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Multilayer Convolutional Sparse Modeling:
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Abstract—The recently proposed multilayer convolutional
sparse coding (ML-CSC) model, consisting of a cascade of convolu-
tional sparse layers, provides a new interpretation of convolutional
neural networks (CNNs). Under this framework, the forward pass
in a CNN is equivalent to a pursuit algorithm aiming to estimate
the nested sparse representation vectors from a given input sig-
nal. Despite having served as a pivotal connection between CNNs
and sparse modeling, a deeper understanding of the ML-CSC is
still lacking. In this paper, we propose a sound pursuit algorithm
for the ML-CSC model by adopting a projection approach. We
provide new and improved bounds on the stability of the solution
of such pursuit and we analyze different practical alternatives to
implement this in practice. We show that the training of the fil-
ters is essential to allow for nontrivial signals in the model, and
we derive an online algorithm to learn the dictionaries from real
data, effectively resulting in cascaded sparse convolutional layers.
Last, but not least, we demonstrate the applicability of the ML-
CSC model for several applications in an unsupervised setting,
providing competitive results. Our work represents a bridge be-
tween matrix factorization, sparse dictionary learning, and sparse
autoencoders, and we analyze these connections in detail.

Index Terms—Convolutional sparse coding, multilayer pursuit,
convolutional neural networks, dictionary learning, sparse convo-

lutional filters.

EW ways of understanding real world signals, and propos-
N ing ways to model their intrinsic properties, have led to
improvements in signal and image restoration, detection and
classification, among other problems. Little over a decade ago,
sparse representation modeling brought about the idea that nat-
ural signals can be (well) described as a linear combination of
only a few building blocks or components, commonly known
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as atoms [1]. Backed by elegant theoretical results, this model
led to a series of works dealing either with the problem of the
pursuit of such decompositions, or with the design and learning
of better atoms from real data [2]. The latter problem, termed
dictionary learning, empowered sparse enforcing methods to
achieve remarkable results in many different fields from signal
and image processing [3]-[5] to machine learning [6]-[8].

Neural networks, on the other hand, were introduced around
forty years ago and were shown to provide powerful classi-
fication algorithms through a series of function compositions
[9], [10]. It was not until the last half-decade, however, that
through a series of incremental modifications these methods
were boosted to become the state-of-the-art machine learning
tools for a wide range of problems, and across many different
fields [11]. For the most part, the development of new variants of
deep convolutional neural networks (CNNs) has been driven by
trial-and-error strategies and a considerable amount of intuition.

Withal, a few research groups have begun providing theoret-
ical justifications and analysis strategies for CNNs from very
different perspectives. For instance, by employing wavelet fil-
ters instead of adaptive ones, the work by Bruna and Mallat
[12] demonstrated how scattering networks represent shift in-
variant analysis operators that are robust to deformations (in a
Lipschitz-continuous sense). The inspiring work of [13] pro-
posed a generative Bayesian model, under which typical deep
learning architectures perform an inference process. In [14],
the authors proposed a hierarchical tensor factorization analysis
model to analyze deep CNNs. Fascinating connections between
sparse modeling and CNN have also been proposed. In [15], a
neural network architecture was shown to be able to learn itera-
tive shrinkage operators, essentially unrolling the iterations of a
sparse pursuit. Building on this interpretation, the work in [16]
further showed that CNNss can in fact improve the performance
of sparse recovery algorithms.

A precise connection between sparse modeling and CNNs
was recently presented in [17], and its contribution is centered
in defining the Multi-Layer Convolutional Sparse Coding (ML-
CSC) model. When deploying this model to real signals, com-
promises were made in way that each layer is only approximately
explained by the following one. With this relaxation in the pur-
suit of the convolutional representations, the main observation
of that work is that the inference stage of CNNs — nothing but
the forward-pass — can be interpreted as a very crude pursuit
algorithm seeking for unique sparse representations. This is a
useful perspective as it provides a precise optimization objective
which, it turns out, CNNSs attempt to minimize.

1053-587X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-0946-1957
https://orcid.org/0000-0002-5028-2144
https://orcid.org/0000-0001-9031-8829
https://orcid.org/0000-0001-8131-6928
mailto:jsulam@global advance �reakcnt @ne penalty -@M cs.technion.ac.il
mailto:jsulam@global advance �reakcnt @ne penalty -@M cs.technion.ac.il
mailto:elad@cs.technion.ac.il
mailto:vardanp91@gmail.com
mailto:yromano@global advance �reakcnt @ne penalty -@M tx.technion.ac.il
mailto:yromano@global advance �reakcnt @ne penalty -@M tx.technion.ac.il

SULAM et al.: MULTILAYER CONVOLUTIONAL SPARSE MODELING: PURSUIT AND DICTIONARY LEARNING

The work in [17] further proposed improved pursuits for ap-
proximating the sparse representations of the network, or feature
maps, such as the Layered Basis Pursuit algorithm. Nonetheless,
as we will show later, neither this nor the forward pass serve
the ML-CSC model exactly, as they do not provide signals that
comply with the model assumptions. In addition, the theoretical
guarantees accompanying these layered approaches suffer from
bounds that become looser with the network’s depth. The lack
of a suitable pursuit, in turn, obscures how to properly sample
from the ML-CSC model, and how to train the dictionaries from
real data.

In this work we undertake a fresh study of the ML-CSC and of
pursuit algorithms for signals in this model. Our contributions
will be guided by addressing the following questions:

1) Given proper convolutional dictionaries, how can one

project! signals onto the ML-CSC model?

2) When will the model allow for any signal to be expressed
in terms of nested sparse representations? In other words,
is the model empty?

3) What conditions should the convolutional dictionaries sat-
isfy? and how can we adapt or learn them to represent
real-world signals?

4) How is the learning of the ML-CSC model related to
traditional CNN and dictionary learning algorithms?

5) What kind of performance can be expected from this
model?

The model we analyze in this work is related to several recent
contributions, both in the realm of sparse representations and
deep-learning. On the one hand, the ML-CSC model is tightly
connected to dictionary constrained learning techniques, such as
Chasing Butterflies approach [18], fast transform learning [19],
Trainlets [20], among several others. On the other hand, and
because of the unsupervised flavor of the learning algorithm,
our work shares connections to sparse auto-encoders [21], and
in particular to the k-sparse [22] and winner-take-all versions
[23].

In order to progressively answer the questions posed above,
we will first review the ML-CSC model in detail in Section
II. We will then study how signals can be projected onto the
model in Section III, where we will analyze the stability of the
projection problem and provide theoretical guarantees for prac-
tical algorithms. We will then propose a learning formulation in
Section IV-B, which will allow, for the first time, to obtain a
trained ML-CSC model from real data while being perfectly
faithful to the model assumptions. In this work we restrict our
study to the learning of the model in an unsupervised setting.
This approach will be further demonstrated on signal approx-
imation and unsupervised learning applications in Section V,
before concluding in Section VI.

II. BACKGROUND

A. Convolutional Sparse Coding

The Convolutional Sparse Coding (CSC) model assumes
a signal x € RY admits a decomposition as D;~,, where

By projection, we refer to the task of getting the closest signal to the one
given that obeys the model assumptions.
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Fig.1. The CSC model (top), and its ML-CSC extension by imposing a similar
model on «y; (bottom).

~, € RV™1 js sparse and D; € RY*N™1 has a convolutional
structure. More precisely, this dictionary consists of m; local
ni-dimensional filters at every possible location (Fig. 1 top).
An immediate consequence of this model assumption is the fact
that each jth patch Py jx € R"' from the signal x can be ex-
pressed in terms of a shift-invariant local model corresponding
to a stripe from the global sparse vector, S; ;v, € R(2m1=Dm1,
From now on, and for the sake of simplicity, we will drop the
first index on the stripe and patch extraction operators, simply
denoting the jth stripe from v, as S;~v;.

