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Abstract—The celebrated sparse representation model has led
to remarkable results in various signal processing tasks in the last
decade. However, despite its initial purpose of serving as a global
prior for entire signals, it has been commonly used for modeling
low dimensional patches due to the computational constraints it
entails when deployed with learned dictionaries. A way around
this problem has been recently proposed, adopting a convolu-
tional sparse representation model. This approach assumes that
the global dictionary is a concatenation of banded circulant matri-
ces. While several works have presented algorithmic solutions to
the global pursuit problem under this new model, very few truly-
effective guarantees are known for the success of such methods. In
this paper, we address the theoretical aspects of the convolutional
sparse model providing the first meaningful answers to questions
of uniqueness of solutions and success of pursuit algorithms, both
greedy and convex relaxations, in ideal and noisy regimes. To this
end, we generalize mathematical quantities, such as the �0 norm,
mutual coherence, Spark and restricted isometry property to their
counterparts in the convolutional setting, intrinsically capturing
local measures of the global model. On the algorithmic side, we
demonstrate how to solve the global pursuit problem by using sim-
ple local processing, thus offering a first of its kind bridge between
global modeling of signals and their patch-based local treatment.

Index Terms—Sparse representations, convolutional sparse
coding, uniqueness guarantees, stability guarantees, orthogonal
matching pursuit, basis pursuit, global modeling, local processing.

I. INTRODUCTION

A POPULAR choice for a signal model, which has proven to
be very effective in a wide range of applications, is the cel-

ebrated sparse representation prior [1]–[4]. In this framework,
one assumes a signal X ∈ RN to be a sparse combination of a
few columns (atoms) di from a collection D ∈ RN×M, termed
dictionary. In other words, X = DΓ where Γ ∈ RM is a sparse
vector. Finding such a vector can be formulated as the following
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optimization problem:

min
Γ

g(Γ) s.t. DΓ = X, (1)

where g(·) is a function which penalizes dense solutions, such
as the �1 or �0 “norms”.1 For many years, analytically defined
matrices or operators were used as the dictionary D [5], [6].
However, designing a model from real examples by some learn-
ing procedure has proven to be more effective, providing sparser
solutions [7]–[9]. This led to vast work that deploys dictionary
learning in a variety of applications [4], [10]–[13].

Generally, solving a pursuit problem is a computationally
challenging task. As a consequence, most such recent success-
ful methods have been deployed on relatively small dimen-
sional signals, commonly referred to as patches. Under this
local paradigm, the signal is broken into overlapped blocks and
the above defined sparse coding problem is reformulated as

∀ i min
α

g(α) s.t. DLα = RiX,

where DL ∈ Rn×m is a local dictionary, and Ri ∈ Rn×N is an
operator which extracts a small local patch of length n � N
from the global signal X. In this set-up, one processes each
patch independently and then aggregates the estimated results
using plain averaging in order to recover the global reconstructed
signal. A local-global gap naturally arises when solving global
tasks with this local approach, which ignores the correlation
between overlapping patches. The reader is referred to [14]–
[19] for further insights on this dichotomy.

The above discussion suggests that in order to find a con-
sistent global representation for the signal, one should propose
a global sparse model. However, employing a general global
(unconstrained) dictionary is infeasible due the computational
complexity involved, and training this model suffers from the
curse of dimensionality. An alternative is a (constrained) global
model in which the signal is composed as a superposition of lo-
cal atoms. The family of dictionaries giving rise to such signals
is a concatenation of banded Circulant matrices. This global
model benefits from having a local shift invariant structure –
a popular assumption in signal and image processing – sug-
gesting an interesting connection to the above-mentioned local
modeling.

When the dictionary D has this structure of a concatenation of
banded Circulant matrices, the pursuit problem in (1) is usually

1Despite the �0 not being a norm (as it does not satisfy the homogeneity
property), we will use this jargon throughout this paper for the sake of simplicity.
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known as convolutional sparse coding [20]. Recently, several
works have addressed the problem of using and training such a
model in the context of image inpainting, super-resolution, and
general image representation [21]–[25]. These methods usu-
ally exploit an ADMM formulation [26] while operating in the
Fourier domain in order to search for the sparse codes and train
the dictionary involved. Several variations have been proposed
for solving the pursuit problem, yet there has been no theoretical
analysis of their success.

Assume a signal is created by multiplying a sparse vector
by a convolutional dictionary. In this work, we consider the
following set of questions:

1) Can we guarantee the uniqueness of such a global (con-
volutional) sparse vector?

2) Can global pursuit algorithms, such as the ones suggested
in recent works, be guaranteed to find the true underlying
sparse code, and if so, under which conditions?

3) Can we guarantee a stability of the sparse approximation
problem, and a stability of corresponding pursuit methods
in a noisy regime?; And

4) Can we solve the global pursuit by restricting the process
to local pursuit operations?

A naı̈ve approach to address such theoretical questions is to
apply the fairly extensive results for sparse representation and
compressed sensing to the above defined model [27]. However,
as we will show throughout this paper, this strategy provides
nearly useless results and bounds from a global perspective.
Therefore, there exists a true need for a deeper and alternative
analysis of the sparse coding problem in the convolutional case
which would yield meaningful bounds.

In this work, we will demonstrate the futility of the �0-norm in
providing meaningful bounds in the convolutional model. This,
in turn, motivates us to propose a new localized measure – the
�0,∞ norm. Based on it, we redefine our pursuit into a prob-
lem that operates locally while thinking globally. To analyze
this problem, we extend useful concepts, such as the Spark and
mutual coherence, to the convolutional setting. We then provide
claims for uniqueness of solutions and for the success of pursuit
methods in the noiseless case, both for greedy algorithms and
convex relaxations. Based on these theoretical foundations, we
then extend our analysis to a more practical scenario, handling
noisy data and model deviations. We generalize and tie past the-
oretical constructions, such as the Restricted Isometry Property
(RIP) [28] and the Exact Recovery Condition (ERC) [29], to the
convolutional framework proving the stability of this model in
this case as well.

