC model, this parallels the need to learn 
the dictionaries Dk i k

K
=" ,  and the threshold vectors. Observe 

that all the theoretical study we have proposed relied on an 
unsupervised regime, in which the labels play no role. This 
should remind the readers of autoencoders, in which sparsity 
is the driving force behind the learning mechanism. Further 
work is required to extend the knowledge on dictionary learn-
ing, both practical and theoretical, to bring it to the ML-CSC 
model, and with this offer new ways to learn neural networks. 
The first such attempt appears in [75], and some of its results 
have been given in this article. 

The idea of training a series of cascaded dictionaries for 
getting an architecture mimicking that of deep learning has 
in fact appeared in earlier work [77], [79]–[83]. However, 
these attempts took an applicative and practical point of view 
and were never posed within the context of a solid mathemat-
ical ML model of the data, as in this work. In [77] and [79], 
the authors learned a set of convolutional dictionaries over 
multiple layers of abstraction in an unsupervised manner. In 
[80] and [81], the authors suggested using backpropagation 
rules for learning ML (nonconvolutional) dictionaries for 
CIFAR-10 classification, motivated by earlier work [82], [83] 

that showed how this was possible for a 
single layer setting. We believe that some 
of these ideas could become helpful in 
developing novel ML dictionary-learning 
algorithms, while relating to our formal 
model, thus preserving the relevance of 
its theoretical analysis.

■ � Pursuit algorithms: We introduced lay-
ered versions of the thresholding and the 
BP, and both are clearly suboptimal when 
it comes to projecting a signal to the 
ML-CSC model. Could we do better than 
these? The answer is positive, and such a 
progress has already appeared in [75].

	 Still, there is room for further improvements, both in handling 
the various layers in parallel and not sequentially, and also in 
better serving the local sparsity we are after. Recall that better 
pursuit algorithms implies new architectures and, with them, 
new horizons to the deep-learning practice.

■■ Theoretical analysis: The study presented here represents the 
very first steps in a road that could take us to far better and 
more informative performance bounds. The analysis we have 
shown is a worst-case one, and, as such, it is too pessimistic. 
Also, all of it relies strongly on the mutual coherence, a 
worst-case study that tends to present a gloomy perspective 
on the prospects of the investigated algorithms. In addition, as 
we migrate from the layered pursuit algorithms to more 
sophisticated solutions, we may expect better and more 
encouraging bounds.

More broadly, a complete theory for deep learning cannot 
limit itself to the data model and the architectures emerging 
from it, as this work does. Missing in our picture are answers 
to intriguing questions on the learning, optimization, and gen-
eralization performance facets of neural networks. We believe 
that these topics could be addressed while still relying on data 
models, of the kind posed in this work.

■■ Improving the model: Labels play no role in the study present-
ed in this article, and we have replaced them by the quest to 
recover the proper supports of the ideal representations or vec-
tors close to them in terms of the 2,  norm. While we did 
explain the underlying assumption behind this line of think-
ing, a broader model that takes the labels into account is very 
much needed. Indeed, rather than modeling the incoming sig-
nals, perhaps we should focus our modeling on the function 
that connects these to their corresponding labels.

■■ Deployment to practice: There is no doubt in our minds that 
the true and ultimate test for the theory we present will be its 
ability to further push the practice and performance of deep 
learning. The provided explanations on the used CNN archi-
tectures is a great start, but it must be followed by better 
understanding of more advanced ideas such as pooling, 
batch-normalization, dropout, and many other ideas that were 
found useful in practice. Beyond these, we hope to see this 
theory lead to new ideas that are simply impossible to devel-
op without the systematic approach that the model-based the-
ory unravels.

Put more broadly, the 
model we have imposed 
on the input signals 
enables a new path of 
theoretical study of CNNs 
of unprecedented form, 
analyzing the performance 
of given architectures,  
and perhaps suggesting 
new ones in a  
systematic fashion.
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