In the context of CSC, the sparsity of the representation is
better captured through the ¢ o, pseudo-norm [24]. This mea-
sure, as opposed to the traditional ¢, provides a notion of local
sparsity and it is defined by the maximal number of non-zeros
in a stripe from -y. Formally,

17115,00 = max |[Sillo- @

We kindly refer the reader to [24] for a more detailed descrip-
tion of this model, as well as extensive theoretical guarantees
associated with the model stability and the success of pursuit
algorithms serving it.

This model presents several characteristics that make it rele-
vant and interesting. On the one hand, CSC provides a systematic
and formal way to develop and analyze very popular and suc-
cessful patch-based algorithms in signal and image processing
[24]. From a more practical perspective, on the other hand, the
convolutional sparse model has recently received considerable
attention in the computer vision and machine learning com-
munities. Solutions based on the CSC have been proposed for
detection [25], compressed sensing [26] texture-cartoon sep-
aration [27], inverse problems [28]-[30] and feature learning
[31], [32], and different convolutional dictionary learning algo-
rithms have been proposed and analyzed [28], [33], [34]. Inter-
estingly, this model has also been employed in a hierarchical way
[35]-[38] mostly following intuition and imitating success-
ful CNNs’ architectures. This connection between convolu-
tional features and multi-layer constructions was recently made
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precise in the form of the Multi-Layer CSC model, which we
review next.

B. Multi Layer CSC

The Multi-Layer Convolutional Sparse Coding (ML-CSC)
model is a natural extension of the CSC described above, as it
assumes that a signal can be expressed by sparse representations
at different layers in terms of nested convolutional filters. Sup-
pose x = D;~,, for a convolutional dictionary D; € RV *Vm1
and an /) -sparse representationy; € R¥™1.One can cascade
this model by imposing a similar assumption on the represen-
tation -, i.e., 7v; = D27y, for a corresponding convolutional
dictionary Dy € RNm1xNms with my local filters and a 0,00
sparse “y,, as depicted in Fig. 1. In this case, D, is a also a
convolutional dictionary with local filters skipping m; entries
at a time” — as there are m; channels in the representation ~ .

Because of this multi-layer structure, vector ~y; can be viewed
both as a sparse representation (in the context of x = D+, ) or
as a signal (in the context of 7v; = Dsy~y,). Thus, one one can
refer to both its stripes (looking backwards to patches from x)
or its patches (looking forward, corresponding to stripes of ).
In this way, when analyzing the ML-CSC model we will not
only employ the / ,, norm as defined above, but we will also
leverage its patch counterpart, where the maximum is taken over
all patches from the sparse vector by means of a patch extractor
operator P;. In order to make their difference explicit, we will
denote them as [|v[|§ . and [¥|[f ., for stripes and patches,
respectively. In addition, we will employ the /5 o norm version,
naturally defined as ||| ., = max; ||S;||2, and analogously
for patches.

We now formalize the model definition:

Definition 1: ML-CSC model:

Given a set of convolutional dictionaries {D; }~_; of appropriate
dimensions, a signal x(v;) € R" admits a representation in
terms of the ML-CSC model, i.e. x(y;) € My, if

x=Divq, |‘71||(3oo <A,
Y1 = D2727 H’YQHS,OO < )‘2’
Y1 = DL’YL; H’YLHE)DO < )‘L'

Note that x(7y;) € M can also be expressed as x = DDy
...Dpv; . We refer to D) as the effective dictionary at the ith
level, i.e., D) = DD, ... D;. This way, one can concisely
write

x=Dy, 1<i<L. 2

Interestingly, the ML-CSC can be interpreted as a special case
of a CSC model: one that enforces a very specific structure on the
intermediate representations. We make this statement precise in
the following Lemma:

2This construction provides operators that are convolutional in the space
domain, but not in the channel domain — just as for CNNs.
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Fig. 2. From atoms to molecules: Illustration of the ML-CSC model for a
number 6. Two local convolutional atoms (bottom row) are combined to create
slightly more complex structures — molecules — at the second level, which are
then combined to create the global atom representing, in this case, a digit.

Lemma 1: Given the ML-CSC model described by the set
of convolutional dictionaries {D;}. ;, with filters of spa-
tial dimensions n; and channels m;, any dictionary D) =
D;D; ...D; is a convolutional dictionary with m; local atoms
of dimension n§"™ = >7"_, n; — (i —1). In other words, the
ML-CSC model is a structured global convolutional model.
The proof of this lemma is rather straight forward, and we
include it in the Supplementary Material I. Note that what was
denoted as the effective dimension at the ith layer is nothing
else than what is known in the deep learning community as the
receptive field of a filter at layer <. Here, we have made this
concept precise in the context of the ML-CSC model.

As it was presented, the convolutional model assumes that
every n-dimensional atom is located at every possible location,
which implies that the filter is shifted with strides of s = 1.
An alternative, which effectively reduces the redundancy of the
resulting dictionary, is to consider a stride greater than one. In
such case, the resulting dictionary is of size N x Nm, /s for
one dimensional signals, and N x N'my/s? for images. This
construction, popular in the CNN community, does not alter the
effective size of the filters but rather decreases the length of
each stripe by a factor of s in each dimension. In the limit, when
s = ny, one effectively considers non-overlapping blocks and
the stripe will be of length? m; — the number of local filters.
Naturally, one can also employ s > 1 for any of the multiple
layers of the ML-CSC model. We will consider s = 1 for all
layers in our derivations for simplicity.

The ML-CSC imposes a unique structure on the global dic-
tionary D(L) | as it provides a multi-layer linear composition of
simpler structures. In other words, D; contains (small) local
n;-dimensional atoms. The product D; D contains in each of
its columns a linear combination of atoms from D;, merging
them to create molecules. Further layers continue to create more
complex constructions out of the simpler convolutional building
blocks. We depict an example of such decomposition in Fig. 2
for a 3rd-layer convolutional atom of the digit “6”. While the

3When s = n1, the system is no longer shift-invariant, but rather invariant
with a shift of n samples.
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question of how to obtain such dictionaries will be addressed
later on, let us make this illustration concrete: consider this atom
to be given by xy = D;D»d3, where dj is sparse, producing
the upper-most image x¢. Denoting by 7 (d3) = Supp(ds), this
atom can be equally expressed as

x=D®d; = Y a?dj. 3)
JET(d3)

In words, the effective atom is composed of a few elements from
the effective dictionary D(?). These are the building blocks
depicted in the middle of Fig. 2. Likewise, focusing on the

fourth of such atoms, d@) = D;dy j,. In this particular case,

J4
lda.j, llo = 2, so we can express dg) = df/ll)dél‘jl + dfj)d;h
These two atoms from D; are precisely those appearing in the

bottom of the decomposition.

C. Pursuit in the Noisy Setting

Real signals might contain noise or deviations from the above
idealistic model assumption, preventing us from enforcing the
above model exactly. Consider the scenario of acquiring a sig-
nal y = x + v, where x € M and v is a nuisance vector of
bounded energy, ||v]js < &. In this setting, the objective is to
estimate all the representations ~y; which explain the measure-
ments y up to an error of &. In its most general form, this
pursuit is represented by the Deep Coding Problem (DCPf), as
introduced in [17]:

Definition 2: DCPX Problem:

For a global signal y, a set of convolutional dictionaries
{D;}L |, and vectors X and €:

(DCPS):  find {v,}F, st
ly = Divill2 < &o, 171 116,00 < A1
[v1 — Dayal2 < &, ”72“(5]00 <X
[ve-1 —=Dryrle < Ep-, v llte < AL

where \; and &; are the ith entries of A and &, respectively.
The solution to this problem was shown to be stable in terms
of a bound on the ¢, -distance between the estimated representa-
tions 4, and the true ones, =y;. These results depend on the char-
acterization of the dictionaries through their mutual coherence,
(D), which measures the maximal normalized correlation be-
tween atoms in the dictionary. Formally, assuming the atoms are
normalized as ||d;||2 = 1 Vi, this measure is defined as

(D) = max |d] d;. €
i#j
Relying on this measure, Theorem 5 in [17] shows that given a

signal x(=;) € P, contaminated with noise of known energy
&2, if the representations satisfy the sparsity constraint

L1 1
il <5 (14 =55 ). ®

4093
then the solution to the DCP given by {4, L | satisfies
2 2 li[ 4!
vi —4:lls < 4& - . (6)
’ L= 2l 115,00 = Duu(Dy)

Jj=1

In the particular instance of the DCPi where & = 0forl < <
L — 1, the above bound can be made tighter by a factor of 4'~!
while preserving the same form.