This paper is organized as follows. We begin by reviewing the
unconstrained global (traditional) sparse representation model
in Section II, followed by a detailed description of the convolu-
tional structure in Section III. Section IV briefly motivates the
need of a thorough analysis of this model, which is then provided
in Section V. We introduce additional mathematical tools in
Section VI, which provide further insight into the convolutional
model. The noisy scenario is then considered in Section VII
and analyzed in Section VIII, where we assume the global
signal to be contaminated with norm-bounded error. We then
bridge the local and global models in Section IX, proposing local

algorithmic solutions to tackle the convolutional pursuit. Finally,
we conclude this work in Section X, proposing exciting future
directions.

II. THE GLOBAL SPARSE MODEL – PRELIMINARIES

Consider the constrained P0 problem, a special case of Eq. (1),
given by

(P0) : min
Γ

‖Γ‖0 s.t. DΓ = X. (2)

Several results have shed light on the theoretical aspects of
this problem, claiming a unique solution under certain circum-
stances. These guarantees are given in terms of properties of the
dictionary D, such as the Spark, defined as the minimum number
of linearly dependent columns (atoms) in D [30]. Formally,

σ(D) = min
Γ

‖Γ‖0 s.t. DΓ = 0, Γ �= 0.

Based on this property, a solution obeying ‖Γ‖0 < σ(D)/2 is
necessarily the sparsest one [30]. Unfortunately, this bound is
of little practical use, as computing the Spark of a matrix is a
combinatorial problem – and infeasible in practice.

Another guarantee is given in terms of the mutual coherence
of the dictionary, μ(D), which quantifies the similarity of atoms
in the dictionary. Assuming hereafter that ‖di‖2 = 1∀i, this was
defined in [30] as:

μ(D) = max
i �=j

‖dT
i dj‖.

A relation between the Spark and the mutual coherence was
also shown in [30], stating that σ(D) ≥ 1 + 1

μ(D) . This, in turn,
enabled the formulation of a practical uniqueness bound guar-
anteeing that Γ is the unique solution of the P0 problem if
‖Γ‖0 < 1

2 (1 + 1/μ(D)).
Solving the P0 problem is NP-hard in general. Nevertheless,

its solution can be approximated by either greedy pursuit algo-
rithms, such as the Orthogonal Matching Pursuit (OMP) [31],
[32], or convex relaxation approaches like Basis Pursuit (BP)
[33]. Despite the difficulty of this problem, these methods (and
other similar ones) have been proven to recover the true solution
if ‖Γ‖0 < 1

2 (1 + 1/μ(D)) [29], [30], [34], [35].
When dealing with natural signals, the P0 problem is often

relaxed to consider model deviations as well as measurement
noise. In this set-up one assumes Y = DΓ + E, where E is a
nuisance vector of bounded energy, ‖E‖2 ≤ ε. The correspond-
ing recovery problem can then be stated as follows:

(P ε
0 ) : min

Γ
‖Γ‖0 s.t. ‖DΓ − Y‖2 ≤ ε.

Unlike the noiseless case, given a solution to the above problem,
one can not claim its uniqueness in solving the P ε

0 problem but
instead can guarantee that it will be close enough to the true
vectorΓ that generated the signalY. This kind of stability results
have been derived in recent years by leveraging the Restricted
Isometry Property (RIP) [28]. A matrix D is said to have a k-RIP
with constant δk if this is the smallest quantity such that

(1 − δk )‖Γ‖2
2 ≤ ‖DΓ‖2

2 ≤ (1 + δk )‖Γ‖2
2 ,
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Fig. 1. The convolutional model description, and its composition in terms of the local dictionary DL .

for every Γ satisfying ‖Γ‖0 = k. Based on this property, it
was shown that assuming Γ is sparse enough, the distance be-
tween Γ and all other solutions to the P ε

0 problem is bounded
[27]. Similar stability claims can be formulated in terms of the
mutual coherence also, by exploiting its relationship with the
RIP property [27].

Success guarantees of practical algorithms, such as the Or-
thogonal Matching Pursuit (OMP) and the Basis Pursuit De-
noising (BPDN), have also been derived under this regime. In
the same spirit of the aforementioned stability results, the work
in [34] showed that these methods recover a solution close to the
true sparse vector as long as some sparsity constraint, relying
on the mutual coherence of the dictionary, is met.

Another useful property for analyzing the success of pursuit
methods, initially proposed in [29], is the Exact Recovery Con-
dition (ERC). Formally, one says that the ERC is met for a
support T with a constant θ whenever

θ = 1 − max
i /∈T

‖D†
T di‖1 > 0,

where we have denoted by D†
T the Moore-Penrose pseudoin-

verse of the dictionary restricted to support T , and di refers to
the ith atom in D. Assuming the above is satisfied, the stability
of both the OMP and BP was proven in [36]. Moreover, in an
effort to provide a more intuitive result, the ERC was shown to
hold whenever the total number of non-zeros in T is less than a
certain number, which is a function of the mutual coherence.

III. THE CONVOLUTIONAL SPARSE MODEL

Consider now the global dictionary to be a concatenation of
m banded Circulant matrices,2 where each such matrix has a
band of width n � N . As such, by simple permutation of its
columns, such a dictionary consists of all shifted versions of a
local dictionary DL of size n × m. This model is commonly
known as Convolutional Sparse Representation [20], [22], [37].
Hereafter, whenever we refer to the global dictionary D, we as-
sume it has this structure. Assume a signal X to be generated as
DΓ. In Fig. 1 we describe such a global signal, its corresponding
dictionary that is of size N × mN and its sparse representation,

2Each of these matrices is constructed by shifting a single column, supported
on n subsequent entries, to all possible shifts. This choice of Circulant matrices
comes to alleviate boundary problems.

Fig. 2. Stripe Dictionary.

of length mN . We note that Γ is built of N distinct and inde-
pendent sparse parts, each of length m, which we will refer to
as the local sparse vectors αi .

Consider a sub-system of equations extracted from X = DΓ
by multiplying this system by the patch extraction3 opera-
tor Ri ∈ Rn×N . The resulting system is xi = RiX = RiDΓ,
where xi is a patch of length n extracted from X from loca-
tion i. Observe that in the set of extracted rows, RiD, there are
only (2n − 1)m columns that are non-trivially zero. Define the
operator Si ∈ R(2n−1)m×mN as a columns’ selection operator,4

such that RiDST
i preserves all the non-zero columns in RiD.

Thus, the subset of equations we get is essentially

xi = RiX = RiDΓ = RiDST
i SiΓ. (3)

Definition 1: Given a global sparse vector Γ, define γi =
SiΓ as its ith stripe representation.

Note that a stripe γi can be also seen as a group of 2n − 1
adjacent local sparse vectors αj of length m from Γ, centered
at location αi .

Definition 2: Consider a convolutional dictionary D defined
by a local dictionary DL of size n × m. Define the stripe dictio-
nary Ω of size n × (2n − 1)m, as the one obtained by extracting
n consecutive rows from D, followed by the removal of its zero
columns, namely Ω = RiDST

i .
Observe that Ω, depicted in Fig. 2, is independent of i, being

the same for all locations due to the union-of-Circulant-matrices
structure of D. In other words, the shift invariant property is sat-

3Denoting by 0(a×b ) a zeros matrix of size a × b, and I(n×n ) an identity
matrix of size n × n, then Ri = [0(n×(i−1)) , I(n×n ) , 0(n×(N −i−n +1)) ].

4An analogous definition can be written for this operator as well.
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isfied for this model – all patches share the same stripe dictio-
nary in their construction. Armed with the above two definitions,
Eq. (3) simply reads xi = Ωγi .

From a different perspective, one can synthesize the signal
X by considering D as a concatenation of N vertical stripes
of size N × m (see Fig. 1), where each can be represented as
RT

i DL . In other words, the vertical stripe is constructed by
taking the small and local dictionary DL and positioning it in
the ith row. The same partitioning applies to Γ, leading to the
αi ingredients. Thus,

X =
∑

i

RT
i DLαi .

Since αi play the role of local sparse vectors, DLαi are recon-
structed patches (which are not the same as xi = Ωγi), and the
sum above proposes a patch averaging approach as practiced in
several works [8], [14], [19]. This formulation provides another
local interpretation of the convolutional model.

Yet a third interpretation of the very same signal construction
can be suggested, in which the signal is seen as resulting from
a sum of local/small atoms which appear in a small number of
locations throughout the signal. This can be formally expressed
as

X =
m∑

i=1

di ∗ zi ,

where the vectors zi ∈ RN are sparse maps encoding the loca-
tion and coefficients convolved with the ith atom [20]. In our
context, Γ is simply the interlaced concatenation of all zi .

This model (adopting the last convolutional interpretation)
has received growing attention in recent years in various appli-
cations. In [38] a convolutional sparse coding framework was
used for pattern detection in images and the analysis of in-
struments in music signals, while in [39] it was used for the
reconstruction of 3D trajectories. The problem of learning the
local dictionary DL was also studied in several works [24], [37],
[40]–[42]. Different methods have been proposed for solving the
convolutional sparse coding problem under an �1-norm penalty.
Commonly, these methods rely on the ADMM algorithm [26],
exploiting multiplications of vectors by the global dictionary in
the Fourier domain in order to reduce the computational cost
involved [37]. An alternative is the deployment of greedy algo-
rithms of the Matching Pursuit family [5], which suggest an �0
constraint on the global sparse vector. The reader is referred to
the work of [24] and references therein for a thorough discussion
on these methods. In essence, all the above works are solutions
to the minimization of a global pursuit under the convolutional
structure. As a result, the theoretical results in our work will
apply to these methods, providing guarantees for the recovery
of the underlying sparse vectors.

IV. FROM GLOBAL TO LOCAL ANALYSIS

Consider a sparse vector Γ of size mN which represents a
global (convolutional) signal. Assume further that this vector has
a few k � N non-zeros. If these were to be clustered together
in a given stripe γi , the local patch corresponding to this stripe

would be very complex, and pursuit methods would likely fail in
recovering it. On the contrary, if these k non-zeros are spread all
throughout the vector Γ, this would clearly imply much simpler
local patches, facilitating their successful recovery. This simple
example comes to show the futility of the traditional global �0-
norm in assessing the success of convolutional pursuits, and it
will be the pillar of our intuition throughout our work.

A. The �0,∞ Norm and the P0,∞ Problem

Let us now introduce a measure that will provide a local
notion of sparsity within a global sparse vector.

Definition 3: Define the �0,∞ pseudo-norm of a global sparse
vector Γ as

‖Γ‖0,∞ = max
i

‖γi‖0 .

In words, this quantifies the number of non-zeros in the densest
stripe γi of the global Γ. This is equivalent to extracting all
stripes from the global sparse vector Γ, arranging them column-
wise into a matrix A and applying the usual ‖A‖0,∞ norm –
thus, the name. By constraining the �0,∞ norm to be low, we are
essentially limiting all stripes γi to be sparse, and their corre-
sponding patches RiX to have a sparse representation under a
shift-invariant local dictionary Ω. This is one of the underlying
assumptions in many signal and image processing algorithms.
As for properties of this norm, similar to �0 case, in the �0,∞
the non-negativity and triangle inequality properties hold, while
homogeneity does not.

Armed with the above definition, we now move to define the
P0,∞ problem:

(P0,∞) : min
Γ

‖Γ‖0,∞ s.t. DΓ = X.

When dealing with a global signal, instead of solving the P0
problem (defined in Eq. (2)) as is commonly done, we aim to
solve the above defined objective instead. The key difference is
that we are not limiting the overall number of zeros in Γ, but
rather putting a restriction on its local density.