These results are encouraging, as they show for the first time
stability guarantees for a problem for which the forward pass
provides an approximate solution. More precisely, if the above
model deviations are considered to be greater than zero (&; > 0)
several layer-wise algorithms, including the forward pass of
CNN:gs, provide approximations to the solution of this problem
[17]. We note two remarks about these stability results:

1) The bound increases with the number of layers or the
depth of the network. This is a direct consequence of the
layer-wise relaxation in the above pursuit, which causes
these discrepancies to accumulate over the layers.

2) Given the underlying signal x(v;) € M, with represen-
tations {~,}%~_,, this problem searches for their corre-
sponding estimates {4, }~ ;. However, because at each
layer ||4,_, — D;¥;||2 > 0, this problem does not pro-
vide representations for a signal in the model. In other
words, X # D14, 4, # D27, and generally x ¢ M.

III. A PROJECTION ALTERNATIVE

In this section we provide an alternative approach to the prob-
lem of estimating the underlying representations «y; under the
same noisy scenario of y = x(v;) + v. In particular, we are
interested in projecting the measurements y onto the set M.
Consider the following projection problem:

Definition 3: ML-CSC Projection Py, :

For a signal y and a set of convolutional dictionaries {D;}£_,,
define the Multi-Layer Convolutional Sparse Coding projection
as:

(Pmy) : min
iHoa

x(7v;) € M.

(N
Note that this problem differs from the DCP§ counterpart in
that we seek for a signal close to y, whose representations -y;
giverise to x(y,;) € M. This is more demanding (less general)
than the formulation in the DCP%. Put differently, the Py,
problem can be considered as a special case of the DCPf\ where
model deviations are allowed only at the outer-most level. Recall
that the theoretical analysis of the DCP4 problem indicated that
the error thresholds should increase with the layers. Here, the
‘P, problem suggests a completely different approach.

Iy =x(v)ll2 st

A. Stability of the Projection P,

Giveny = x(7y;) + v, one can seek for the underlying repre-
sentations ~y; through either the DCPf or Py, problem. In light
of the above discussion and the known stability result for the
DCPi problem, how close will the solution of the Py, problem
be from the true set of representations? The answer is provided
through the following result.
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Theorem 4: Stability of the solution to the P4, problem:

Suppose x(7;) € M is observed throughy = x + v, where
v is a bounded noise vector, [|[v|ls < &, and ||, ][5 . = i <
$(1+ ﬁ), for 1 <4 < L. Consider the set {¥,}~_, to be
the solution of the P4, problem. Then,

483
2]l 00 — Du(DO)

i = Aills < 17— ®)

For the sake of brevity, we include the proof of this claim in
the Supplementary Material II. However, we note a few remarks:

1) The obtained bounds are not cumulative across the layers.
In other words, they do not grow with the depth of the
network.
Unlike the stability result for the DCPf problem, the as-
sumptions on the sparse vectors -y, are given in terms of
the mutual coherence of the effective dictionaries D(*).
Interestingly enough, we will see in the experimental sec-
tion that one can in fact have that ;(DU~1) > (D)
in practice; i.e., the effective dictionary becomes inco-
herent as it becomes deeper. Indeed, the deeper layers
provide larger atoms with correlations that are expected
to be lower than the inner products between two small
local (and overlapping) filters.
While the conditions imposed on the sparse vectors -y;
might seem prohibitive, one should remember that this
follows from a worst case analysis. Moreover, one can
effectively construct analytic nested convolutional dictio-
naries with small coherence measures, as shown in [17].

Interestingly, one can also formulate bounds for the stability
of the solution, i.e. ||y; — 4;|/3, which are the tightest for the
inner-most layer, and then increase as one moves to shallower
layers — precisely the opposite behavior of the solution to the
DCPf‘ problem. This result, however, provides bounds that are
generally looser than the one presented in the above theorem,
and so we defer this to the Supplementary Material.

2)

3)

B. Pursuit Algorithms

We now focus on the question of how one can solve the above
problems in pracice. As shown in [17], one can approximate
the solution to the DCPf in a layer-wise manner, solving for
the sparse representations #; progressively from¢=1,..., L.
Surprisingly, the Forward Pass of a CNN is one such algorithm,
yielding stable estimates. The Layered BP algorithm was also
proposed, where each representation ; is sparse coded (in a
Basis Pursuit formulation) given the previous representation
%,_; and dictionary D;. As solutions to the DCPf problem,
these algorithms inherit the layer-wise relaxation referred above,
which causes the theoretical bounds to increase as a function of
the layers or network depth.

Moving to the variation proposed in this work, how can one
solve the Py, problem in practice? Applying the above layer-
wise pursuit is clearly not an option, since after obtaining a nec-
essarily distorted estimate <; we cannot proceed with equalities
for the next layers, as «y; does not necessarily have a perfectly
sparse representation with respect to D,. Herein we present a

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 15, AUGUST 1, 2018

Algorithm 1: ML-CSC Pursuit.

Input: y, {D;}, k;
41, + Pursuit(y, D) k);
for j=1,...,1do
L -1 < D%
return {¥;};

simple approach based on a global sparse coding solver which
yields provable stable solutions.

Consider Algorithm 1. This approach circumvents the prob-
lem of sparse coding the intermediate features while guarantee-
ing their exact expression in terms of the following layer. This
is done by first running a Pursuit for the deepest representation
through an algorithm which provides an approximate solution
to the following problem:

min [y = Dy s |1yl < k. ©)

Once the deepest representation has been estimated, we pro-
ceed by obtaining the remaining ones by simply applying their
definition, thus assuring that x = D4, € M,. While this
might seem like a dull strategy, we will see in the next sec-
tion that, if the measurements y are close enough to a signal in
the model, Algorithm 1 indeed provides stable estimates ;. In
fact, the resulting stability bounds will be shown to be generally
tighter than those existing for the layer-wise pursuit alternative.
Moreover, as we will later see in the Results section, this ap-
proach can effectively be harnessed in practice in a real-data
scenario.

C. Stability Guarantees for Pursuit Algorithms

Given a signal y = x(v;) + v, and the respective solution
of the ML-CSC Pursuit in Algorithm 1, how close will the
estimated 7, be to the original representations =y, ? These bounds
will clearly depend on the specific Pursuit algorithm employed
to obtain 4. In what follows, we will present two stability
guarantees that arise from solving this sparse coding problem
under two different strategies: a greedy and a convex relaxation
approach. Before diving in, however, we present two elements
that will become necessary for our derivations.

The first one is a property that relates to the propagation of
the support, or non-zeros, across the layers. Given the support
of a sparse vector 7 = Supp(~), consider dictionary D7 as
the matrix containing only the columns indicated by 7. Define
ID7% =31, [[RiD7||%, where R; extracts the ith row of
the matrix on its right-hand side. In words, |D7|% simply
counts the number of non-zero rows of Ds. With it, we now
define the following property:

Definition 5: Non Vanishing Support (N.V.S.):

A sparse vector «y with support 7 satisfies the N.V.S property
for a given dictionary D if

D7l = ID7lI%

(10)
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Intuitively, the above property implies that the entries in -y
will not cause two or more atoms to be combined in such a
way that (any entry of) their supports cancel each other. Notice
that this is a very natural assumption to make. Alternatively,
one could assume the non-zero entries from -« to be Gaussian
distributed, and in this case the N.V.S. property holds a.s.