B. Global versus Local Bounds

As mentioned previously, theoretical bounds are often given
in terms of the mutual coherence of the dictionary. In this respect,
a lower bound on this value is much desired. In the case of the
convolution sparse model, this value quantifies not only the
correlation between the atoms in DL , but also the correlation
between their shifts. Though in a different context, a bound for
this value was derived in [43], and it is given by

μ(D) ≥
√

m − 1
m(2n − 1) − 1

. (4)

For a large value of m, one obtains that the best possible coher-
ence is μ(D) ≈ 1√

2n
. This implies that if we are to apply BP or

OMP to recover the sparsest Γ that represents X, the classical
sparse approximation results [1] would allow merely O(

√
n)

non-zeros in all Γ, for any N , no matter how long X is! As we
shall see next, the situation is not as grave as it may seem, due to
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TABLE I
SUMMARY OF NOTATIONS USED THROUGHOUT THE PAPER

our migration from P0 to P0,∞. Leveraging the previous defini-
tions, we will provide global recovery guarantees that will have
a local flavor, and the bounds will be given in terms of the num-
ber of non-zeros in the densest stripe. This way, we will show
that the guarantee conditions can be significantly enhanced to
O(

√
n) non-zeros locally rather than globally.

V. THEORETICAL STUDY OF IDEAL SIGNALS

As motivated in the previous section, the concerns of unique-
ness, recovery guarantees and stability of sparse solutions in the
convolutional case require special attention. We now formally
address these questions by following the path taken in [27], care-
fully generalizing each and every statement to the global-local
model discussed here.

Before proceeding onto theoretical grounds, we briefly sum-
marize, for the convenience of the reader, all notations used
throughout this work in Table I. Note the somewhat unorthodox
choice of capital letters for global vectors and lowercase for
local ones.

A. Uniqueness and Stripe-Spark

Just as it was initially done in the general sparse model, one
might ponder about the uniqueness of the sparsest representa-
tion in terms of the �0,∞ norm. More precisely, does a unique
solution to the P0,∞ problem exist? and under which circum-
stances? In order to answer these questions we shall first extend
our mathematical tools, in particular the characterization of the
dictionary, to the convolutional scenario.

In Section II we recalled the definition of the Spark of a gen-
eral dictionary D. In the same spirit, we propose the following:

Definition 4: Define the Stripe-Spark of a convolutional dic-
tionary D as

σ∞(D) = min
Δ

‖Δ‖0,∞ s.t. Δ �= 0, DΔ = 0.

In words, the Stripe-Spark is defined by the sparsest non-zero
vector, in terms of the �0,∞ norm, in the null space of D. Next,
we use this definition in order to formulate an uncertainty and a
uniqueness principle for the P0,∞ problem that emerges from it.

The proof of this and the following theorems are described in
detail in the Supplementary Material.

Theorem 5 (Uncertainty and uniqueness using Stripe-Spark):
Let D be a convolutional dictionary. If a solution Γ obeys
‖Γ‖0,∞ < 1

2 σ∞, then this is necessarily the global optimum for
the P0,∞ problem for the signal DΓ.

B. Lower Bounding the Stripe-Spark

In general, and similar to the Spark, calculating the Stripe-
Spark is computationally intractable. Nevertheless, one can
bound its value using the global mutual coherence defined in
Section II. Before presenting such bound, we formulate and
prove a Lemma that will aid our analysis throughout this paper.

Lemma 1: Consider a convolutional dictionary D, with mu-
tual coherence μ(D), and a support T with �0,∞ norm5 equal to
k. Let GT = DT

T DT , where DT is the matrix D restricted to
the columns indicated by the support T . Then, the eigenvalues
of this Gram matrix, given by λi(GT ), are bounded by

1 − (k − 1)μ(D) ≤ λi

(
GT )

≤ 1 + (k − 1)μ(D).

Proof: From Gerschgorin’s theorem, the eigenvalues of the
Gram matrix GT reside in the union of its Gerschgorin circles.
The jth circle, corresponding to the jth row of GT , is centered at
the point GT

j,j (belonging to the Gram’s diagonal) and its radius
equals the sum of the absolute values of the off-diagonal entries;
i.e.,

∑
i,i �=j |GT

j,i |. Notice that both indices i, j correspond to
atoms in the support T . Because the atoms are normalized,
∀ j, GT

j,j = 1, implying that all Gershgorin disks are centered
at 1. Therefore, all eigenvalues reside inside the circle with the
largest radius. Formally,

∣∣λi

(
GT )

− 1
∣∣ ≤ max

j

∑

i,i �=j

∣∣GT
j,i

∣∣ = max
j

∑

i,i �=j
i,j∈T

|dT
j di

∣∣. (5)

On the one hand, from the definition of the mutual coherence,
the inner product between atoms that are close enough to overlap
is bounded by μ(D). On the other hand, the product dT

j di is
zero for atoms di too far from dj (i.e., out of the stripe centered
at the jth atom). Therefore, we obtain:

∑

i,i �=j
i,j∈T

|dT
j di | ≤ (k − 1) μ(D),

where k is the maximal number of non-zero elements in a stripe,
defined previously as the �0,∞ norm of T . Note that we have
subtracted 1 from k because we must omit the entry on the
diagonal. Putting this back in Eq. (5), we obtain

∣∣λi

(
GT )

− 1
∣∣ ≤ max

j

∑

i,i �=j
i,j∈T

|dT
j di

∣∣ ≤ (k − 1) μ(D).

From this we obtain the desired claim. �
We now dive into the next theorem, whose proof relies on the

above Lemma.

5Note that specifying the �0 ,∞ of a support rather than a sparse vector is a
slight abuse of notation, that we will nevertheless use for the sake of simplicity.
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Theorem 6 (Lower bounding the Stripe-Spark via the mutual
coherence): For a convolutional dictionary D with mutual co-
herence μ(D), the Stripe-Spark can be lower-bounded by

σ∞(D) ≥ 1 +
1

μ(D)
.

Using the above derived bound and the uniqueness based on the
Stripe-Spark we can now formulate the following theorem:

Theorem 7 (Uniqueness using mutual coherence): Let D be a
convolutional dictionary with mutual coherence μ(D). If a so-
lution Γ obeys ‖Γ‖0,∞ < 1

2 (1 + 1
μ(D) ), then this is necessarily

the sparsest (in terms of �0,∞ norm) solution to P0,∞ with the
signal DΓ.

The proof of this claim is rather trivial, noting that if
‖Γ‖0,∞ < 1

2 (1 + 1
μ(D) ), then necessarilly ‖Γ‖0,∞ < 1

2 σ∞, and
so from Theorem 5 Γ is unique.

At the end of Section IV we mentioned that for m  1, the
classical analysis would allow an order of O(

√
n) non-zeros all

over the vector Γ, regardless of the length of the signal N . In
light of the above theorem, in the convolutional case, the very
same quantity of non-zeros is allowed locally per stripe, imply-
ing that the overall number of non-zeros in Γ grows linearly
with the global dimension N .

C. Recovery Guarantees for Pursuit Methods

In this subsection, we attempt to solve the P0,∞ problem by
employing two common, but very different, pursuit methods:
the Orthogonal Matching Pursuit (OMP) and the Basis Pursuit
(BP) – the reader is referred to [27] for a detailed description of
these formulations and respective algorithms. Leaving aside the
computational burdens of running such algorithms, which will
be addressed in the second part of this work, we now consider
the theoretical aspects of their success.

Previous works [29], [30] have shown that both OMP and
BP succeed in finding the sparsest solution to the P0 problem
if the cardinality of the representation is known a priori to be
lower than 1

2 (1 + 1
μ(D) ). That is, we are guaranteed to recover

the underlying solution as long as the global sparsity is less than
a certain threshold. In light of the discussion in Section IV-B,
these values are pessimistic in the convolutional setting. By
migrating from P0 to the P0,∞ problem, we show next that
both algorithms are in fact capable of recovering the underlying
solutions under far weaker assumptions.

Theorem 8 (Global OMP recovery guarantee using �0,∞
norm): Given the system of linear equations X = DΓ, if a
solution Γ exists satisfying

‖Γ‖0,∞ <
1
2

(
1 +

1
μ(D)

)
,

then OMP is guaranteed to recover it.
Note that if we assume ‖Γ‖0,∞ < 1

2 (1 + 1
μ(D) ), according

to our uniqueness theorem, the solution obtained by the OMP
is the unique solution to the P0,∞ problem. Interestingly, under
the same conditions the BP algorithm is guaranteed to succeed
as well.

Theorem 9 (Global Basis Pursuit recovery guarantee using
the �0,∞ norm): For the system of linear equations DΓ = X, if
a solution Γ exists obeying

‖Γ‖0,∞ <
1
2

(
1 +

1
μ(D)

)
,

then Basis Pursuit is guaranteed to recover it.
The recovery guarantees for both pursuit methods have now

become independent of the global signal dimension and spar-
sity. Instead, the condition for success is given in terms of the
local concentration of non-zeros of the global sparse vector.
Moreover, the number of non-zeros allowed per stripe under the
current bounds is in fact the same number previously allowed
globally. As a remark, note that we have used these two algo-
rithms in their natural form, being oblivious to the �0,∞ objective
they are serving. Further work is required to develop OMP and
BP versions that are aware of this specific goal, potentially ben-
efiting from it.

D. Experiments

In this subsection we intend to provide numerical results that
corroborate the above presented theoretical bounds. While doing
so, we will shed light on the performance of the OMP and BP
algorithms in practice, as compared to our previous analysis.

In [44] an algorithm was proposed to construct a local dic-
tionary such that all its aperiodic auto-correlations and cross-
correlations are low. This, in our context, means that the
algorithm attempts to minimize the mutual coherence of the
dictionary DL and all of its shifts, decreasing the global mu-
tual coherence as a result. We use this algorithm to numer-
ically build a dictionary consisting of two atoms (m = 2)
with patch size n = 64. The theoretical lower bound on the
μ(D) presented in Eq. (4) under this setting is approxi-
mately 0.063, and we manage to obtain a mutual coherence
of 0.09 using the aforementioned method. With these atoms
we construct a convolutional dictionary with global atoms of
length N = 640.

Once the dictionary is fixed, we generate sparse vectors with
random supports of (global) cardinalities in the range [1, 300].
The non-zero entries are drawn from random independent and
identically-distributed Gaussians with mean equal to zero and
variance equal to one. Given these sparse vectors, we compute
their corresponding global signals and attempt to recover them
using the global OMP and BP. We perform 500 experiments
per each cardinality and present the probability of success as
a function of the representation’s �0,∞ norm. We define the
success of the algorithm as the full recovery of the true sparse
vector. The results for the experiment are presented in Fig. 3.
The theorems provided in the previous subsection guarantee the
success of both OMP and BP as long as the ‖Γ‖0,∞ ≤ 6.

As can be seen from these results, the theoretical bound is far
from being tight. However, in the traditional sparse representa-
tion model the corresponding bounds have the same loose flavor
[1]. This kind of results is in fact expected when using such a
worst-case analysis. Tighter bounds could likely be obtained by
a probabilistic study, which we leave for future work.
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Fig. 3. Probability of success of OMP and BP at recovering the true convolutional sparse code. The theoretical guarantee is presented on the same graph.

VI. SHIFTED MUTUAL COHERENCE AND STRIPE COHERENCE

When considering the mutual coherence μ(D), one needs to
look at the maximal correlation between every pair of atoms
in the global dictionary. One should note, however, that atoms
having a non-zero correlation must have overlapping supports,
and μ(D) provides a bound for these values independently of the
amount of overlap. One could go beyond this characterization
of the convolutional dictionary by a single value and propose to
bound all the inner products between atoms for a given shift. As
a motivation, in several applications one can assume that signals
are built from local atoms separated by some minimal lag, or
shift. In radio communications, for example, such a situation
appears when there exists a minimal time between consecutive
transmissions on the same channel [45]. In such cases, knowing
how the correlation between the atoms depends on their shifts is
fundamental for the design of the dictionary, its utilization and
its theoretical analysis.