A direct consequence of the above property is that of max-
imal cardinality of representations. If - satisfies the N.V.S
property for a dictionary D, and 4 is another sparse vector
with equal support (i.e., Supp(y) = Supp(7)), then necessar-
ily Supp(D¥) € Supp(D~y), and thus [Dv(lo = [[D7l|o. This
follows from the fact that the number of non-zeros in D4 cannot
be greater than the sum of non-zero rows from the set of atoms,
Dr.

The second element concerns the local stability of the Stripe-
RIP, the convolutional version of the Restricted Isometric Prop-
erty [39]. As defined in [24], a convolutional dictionary D sat-
isfies the Stripe-RIP condition with constant ¢, if, for every ~
such that [|v[[§ . =,

(1 =d0)ll7l3 < D5 < @+ )5 (11)

The S-RIP bounds the maximal change in (global) energy of a
£y, oo-sparse vector when multiplied by a convolutional dictio-
nary. We would like to establish an equivalent property but in a
local sense. Recall the ||x||5 . norm, given by the maximal norm
of a patch from x, i.e. ||x||p = max;||P;x||2. Analogously,
one can consider ||v||5 ., = max; ||S;y||2 to be the maximal
norm of a stripe from 'y

Now, is [[D¥||§ ., nearly isometric? The (partially affirma-
tive) answer is given in the form of the following Lemma, which
we prove in the Supplementary Material II1.

Lemma 2: Local one-sided near isometry property:

If D is a convolutional dictionary satisfying the Stripe-RIP
condition in (11) with constant J;., then

D55 < (1+6) Iv]2%

This result is worthy in its own right, as it shows for the
first time that not only the CSC model is globally stable for
4y, ~-sparse signals, but that one can also bound the change in
energy in a local sense (in terms of the {5 ,, norm). While the
above Lemma only refers to the upper bound of ||D*7||§’;O, we
conjecture that an analogous lower bound can be shown to hold
as well.

With these elements, we can now move to the stability of the
solutions provided by Algorithm 1:

Theorem 6: Stable recovery of the Multi-Layer Pursuit Al-
gorithm in the convex relaxation case:

Suppose a signal x(=;) € M is contaminated with locally-
bounded noise v, resulting in y = x + v, o Zep. As-
sume that all representations ~y; satisfy the N.V.S. property for
the respective dictionaries D;, and that ||, || . = A < 3(1 +

H()oc
)f0r1<z<Land||'yL :>\Lf (1+ (DU))

12)

,u( H[Joo

Let

Y = argmmHy DE |3 + Colvll1, (13)

for (; = 4ep,and set¥y,_; = D;%,,i=L,...,1. Then,
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1) Supp(¥;) € Supp(;),
3c
2) 17 —vills o < €LH]':7:+1 =5

hold for every layer 1 < i < L, where ez, = 2 ¢y, /|7, 1, o0 1

the error at the last layer, and ¢; depends on the ratio between
the local dimensions of the layers, ¢; = (2ol

Theorem 7: Stable recovery of the Multi- Layer Pursuit Al-
gorithm in the greedy case:

Suppose a signal x(y;) € M is contaminated with energy-
bounded noise v, such that y = y —x[[2 <&, and
€0 = ||v]|5 - Assume that all representations ~y; satisfy the
N.V.S. property for the respective dictionaries D;, with

||'YZ||6730 = )\7‘, < %(1 + m), for 1 S 7 S L, and

, 1 1 1 €
H7 Hs 00 <3 (1 + ) - ’ min |’ (14)
El0ee ™2 p(DB) ) p(DE)) - [ypin]

where v is the minimal entry in the support of -y, . Consider
approximating the solution to the Pursuit step in Algorithm 1
by running Orthogonal Matching Pursuit for || ||o iterations.
Then, for every ith layer,

1) Supp(¥;) € Supp(v;), ,
3 )L—z

2 % =ilb < i

The proofs of both Theorems 6 and 7 are included in the
Supplementary Material IV-A and IV-B, respectively. The co-
efficient ¢; refers to the ratio between the filter dimensions
at consecutive layers, and assuming n; ~ n;,; (which indeed
happens in practice), this coefficient is roughly 2. Importantly,
and unlike the bounds provided for the layer-wise pursuit algo-
rithm, the recovery guarantees are the tightest for the inner-most
layer, and the bound increases slightly towards shallower rep-
resentations. The relaxation to the ¢, norm, in the case of the
BP formulation, provides local error bounds, while the guaran-
tees for the greedy version, in its OMP implementation, yield a
global alternative.

Before proceeding, one might wonder if the above conditions
imposed on the representations and dictionaries are too severe
and whether the set of signals satisfying these is empty. This is,
in fact, not the case. As shown in [17], multi-layer convolutional
dictionaries can be constructed by means of certain wavelet
functions, effectively achieving mutual coherence values in the
order of 1073, leaving ample room for sampling sparse repre-
sentations satisfying the theorems’ assumptions. On the other
hand, imposing a constraint on the number of non-zeros in a
representation «,_; = D;~y; implies that part of the support of
the atoms in D; will be required to overlap. The N.V.S. property
simply guarantees that whenever these overlaps occur, they will
not cancel each other. Indeed, this happens with probability 1 if
the non-zero coefficients are drawn from a Normal distribution.
We further comment and exemplify this in the Supplementary
Material IV-C.

D. Projecting General Signals

In the most general case, i.e. removing the assumption that y
is close enough to a signal in the model, Algorithm 1 by itself
might not solve P, . Consider we are given a general signal y
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Algorithm 2: ML-CSC Projection Algorithm.
Init: x* =0 ;
for k=1:); do

AL < OMP(y, D& k) ;

for j=L:—-1:1do
| Aj-1 < DyA;s

if [|9i]|8,0c > Ai for any 1 < i < L then
| break;

else
L x* «+ DO4;;

return x*

and a model My, and we run the ML-CSC Pursuit with k = A\,
obtaining a set of representations {%; }. Clearly ||y, [[§ » < Ar.
Yet, nothing guarantees that [|9;|[5 ,, < A; for i < L. In other
words, in order to solve P, one must guarantee that all sparsity
constraints are satisfied.

Algorithm 2 progressively recovers sparse representations to
provide a projection for any general signal y. The solution is
initialized with the zero vector, and then the OMP algorithm
is applied with a progressively larger ¢, o, constraint on the
deepest representation*, from 1 to Az. The only modification
required to run the OMP in this setting is to check at every itera-
tion the value of || ||§ ., and to stop accordingly. At each step,
given the estimated L; the intermediate features and their £; o
norms, are computed. If all sparsity constraints are satisfied,
then the algorithm proceeds. If, on the other hand, any of the
constraints is violated, the previously computed x* is reported
as the solution. Note that this algorithm can be improved: if a
constraint is violated, one might consider back-tracking the ob-
tained deepest estimate and replacing the last obtained non-zero
by an alternative solution, which might allow for the interme-
diate constraints to be satisfied. For simplicity, we present the
completely greedy approach as in Algorithm 2.

This algorithm can be shown to be a greedy approximation to
an optimal algorithm, under certain assumptions, and we pro-
vide a sketch of the proof of this claim in the Supplementary
Material IV-D. Clearly, while Algorithms 1 and 2 were pre-
sented separately, they are indeed related and one can certainly
combine them into a single method. The distinction between
them was motivated by making the derivations of our theoreti-
cal analysis and guarantees easier to grasp. Nevertheless, stating
further theoretical claims without the assumption of the signal
y being close to an underlying x(-;) € M, is non-trivial, and
we defer a further analysis of this case for future work.