In this section we briefly explore this direction of analy-
sis, introducing a stronger characterization of the convolutional
dictionary, termed shifted mutual coherence. By being a con-
siderably more informative measure than the standard mutual
coherence, this will naturally lead to stronger bounds. We will
only present the main points of these results here for the sake of
brevity; the interested reader can find a more detailed discussion
on this matter in the Supplementary Material.

Recall that Ω is defined as a stripe extracted from the global
dictionary D. Consider the sub-system given by xi = Ωγi , cor-
responding to the ith patch in X. Note that Ω can be split into a
set of 2n − 1 blocks of size n × m, where each block is denoted
by Ωs , i.e.,

Ω = [Ω−n+1 , . . . ,Ω−1 ,Ω0 ,Ω1 , . . . ,Ωn−1 ],

as shown previously in Fig. 2.
Definition 10: Define the shifted mutual coherence μs by

μs = max
i,j

|〈d0
i ,d

s
j 〉|,

where d0
i is a column extracted from Ω0 , ds

j is extracted from
Ωs , and we require6 that i �= j if s = 0.

The above definition can be seen as a generalization of the
mutual coherence for the shift-invariant local model presented
in Section III. Indeed, μs characterizes Ω just as μ(D) charac-
terizes the coherence of a general dictionary. Note that if s = 0

6The condition i �= j if s = 0 is necessary so as to avoid the inner product
of an atom by itself.

the above definition boils down to the traditional mutual co-
herence of DL , i.e., μ0 = μ(DL ). It is important to stress that
the atoms used in the above definition are normalized globally
according to D and not Ω. In the Supplementary Material we
comment on several interesting properties of this measure.

Similar to Ω, γi can be split into a set of 2n − 1 vec-
tors of length m, each denoted by γi,s and correspond-
ing to Ωs . In other words, γi = [γT

i,−n+1 , . . . ,γ
T
i,−1 ,γ

T
i,0 ,

γT
i,1 , . . . ,γ

T
i,n−1 ]

T . Note that previously we denoted local sparse
vectors of length m by αj . Yet, we will also denote them by γi,s

in order to emphasize the fact that they correspond to the sth
shift within γi . Denote the number of non-zeros in γi as ni . We
can also write ni =

∑n−1
s=−n+1 ni,s , where ni,s is the number

of non-zeros in each γi,s . With these definitions, we can now
propose the following measure.

Definition 11: Define the stripe coherence as

ζ(γi) =
n−1∑

s=−n+1

ni,s μs.

According to this definition, each stripe has a coherence given
by the sum of its non-zeros weighted by the shifted mutual co-
herence. As a particular case, if all k non-zeros correspond to
atoms in the center sub-dictionary, DL , this becomes μ0k. Note
that unlike the traditional mutual coherence, this new measure
depends on the location of the non-zeros in Γ – it is a function
of the support of the sparse vector, and not just of the dictio-
nary. As such, it characterizes the correlation between the atoms
participating in a given stripe. In what follows, we will use the
notation ζi for ζ(γi).

Having formalized these tighter constructions, we now lever-
age them to improve the previous results. Although these theo-
rems are generally sharper, they are harder to grasp. We begin
with a recovery guarantee for the OMP and BP algorithms,
followed by a discussion on their implications.

Theorem 12 (Global OMP recovery guarantee using the stripe
coherence): Given the system of linear equations X = DΓ, if a
solution Γ exists satisfying

max
i

ζi = max
i

n−1∑

s=−n+1

ni,sμs <
1
2

(1 + μ0) , (6)

then OMP is guaranteed to recover it.
Theorem 13 (Global BP recovery guarantee using the stripe

coherence): Given the system of linear equations X = DΓ, if a
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solution Γ exists satisfying

max
i

ζi = max
i

n−1∑

s=−n+1

ni,sμs <
1
2

(1 + μ0) ,

then Basis Pursuit is guaranteed to recover it.
The corresponding proofs are similar to their counterparts

presented in the preceding section but require a more delicate
analysis. We include the proof for the OMP variant in the Sup-
plementary Material, and outline the main steps required to
prove the BP version.

In order to provide an intuitive interpretation for these results,
the above bounds can be tied to a concrete number of non-
zeros per stripe. First, notice that requiring the maximal stripe
coherence to be less than a certain threshold is equal to requiring
the same for every stripe:

∀i

n−1∑

s=−n+1

ni,sμs <
1
2

(1 + μ0) .

Multiplying and dividing the left-hand side of the above inequal-
ity by ni and rearranging the resulting expression, we obtain

∀i ni <
1
2

1 + μ0∑n−1
s=−n+1

ni , s

ni
μs

.

Define μ̄i =
∑n−1

s=−n+1
ni , s

ni
μs . Recall that

∑n−1
s=−n+1

ni , s

ni
= 1

and as such μ̄i is simply the (weighted) average shifted mutual
coherence in the ith stripe. Putting this definition into the above
condition, the inequality becomes

∀i ni <
1
2

(
1
μ̄i

+
μ0

μ̄i

)
.

Thus, the condition in (6) boils down to requiring the sparsity
of all stripes to be less than a certain number. Naturally, this
inequality resembles the one presented in the previous section
for the OMP and BP guarantees. In the Supplementary Material
we prove that under the assumption that μ(D) = μ0 , the shifted
mutual coherence condition is at least as strong as the original
one.

VII. FROM GLOBAL TO LOCAL STABILITY ANALYSIS

One of the cardinal motivations for this work was a series
of recent practical methods addressing the convolutional sparse
coding problem; and in particular, the need for their theoreti-
cal foundation. However, our results are as of yet not directly
applicable to these, as we have restricted our analysis to the
ideal case of noiseless signals. This is the path we undertake
in the following sections, exploring the question of whether the
convolutional model remains stable in the presence of noise.