E. Summary - Pursuit for the ML-CSC

Let us briefly summarize what we have introduced so far.
We have defined a projection problem, P,,, seeking for the
closest signal in the model M to the measurements y. We

“Instead of repeating the pursuit from scratch at every iteration, one might-
warm start the OMP algorithm by employing current estimate, <y , as initial
condition so that only new non-zeros are added.
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have shown that if the measurements y are close enough to a
signal in the model, i.e. y = x(7y;) + v, with bounded noise v,
then the ML-CSC Pursuit in Algorithm 1 manages to obtain ap-
proximate solutions that are not far from these representations,
by deploying either the OMP or the BP algorithms. In partic-
ular, the support of the estimated sparse vectors is guaranteed
to be a subset of the correct support, and so all 4, satisfy the
model constraints. In doing so we have introduced the N.V.S.
property, and we have proven that the CSC and ML-CSC mod-
els are locally stable. Lastly, if no prior information is known
about the signal y, we have proposed an OMP-inspired algo-
rithm that finds the closest signal x(=y;) to any measurements
y by gradually increasing the support of all representations -;
while guaranteeing that the model constraints are satisfied.

IV. LEARNING THE MODEL

The entire analysis presented so far relies on the assumption
of the existence of proper dictionaries D, allowing for corre-
sponding nested sparse features ~y;. Clearly, the ability to obtain
such representations greatly depends on the design and proper-
ties of these dictionaries.

While in the traditional sparse modeling scenario certain
analytically-defined dictionaries (such as the Discrete Cosine
Transform) often perform well in practice, in the ML-CSC case
it is hard to propose an off-the-shelf construction which would
allow for any meaningful decompositions. To see this more
clearly, consider obtaining “y; with Algorithm 1 removing all
other assumptions on the dictionaries D;. In this case, nothing
will prevent 7v; _; = D4, from being dense. More generally,
we have no guarantees that any collection of dictionaries would
allow for any signal with nested sparse components ;. In other
words, how do we know if the model represented by {D; }£ ,
is not empty?

To illustrate this important point, consider the case where
D; are random — a popular construction in other sparsity-
related applications. In this case, every atom from the dictio-
nary D, will be a random variable d} ~ N(0,0%1). In this
case, one can indeed construct v, with [y, [[§ », <2, such
that every entry from y; _; = Dy~ will be a random variable
i ~N(0,0%),V j. Thus, Pr(y; , =0) = 0. As we see,
there will not exist any sparse (or dense, for that matter) =y,
which will create a sparse 7y _; . In other words, for this choice
of dictionaries, the ML-CSC model is empty.

A. Sparse Dictionaries

From the discussion above one can conclude that one of the
key components of the ML-CSC model is sparse dictionaries: if
both 7, and v, _; = Dy~ are sparse, then atoms in D must
indeed contain only a few non-zeros. We make this observation
concrete in the following lemma.

Lemma 3: Dictionary Sparsity Condition
Consider the ML-CSC model M described by the dictionar-
ies {D;}X | and the layer-wise { -sparsity levels Aj, \s,
<oy Ap. Given g [[vLl[f <AL and constants c¢; =
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[22-1-17, the signal x = D)y, € My if

n;
Ai—1
AiCi ’

The simple proof of this Lemma is included in the Supple-
mentary Material V. Notably, while this claim does not tell us if
a certain model is empty, it does guarantee that if the dictionaries
satisfy a given sparsity constraint, one can simply sample from
the model by drawing the inner-most representations such that
7L 1155 < Az. One question remains: how do we train such
dictionaries from real data?

B. Learning Formulation

One can understand from the previous discussion that there
is no hope in solving the P, problem for real signals without
also addressing the learning of dictionaries D; that would allow
for the respective representations. To this end, considering the
scenario where one is given a collection of K training signals,
{y* }le, we upgrade the P4, problem to a learning setting in
the following way:

min

K
(v*1.{D;} Z " —x"(v§, D)5 st

k=1

{ xF € M s
(16)
We have included the constraint of every dictionary atom to
have a unit norm to prevent arbitrarily small coefficients in the
representations 'yf“ . This formulation, while complete, is difficult
to address directly: The constraints on the representations -y, are
coupled, just as in the pursuit problem discussed in the previous
section. In addition, the sparse representations now also depend
on the variables D;. In what follows, we provide a relaxation of
this cost function that will result in a simple learning algorithm.
The problem above can also be understood from the perspec-
tive of minimizing the number of non-zeros in the representa-
tions at every layer, subject to an error threshold — a typical
reformulation of sparse coding problems. Our main observation
arises from the fact that, since «y; _; is function of both D and
71, one can upper-bound the number of non-zeros in v, _; by
that of «; . More precisely,

Ivr-1l5,00 < cLIDrllollYLllf, oo 17

where c;, is a constant’. Therefore, instead of minimizing the
number of non-zeros in 7y _;, we can address the minimization
of its upper bound by minimizing both ||y ||j -, and || Dy ||o.
This argument can be extended to any layer, and we can gener-
ally write

L
illioe < ¢ TT IDsllollvolly -

j=i+l

(18)

In this way, minimizing the sparsity of any :th representation
can be done implicitly by minimizing the sparsity of the last

SFrom [17], we have that ||y, _; Hgm <|IDrllollvLII§. - From here, and

denoting by ¢y, the upper-bound on the number of patches in a stripe from ~y;, _;
2n —1
|' L;l“

given by ¢;, = T

. we can obtain a bound to ||y, 1 [|5 -
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layer and the number of non-zeros in the dictionaries from layer
(i + 1) to L. Put differently, the sparsity of the intermediate
convolutional dictionaries serve as proxies for the sparsity of the
respective representation vectors. Following this observation,
we now recast the problem in Equation (16) into the following
Multi-Layer Convolutional Dictionary Learning Problem:

min

s L
YD }Z ly* = DDy ...Dryh |2 + ZC7||D7||O
L) i

k=1 =2

Pl <20
Under this formulation, this problem seeks for sparse represen-
tations 'yf for each example y*, while forcing the intermediate
convolutional dictionaries (from layer 2 to L) to be sparse. The
reconstructed signal, x = D;~y,, is not expected to be sparse,
and so there is no reason to enforce this property on D;. Note
that there is now only one sparse coding process involved —
that of 4% — while the intermediate representations are never
computed explicitly. Recalling the theoretical results from the
previous section, this is in fact convenient as one only has to
estimate the representation for which the recovery bound is the
tightest.

Following the theoretical guarantees presented in Section III,
one can alternatively replace the ¢; o, constraint on the deepest
representation by a convex ¢; alternative. The resulting formu-
lation resembles the lasso formulation of the Py, problem, for
which we have presented theoretical guarantees in Theorem 6.
In addition, we replace the constraint on the ¢, of the dictio-
nary atoms by an appropriate penalty term, recasting the above
problem into a simpler (unconstrained) form:

K
Z ly" =DiD; ... DrAi 5

min
¥i hAD}
L L
+0> IDillE + > GIDs o + Ayl 20)
i=1 i=2
where || - || » denotes the Frobenius norm. The problem in Equa-

tion (20) is highly non-convex, due to the ¢, terms and the
product of the factors. In what follows, we present an online al-
ternating minimization algorithm, based on stochastic gradient
descent, which seeks for the deepest representation ~; and then
progressively updates the layer-wise convolutional dictionaries.

For each incoming sample y* (or potentially, a mini-batch),
we will first seek for its deepest representation 4% considering
the dictionaries fixed. This is nothing but the P, problem in
(7), which was analyzed in detail in the previous sections, and
its solution will be approximated through iterative shrinkage
algorithms. Also, one should keep in mind that while represent-
ing each dictionary by D; is convenient in terms of notation,
these matrices are never computed explicitly — which would be
prohibitive. Instead, these dictionaries (or their transpose) are
applied effectively through convolution operators. In turn, this
implies that images are not vectorized but processed as 2 di-
mensional matrices (or 3-dimensional tensors for multi-channel
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Algorithm 3: Multi-Layer Convolutional Dictionary
Learning.