Assume a clean signal X, which admits a sparse representa-
tion Γ in terms of the convolutional dictionary D, is contam-
inated with noise E (of bounded energy, ‖E‖2 ≤ ε) to create
Y = DΓ + E. Given this noisy signal, one could propose to
recover the true representation Γ, or a vector close to it, by
solving the P ε

0 problem. In this context, as mentioned in the
previous section, several theoretical guarantees have been pro-
posed in the literature. As an example, consider the stability

results presented in the seminal work of [34]. Therein, it was
shown that assuming the total number of non-zeros in Γ is less
than 1

2 (1 + 1
μ(D) ), the distance between the solution to the P ε

0

problem, Γ, and the true sparse vector, Γ, satisfies

‖Γ − Γ‖2
2 ≤ 4ε2

1 − μ(D)(2‖Γ‖0 − 1)
. (7)

In the context of our convolutional setting, however, this result
provides a weak bound as it constrains the total number of non-
zeros to be below a certain threshold, which scales with the local
filter size n.

We now re-define the P ε
0 problem into a different one, cap-

turing the convolutional structure by relying on the �0,∞ norm
instead. Consider the problem:

(P ε
0,∞) : min

Γ
‖Γ‖0,∞ s.t. ‖Y − DΓ‖2 ≤ ε.

In words, given a noisy measurement Y, we seek for the �0,∞-
sparsest representation vector that explains this signal up to an ε
error. In what follows, we address the theoretical aspects of this
problem and, in particular, study the stability of its solutions and
practical yet secured ways for retrieving them.

VIII. THEORETICAL ANALYSIS OF CORRUPTED SIGNALS

A. Stability of the P ε
0,∞ Problem

As expected, one cannot guarantee the uniqueness of the so-
lution to the P ε

0,∞ problem, as was done for the P0,∞. Instead, in
this subsection we shall provide a stability claim that guarantees
the found solution to be close to the underlying sparse vector
that generated Y. In order to provide such an analysis, we com-
mence by arming ourselves with the necessary mathematical
tools.

Definition 14: Let D be a convolutional dictionary. Consider
all the sub matrices DT , obtained by restricting the dictionary
D to a support T with an �0,∞ norm equal to k. Define δk as the
smallest quantity such that

∀Δ (1 − δk )‖Δ‖2
2 ≤ ‖DT Δ‖2

2 ≤ (1 + δk )‖Δ‖2
2

holds true for any choice of the support. Then, D is said to
satisfy k-SRIP (Stripe-RIP) with constant δk .

Given a matrix D, similar to the Stripe-Spark, computing the
SRIP is hard or practically impossible. Thus bounding it using
the mutual coherence is of practical use.

Theorem 15 (Upper bounding the SRIP via the mutual co-
herence): For a convolutional dictionary D with global mutual
coherence μ(D), the SRIP can be upper-bounded by

δk ≤ (k − 1)μ(D).

Assume a sparse vector Γ is multiplied by D and then con-
taminated by a vector E, generating the signal Y = DΓ + E,
such that ‖Y − DΓ‖2

2 ≤ ε2 . Suppose we solve the P ε
0,∞ prob-

lem and obtain a solution Γ̂. How close is this solution to the
original Γ? The following theorem provides an answer to this
question.

Theorem 16 (Stability of the solution to the P ε
0,∞ problem):

Consider a sparse vector Γ such that ‖Γ‖0,∞ = k < 1
2 (1 +



PAPYAN et al.: WORKING LOCALLY THINKING GLOBALLY: THEORETICAL GUARANTEES FOR CONVOLUTIONAL SPARSE CODING 5695

1
μ(D) ), and a convolutional dictionary D satisfying the SRIP
property for �0,∞ = 2k with coefficient δ2k . Then, the distance
between the true sparse vector Γ and the solution to the P ε

0,∞
problem Γ̂ is bounded by

‖Γ − Γ̂‖2
2 ≤ 4ε2

1 − δ2k
≤ 4ε2

1 − (2k − 1)μ(D)
. (8)

One should wonder if the new guarantee presents any advan-
tage when compared to the bound based on the traditional RIP.
Looking at the original stability claim for the global system, as
discussed in Section IV, the reader should compare the assump-
tions on the sparse vector Γ, as well as the obtained bounds on
the distance between the estimates and the original vector. The
stability claim in the P ε

0 problem is valid under the condition

‖Γ‖0 <
1
2

(
1 +

1
μ(D)

)
.

In contrast, the stability claim presented above holds whenever

‖Γ‖0,∞ <
1
2

(
1 +

1
μ(D)

)
.

This allows for significantly more non-zeros in the global signal.
Furthermore, as long as the above hold, and comparing Eq. (7)
and (8), we have that

4ε2

1 − (2‖Γ‖0,∞ − 1)μ(D)
� 4ε2

1 − (2‖Γ‖0 − 1)μ(D)
,

since generally ‖Γ‖0,∞ � ‖Γ‖0 . This inequality implies that
the above developed bound is (usually much) lower than the
traditional one. In other words, the bound on the distance to
the true sparse vector is much tighter and far more informative
under the �0,∞ setting.

B. Stability Guarantee of OMP

Hitherto, we have shown that the solution to the P ε
0,∞ problem

will be close to the true sparse vector Γ. However, it is also
important to know whether this solution can be approximated
by pursuit algorithms. In this subsection, we address such a
question for the OMP, extending the analysis presented to the
noisy setting.

In [34], a claim was provided for the OMP, guaranteeing the
recovery of the true support of the underlying solution if

‖Γ‖0 <
1
2

(
1 +

1
μ(D)

)
− 1

μ(D)
· ε

|Γmin |
,

|Γmin | being the minimal absolute value of a (non-zero) coeffi-
cients in Γ. This result comes to show the importance of both the
sparsity of Γ and the signal-to-noise ratio, which relates to the
term ε/|Γmin |. In the context of our convolutional setting, this
result provides a weak bound for two different reasons. First,
the above bound restricts the total number of non-zeros in the
representation of the signal. From Section V, it is natural to seek
for an alternative condition for the success of this pursuit relying
on the �0,∞ norm instead. Second, notice that the rightmost term
in the above bound divides the global error energy by the min-
imal coefficient (in absolute value) in Γ. In the convolutional

scenario, the energy of the error ε is a global quantity, while the
minimal coefficient |Γmin | is a local one – thus making this term
enormous, and the corresponding bound nearly meaningless. As
we show next, one can harness the inherent locality of the atoms
in order to replace the global quantity in the numerator with a
local one: εL .