Data: Training samples {yx}~_,, initial convolutional
dictionaries {D;}L;
for k=1,...,K do
Draw y; at random;
Sparse Coding:
v ¢ argmin [[yx — DEylls + Ayl
Update Diztonaries:
fori=1L,...,2do
forr=1,...,T do
| DI He, D] =9V (D] ;

for r = 1,...,T do
| DI« Di =V f(D]);

images). In addition, these operators are very efficient due to
their high sparsity, and one could in principle benefit from spe-
cific libraries to boost performance in this case, such as the one
in [40].

Given the obtained v¥ , we then seek to update the respective
dictionaries. As it is posed — with a global ¢, norm over each
dictionary — this is nothing but a generalized pursuit as well.
Therefore, for each dictionary D;, we minimize the function
in Problem (20) by applying T iterations of projected gradi-
ent descent. This is done by computing the gradient of the ¢,
terms in Problem (20) (call it f(D;)) with respect to a each
dictionary D; (i.e., V f(D;)), making a gradient step and then
applying a hard-thresholding operation, Hc, (-), depending on
the parameter ¢;. This is simply an instance of the Iterative Hard
Thresholding algorithm [41]. In addition, the computation of
V f(D;) involves only multiplications the convolutional dictio-
naries for the different layers. The overall algorithm is depicted
in Algorithm 3, and we will expand on further implementation
details in the results section.

The parameters of the models involve the ¢; penalty of the
deepest representation, i.e. A, and the parameter for each dictio-
nary, (;. The first parameter can be set manually or determined
so as to obtain a given given representation error. On the other
hand, the dictionary-wise (; parameters are less intuitive to es-
tablish, and the question of how to set these values for a given
learning scenario remains a subject of current research. Never-
theless, we will show in the experimental section that setting
these manually results in effective constructions.

Note this approach can also be employed to minimize Prob-
lem (19) by introducing minor modifications: In the sparse cod-
ing stage, the Lasso is replaced by a ¢ ., pursuit, which can
be tackled with a greedy alternative as the OMP (as described
in Theorem 7) or by an Iterative Hard Thresholding alternative
[41]. In addition, one could consider employing the ¢; norm
as a surrogate for the ¢, penalty imposed on the dictionaries.
In this case, their update can still be performed by the same
projected gradient descent approach, though replacing the hard
thresholding with its soft counterpart.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 15, AUGUST 1, 2018

Before moving on, and even though an exhaustive compu-
tational complexity analysis is out of the scope of this paper,
we want to briefly comment on the general aspects of the algo-
rithm’s complexity. For a particular network architecture (num-
ber of layers, number of filters per layer, filter sizes, etc) let
us denote by C the complexity of applying the forward pass —
or in other words, multiplying by D" )" —onan input image,
or a minibach (i.e., for each kth iteration). The sparse coding
step in our algorithm is carried with iterative shrinkage meth-
ods, and assuming these algorithms are run for 7 iterations, the
complexity incurred in each sparse coding step is® O(7C). The
update of the dictionaries, on the other hand, requires comput-
ing the gradient for each set of filters. Each of these gradients
involves, roughly speaking, the computation of yet another for-
ward and backward pass’. In this way, the dictionary update
stage is O(LTC). Note that we are disregarding the shrinkage
operators both on the representations and on the filters, which
are entry-wise operations that are negligible when compared to
applying DX or its transpose. As can be seen, the complexity
of our algorithm is approximately (7 + 7'L) times that of a simi-
lar CNNs architectures. Finally, note that we are not considering
the (important) fact that, in our case, the convolutional kernels
are sparse, and as such they may incur in significantly cheaper
computations. This precise analysis, and how to maximize the
related computational benefit, is left for future work.

C. Connection to Related Works

Naturally, the proposed algorithm has tight connections to
several recent dictionary learning approaches. For instance, our
learning formulation is closely related to the Chasing Butterflies
approach in [18], and our resulting algorithm can be interpreted
as a particular case of the FAUST method, proposed in the in-
spiring work from [42]. FAUST decomposes linear operators
into sparse factors in a hierarchical way in the framework of
a batch learning algorithm, resulting in improved complexity.
Unlike that work, our multi-layer decompositions are not only
sparse but also convolutional, and they are updated within a
stochastic optimization framework. The work in [19], on the
other hand, proposed a learning approach where the dictionary
is expressed as a cascade of convolutional filters with sparse
kernels, and they effectively showed how this approach can be
used to approximate large-dimensional analytic atoms such as
those from wavelets and curvelets. As our proposed approach
effectively learns a sparse dictionary, our work also shares simi-
larities with the double-sparsity work from [43]. In particular, in
its Trainlets version [20], the authors proposed to learn a dictio-
nary as a sparse combination of cropped wavelets atoms. From
the previous comment on the work from [19], this could also
potentially be expressed as a product of sparse convolutional
atoms. All these works, as well as our approach, essentially en-
force extra regularization into the dictionary learning problem.

SEach such iteration actually involves the application of a forward and back-

ward pass, resulting from the fact that one needs to apply D(£) and DT,

"The dictionary gradients can actually be computed more efficiently if in-
termediate computations are saved (and stored), incurring in O(L log, (L))
convolution operators. Thus, in this case the dictionary update stage is
O(logy (L)T'C). We defer the implementation of this more efficient algorithm
for future work.
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As aresult, these methods perform better in cases with corrupted
measurements, in high dimensional settings, and in cases with
limited amount of training data (see [20], [43]).

What is the connection between this learning formulation
and that of deep convolutional networks? Recalling the analysis
presented in [17], the Forward Pass is nothing but a layered non-
negative thresholding algorithm, the simplest form of a pursuit
for the ML-CSC model with layer-wise deviations. Therefore,
if the pursuit for 4, in our setting is solved with such an al-
gorithm, then the problem in (20) implements a convolutional
neural network with only one RELU operator at the last layer,
with sparse-enforcing penalties on the filters. Moreover, due the
data-fidelity term in our formulation, the proposed optimization
problem provides nothing but a convolutional sparse autoen-
coder. As such, our work is related to the extensive literature in
this topic. For instance, in [21], sparsity is enforced in the hid-
den activation layer by employing a penalty term proportional
to the KL divergence between the hidden unit marginals and a
target sparsity probability.

Other related works include the k-sparse autoencoders [22],
where the hidden layer is constrained to having exactly k£ non-
zeros. In practice, this boils down to a hard thresholding step of
the hidden activation, and the weights are updated with gradient
descent. In this respect, our work can be thought of a general-
ization of this work, where the pursuit algorithm is more so-
phisticated than a simple thresholding operation, and where the
filters are composed by a cascade of sparse convolutional filters.
More recently, the work in [23] proposed the winner-take-all au-
toencoders. In a nutshell, these are non-symmetric autoencoders
having a few convolutional layers (with ReLu non-linearities)
as the encoder, and a simple linear decoder. Sparsity is enforced
in what the authors refer to as “spatial” and a “lifetime” sparsity.

Finally, and due to the fact that our formulation effectively
provides a convolutional network with sparse kernels, our ap-
proach is reminiscent of works attempting to sparsify the filters
in deep learning models. For instance, the work in [40] showed
that the weights of learned deep convolutional networks can
be sparsified without considerable degradation of classification
accuracy. Nevertheless, one should perpend the fact that these
works are motivated merely by cheaper and faster implementa-
tions, whereas our model is intrinsically built by theoretically
justified sparse kernels. We do not attempt to compare our ap-
proach to such sparsifying methods at this stage, and we defer
this to future work.

In light of all these previous works, the practical contribution
of the learning algorithm presented here is to demonstrate, as
we will see in the following Experiments section, that our online
block-coordinate descent method can be effectively deployed in
an unsupervised setting competing favorably with state of the
art dictionary learning and convolutional network auto-encoders
approaches.

V. EXPERIMENTS

We now provide experimental results to demonstrate several
aspects of the ML-CSC model. As a case-study, we consider
the MNIST dataset [44]. We define our model as consisting of
3 convolutional layers: the first one contains 32 local filters of
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size 7 x 7 (with a stride of 2), the second one consists of 128
filters of dimensions 5 x 5 x 32 (with a stride of 1), and the
last one contains 1024 filters of dimensions 7 x 7 x 128. At the
third layer, the effective size of the atoms is 28 — representing
an entire digit.

Training is performed with Algorithm 3, using a mini-batch
of 100 samples per iteration. For the Sparse Coding stage, we
leverage an efficient implementation of FISTA [45], and we
adjust the penalty parameter A to obtain roughly 15 non-zeros
in the deepest representation ;. The (; parameters, the penalty
parameters for the dictionaries sparsity levels, are set manually
for simplicity. In addition, and as it is commonly done in various
Gradient Descent methods, we employ a momentum term for
the update of the dictionaries D; within the projected gradient
descent step in Algorithm 3, and set its memory parameter to
0.9. The step size is set to 1, the update dictionary iterations is set
as T =1, ¢t = 0.001, and we run the algorithm for 20 epochs,
which takes approximately 30 minutes. Our implementation
uses the Matconvnet library, which leverages efficient functions
for GPU®. No pre-processing was performed, with the exception
of the subtraction of the mean image (computed on the training
set).

We depict the evolution of the Loss function during training in
Fig. 4, as well as the sparsity of the second and third dictionaries
(i.e., 1 minus the number of non-zero coefficients in the filters
relative to the filters dimension) and the average residual norm.
The resulting model is depicted in Fig. 3. One can see how
the first layer is composed of very simple small-dimensional
edges or blobs. The second dictionary, D, is effectively 99%
sparse, and its non-zeros combine a few atoms from D; in
order to create slightly more complex edges, as the ones in
the effective dictionary D(?). Lastly, D3 is 99.8% sparse, and
it combines atoms from D(?) in order to provide atoms that
resemble different kinds (or parts) of digits. These final global
atoms are nothing but a linear combination of local small edges
by means of convolutional sparse kernels.

Interestingly, we have observed that the mutual coherence of
the effective dictionaries do not necessarily increase with the
layers, and they often decrease with the depth. While this mea-
sure relates to worst-case analysis conditions and do not mean
much in the context of practical performance, one can see that
the effective dictionary indeed becomes less correlated as the
depth increases. This is intuitive, as very simple edges — and
at every location — are expected to show large inner products,
larger than the correlation of two more complex number-like
structures. This effect can be partially explained by the dictio-
nary redundancy: having 32 local filters in D, (even while using
a stride of 2) implies a 8-fold redundancy in the effective dic-
tionary at this level. This redundancy decreases with the depth
(at this least for the current construction), and at the third layer
one has merely 1024 atoms (redundancy of about 1.3, since the
signal dimension is 282).

We can also find the multi-layer representation for real images
— essentially solving the projection problem Py, . In Fig. 5, we
depict the multi-layer features ~,, © = 1, 2, 3, obtained with the

8 All experiments are run on a 16 i7 cores Windows station with a NVIDIA
GTX 1080 Ti.
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Fig. 3.

ML-CSC model trained on the MNIST dataset. (a) The local filters of the dictionary D . (b) The local filters of the effective dictionary D (2) = D, D,.

(c) Some of the 1024 local atoms of the effective dictionary D) which, because of the dimensions of the filters and the strides, are global atoms of size 28 x 28.
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Fig. 4. Evolution of the Loss function, sparsity of the convolutional dictio-

naries and average residual norm during training on the MNIST dataset.

Fig.5. Decompositions of an image from MNIST in terms of its nested sparse
features ~y; and multi-layer convolutional dictionaries D; .

Algorithm 1, that approximate an image y (not included in
the training set). Note that all the representations are notably
sparse thanks to the very high sparsity of the dictionaries Do
and D3. These decompositions (any of them) provide a sparse
decomposition of the number 3 at different scales, resulting in an
approximation x. Naturally, the quality of the approximation can
be improved by increasing the cardinality of the representations.

A. Sparse Recovery

The first experiment we explore is that of recovering sparse
vectors from corrupted measurements, in which we will com-
pare the presented ML-CSC Pursuit with the Layered approach

from [17]. For the sake of completion and understanding, we
will first carry this experiment in a synthetic setting and then on
projected real digits, leveraging the dictionaries obtained in the
beginning of this section.

We begin by constructing a 3 layers “non-convolutional™
model for signals of length 200, with the dictionaries having
250, 300, and 350 atoms, respectively. The first dictionary is
constructed as a random matrix, whereas the remaining ones are
composed of sparse atoms with random supports and a sparsity
of 99%. Finally, 500 representations are sampled by drawing
sparse vectors 7y, with a target sample sparsity k& and normally
distributed coefficients. We generate the signals as x = D)~
and then corrupt them with Gaussian noise (0 = 0.02) obtaining
the measurements y = x(v;) + v.

In order to evaluate our projection approach, we run
Algorithm 1 employing the Subspace Pursuit algorithm [46]
for the sparse coding step, with the oracle target cardinality k.
Recall that once the deepest representations 4; have been ob-
tained, the inner ones are simply computed as 7, _; = D;#,. In
the layered approach from [17], on the other hand, the pursuit of
the representations progresses sequentially: first running a pur-
suit for 4, then employing this estimate to run another pursuit
for 4,, etc. In the same spirit, we employ Subspace Pursuit layer
by layer, employing the oracle cardinality of the representation
at each stage. The results are presented in Fig. 6(a): at the top
we depict the relative ¢y error of the recovered representations
14 = ~ill2/1lvill2) and, at the bottom, the normalized inter-
section of the supports [47], both as a function of the sample
cardinality k and the layer depth.

The projection algorithm manages to retrieve the representa-
tions 4; more accurately than the layered pursuit, as evidenced
by the ¢ error and the support recovery. The main reason be-
hind the difficulty of the layer-by-layer approach is that the
entire process relies on the correct recovery of the first layer
representations, <, . If these are not properly estimated (as ev-
idenced by the bottom-left graph), there is little hope for the

9The non-convolutional case is still a ML-CSC model, in which the signal
dimension is the same as the length of the atoms 7, and with a stride of the same
magnitude n. We choose this setting for the synthetic experiment to somewhat
favor the results of the layered pursuit approach.
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Fig. 6. Recovery of representations from noisy MNIST digits. Top: normal-

ized ¢y error between the estimated and the true representations. Bottom: nor-
malized intersection between the estimated and the true support of the repre-
sentations.

recovery of the deeper ones. In addition, these representations
~, are the least sparse ones, and so they are expected to be the
most challenging ones to recover. The projection alternative, on
the other hand, relies on the estimation of the deepest 7 , which
are very sparse. Once these are estimated, the remaining ones are
simply computed by propagating them to the shallower layers.
Following our analysis in the Section III-C, if the support of 7,
is estimated correctly, so will be the support of the remaining
representations ;.

We now turn to deploy the 3 layer convolutional dictionaries
for real digits obtained previously. To this end we take 500
test digits from the MNIST dataset and project them on the
trained model, essentially running Algorithm 1 and obtaining the
representations ;. We then create the noisy measurements as
y = DU~. + v, where v is Gaussian noise with o = 0.02. We
then repeat both pursuit approaches to estimate the underlying
representations, obtaining the results reported in Fig. 6(b).

Clearly, this represents a significantly more challenging sce-
nario for the layered approach, which recovers only a small
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Fig. 7. M-term approximation for MNIST digits, comparing sparse autoen-
coders [21], k-sparse autoencoders [22], trainlets (OSDL) [20], and the proposed
ML-CSC for models with different filter sparsity levels. The relative number of
parameters is depicted in blue.

fraction of the correct support of the sparse vectors. The projec-
tion algorithm, on the other hand, provides accurate estimations
with negligible mistakes in the estimated supports, and very
low ¢, error. Note that the /5 error has little significance for the
Layered approach, as this algorithm does not manage to find
the true supports. The reason for the significant deterioration in
the performance of the Layered algorithm is that this method ac-
tually finds alternative representations 4, of the same sparsity,
providing a lower fidelity term than the projection counterpart
for the first layer. However, these estimates ; do not necessar-
ily provide a signal in the model, which causes further errors
when estimating .

B. Sparse Approximation

A straight forward application for unsupervised learned
model is that of approximation: how well can one approxi-
mate or reconstruct a signal given only a few k non-zero values
from some representation? In this subsection, we study the per-
formance of the ML-CSC model for this task while comparing
with related methods, and we present the results in Fig. 7. The
model is trained on 60/ training examples, and the M-term ap-
proximation is measured on the remaining 10K testing samples.
All of the models are designed with 1K hidden units (or atoms).

Given the close connection of the ML-CSC model to sparse
auto-encoders, we present the results obtained by approximat-
ing the signals with sparse autoencoders [21] and k-sparse au-
toencoders [22]. In particular, the work in [21] trains sparse
auto-encoders by penalizing the KL divergence between the ac-
tivation distribution of the hidden neurons and that of a binomial
distribution with a certain target activation rate. As such, the re-
sulting activations are never truly sparse. For this reason, since
the M-term approximation is computed by picking the highest
entries in the hidden neurons and setting the remaining ones to
zero, this method exhibits a considerable representation error.
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K-sparse auto-encoders perform significantly better, though
they are sensitive to the number of non-zeros used during train-
ing. Indeed, if the model is trained with 25 non-zeros per sample,
the model performs well for a similar range of cardinalities. De-
spite this sensitivity on training, their performance is remarkable
considering the simplicity of the pursuit involved: the recon-
struction is done by computing X = W+, + b’, where 7, is a
k-sparse activation (or feature) obtained by hard thresholding
as 4, = H, [W”y + b], and where b and b’ are biases vec-
tors. Note that while a convolutional multi-layer version of this
family of autoencoders was proposed in [23], these construc-
tions are trained in stacked manner — i.e., training the first layer
independently, then training the second one to represent the
features of the first layer while introducing pooling operations,
and so forth. In this manner, each layer is trained to represent
the (pooled) features from the previous layer, but the entire ar-
chitecture cannot be directly employed for comparison in this
problem.

Regarding the ML-CSC, we trained 6 different models by
enforcing 6 different levels of sparsity in the convolutional fil-
ters (i.e., different values of the parameters (; in Algorithm 3),
with a fixed target sparsity of £ = 10 non-zeros. The sparse
coding of the inner-most <; was done with the Iterative Hard
Thresholding algorithm, in order to guarantee an exact number
of non-zeros. The numbers pointing at the different models in-
dicate the relative amount of parameters in the model, where
1 corresponds to 28% x 1K parameters required in a standard
autoencoder (this is also the number of parameters in the sparse-
autoencoders and k-sparse autoencoders, without counting the
biases). As one can see, the larger the number of parameters,
the lower the representation error the model is able to provide.
In particular, the ML-CSC yields slightly better representation
error than that of k-sparse autoencoders, for a wide range of
non-zero values (without the need to train different models for
each one) and with I and 2 orders of magnitude less parameters.

Since the training of the ML-CSC model can also be under-
stood as a dictionary learning algorithm, we compare here with
the state-of-the-art method of [20]. For this case, we trained 1K
trainlet atoms with the OSDL algorithm. Note that this compar-
ison is interesting, as OSDL also provides sparse atoms with
reduced number of parameters. For the sake of comparison,
we employed an atom-sparsity that results in 13% of parame-
ters relative to the total model size (just as one of the trained
ML-CSC models), and the sparse coding was done also with
the ITHT algorithm. Notably, the performance of this relatively
sophisticated dictionary learning method, which leverages the
representation power of a cropped wavelets base dictionary, is
only slightly superior to the proposed ML-CSC.

C. Unsupervised Classification

Unsupervised trained models are usually employed as fea-
ture extractors, and a popular way to assess the quality of such
features is to train a linear classifier on them for a certain classi-
fication task. While the intention of this paper is not to provide a
state-of-the-art unsupervised learning algorithm, we simply in-
tent to demonstrate that the learned model generalizes to unseen
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TABLE 1
UNSUPERVISED CLASSIFICATION RESULTS ON MNIST
Method Test Error
Stacked Denoising Autoencoder (3 layers) [49] 1.28%
k-Sparse Autoencoder (1K units) [22] 1.35%
Shallow WTA Autoencoder (2K units) [23] 1.20%
Stacked WTA Autoencoder (2K units)[23] 1.11%
ML-CSC (1K units) - 2nd Layer Rep. 1.30%
ML-CSC (2K units) - 2nd&3rd Layer Rep. 1.15%

examples, providing meaningful representations. To this end, we
train a model with 3 layers, each containing: 16 (5 x 5) atoms,
64 (5 x 5 x 16) atoms and 1024 atoms of dimension 5 x 5 x 64
(stride of 2) on 60K training samples from MNIST. Just as
for the previous model, the global sparse coding is performed
with FISTA and a target (average) sparsity of 25 non-zeros.
Once trained, we compute the representations 4; with an elas-
tic net formulation and non-negativity constraints, before fitting
a simple linear classifier on the obtained features. Employing
an elastic-net formulation (by including an ¢, regularization
parameter, in addition to the ¢; norm) results in slightly denser
representations, with improved classification performance. Sim-
ilarly, the non-negativity constraint significantly facilitates the
classification by linear classifiers. We compare our results with
similar methods under the same experimental setup, and we de-
pict the results in Table I, reporting the classification error on
the 10K testing samples.

Recall that within the ML-CSC model, all features «, have
a very clear meaning: they provide a sparse representation at a
different layer and scale. We can leverage this multi-layer de-
composition in a very natural way within this unsupervised clas-
sification framework. We detail the classification performance
achieved by our model in two different scenarios: on the first
one we employ the 1K-dimensional features corresponding to
the second layer of the ML-CSC model, obtaining better perfor-
mance than the equivalent k-sparse autoencoder. In the second
case, we add to the previous features the 1K-dimensional fea-
tures from the third layer, resulting in a classification error of
1.15%, comparable to the Stacked Winner Take All (WTA) au-
toencoder (with the same number of neurons).

Lastly, it is worth mentioning that a stacked version of convo-
lutional WTA autoencoder [23] achieve a classification error of
0.48, providing significantly better results. However, note that
this model is trained with a 2-stage process (training the lay-
ers separately) involving significant pooling operations between
the features at different layers. More importantly, the features
computed by this model are 51,200-dimensional (more than an
order of magnitude larger than in the other models) and thus can-
not be directly compared to the results reporter by our method.
In principle, similar stacked-constructions that employ pooling
could be built for our model as well, and this remains as part of
ongoing work.

VI. CONCLUSION

We have carefully revisited the ML-CSC model and explored
the problem of projecting a signal onto it. In doing so, we have
provided new theoretical bounds for the solution of this problem
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as well as stability results for practical algorithms, both greedy
and convex. The search for signals within the model led us to
propose a simple, yet effective, learning formulation adapting
the dictionaries across the different layers to represent natural
images. We demonstrated the proposed approach on a number
of practical applications, showing that the ML-CSC can indeed
provide significant expressiveness with a very small number of
model parameters.

Several question remain open: how should the model be mod-
ified to incorporate pooling operations between the layers? what
consequences, both theoretical and practical, would this have?
How should one recast the learning problem in order to address
supervised and semi-supervised learning scenarios? Lastly, we
envisage that the analysis provided in this work will empower
the development of better practical and theoretical tools not only
for structured dictionary learning approaches, but to the field of
deep learning and machine learning in general.
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