Theorem 17 (Stable recovery of global OMP in the presence of
noise): Suppose a clean signal X has a representation DΓ, and
that it is contaminated with noise E to create the signal Y =
X + E, such that ‖Y − X‖2 ≤ ε. Denote by ε

L
the highest

energy of all n-dimensional local patches extracted from E.
Assume Γ satisfies

‖Γ‖0,∞ <
1
2

(
1 +

1
μ(D)

)
− 1

μ(D)
· ε

L

|Γmin |
,

where |Γmin | is the minimal entry in absolute value of the sparse
vector Γ. Denoting by ΓOMP the solution obtained by running
OMP for ‖Γ‖0 iterations, we are guaranteed that

a) OMP will find the correct support; And,
b) ‖ΓOMP − Γ‖2

2 ≤ ε2

1−μ(D)(‖Γ‖0 ,∞−1) .
The proof of this theorem is presented in the Supplementary

Material, and the derivations therein are based on the analysis
presented in [34], generalizing the study to the convolutional
setting. Note that we have assumed that the OMP algorithm runs
for ‖Γ‖0 iterations. We could also propose a different approach,
however, using a stopping criterion based on the norm of the
residual. Under such setting, the OMP would run until the energy
of the global residual is less than the energy of the noise, given
by ε2 .

C. Stability Guarantee of Basis Pursuit Denoising via ERC

A theoretical motivation behind relaxing the �0,∞ norm to the
convex �1 was already established in Section V, showing that
if the former is low, the BP algorithm is guaranteed to succeed.
When moving to the noisy regime, the BP is naturally extended
to the Basis Pursuit DeNoising (BPDN) algorithm,7 which in its
Lagrangian form is defined as follows

min
Γ

1
2
‖Y − DΓ‖2

2 + λ‖Γ‖1 . (9)

Similar to how BP was shown to approximate the solution to
the P0,∞ problem, in what follows we will prove that the BPDN
manages to approximate the solution to the P ε

0,∞ problem.
Assuming the ERC is met, the stability of BP was proven un-

der various noise models and formulations in [36]. By exploit-
ing the convolutional structure used throughout our analysis, we
now show that the ERC is met given that the �0,∞ norm is small,
tying the aforementioned results to our story.

Theorem 18 (ERC in the convolutional sparse model): For a
convolutional dictionary D with mutual coherence μ(D), the
ERC condition is met for every support T that satisfies

‖T ‖0,∞ <
1
2

(
1 +

1
μ(D)

)
.

7Note that an alternative to the BPDN extension is that of the Dantzig Selector
algorithm. One can envision a similar analysis to the one presented here for this
algorithm as well.
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Based on this and the analysis presented in [36], we present a
stability claim for the Lagrangian formulation of the BP problem
as stated in Eq. (9).

Theorem 19 (Stable recovery of global Basis Pursuit in the
presence of noise): Suppose a clean signal X has a represen-
tation DΓ, and that it is contaminated with noise E to create
the signal Y = X + E. Denote by ε

L
the highest energy of

all n-dimensional local patches extracted from E. Assume Γ
satisfies

‖Γ‖0,∞ ≤ 1
3

(
1 +

1
μ(D)

)
.

Denoting by ΓBP the solution to the Lagrangian BP formulation
with parameter λ = 4εL , we are guaranteed that

1) The support of ΓBP is contained in that of Γ.
2) ‖ΓBP − Γ‖∞ < 15

2 εL .
3) In particular, the support of ΓBP contains every index i for

which |Γi | > 15
2 εL .

4) The minimizer of the problem, ΓBP, is unique.
The proof for both of the above, inspired by the derivations in
[27] and [36], are presented in the Supplementary Material.

The benefit of this over traditional claims is, once again, the
replacement of the �0 with the �0,∞ norm. Moreover, this re-
sult bounds the difference between the entries in ΓBP and Γ in
terms of a local quantity – the local noise level εL . As a conse-
quence, all atoms with coefficients above this local measure are
guaranteed to be recovered.

The implications of the above theorem are far-reaching as
it provides a sound theoretical back-bone for all works that
have addressed the convolutional BP problem in its Lagrangian
form [21]–[23], [37], [46]. In Section IX we will propose two
additional algorithms for solving the global BP efficiently by
working locally, and these methods would benefit from this the-
oretical result as well. As a last comment, a different and perhaps
more appropriate convex relaxation for the �0,∞ norm could be
suggested, such as the �1,∞ norm. This, however, remains one
of our future work challenges.

D. Experiments

Following the above analysis, we now provide a numeri-
cal experiment demonstrating the above obtained bounds. The
global dictionary employed here is the same as the one used
for the noiseless experiments in Section V, with mutual coher-
ence μ(D) = 0.09, local atoms of length n = 64 and global
ones of size N = 640. We sample random sparse vectors with
cardinality between 1 and 500, with entries drawn from a uni-
form distribution with range [−a, a], for varying values of a.
Given these vectors, we construct global signals and contami-
nate them with noise. The noise is sampled from a zero-mean
unit-variance white Gaussian distribution, and then normalized
such that ‖E‖2 = 0.1.

In what follows, we will first center our attention on the
bounds obtained for the OMP algorithm, and then proceed to
the ones corresponding to the BP. Given the noisy signals, we
run OMP with a sparsity constraint, obtaining ΓOMP. For each
realization of the global signal, we compute the minimal entry

Fig. 4. The distance ‖ΓOMP − Γ‖2 as a function of the �0 ,∞ norm, and the
corresponding theoretical bound.

(in absolute value) of the global sparse vector, |Γmin |, and its
�0,∞ norm. In addition, we compute the maximal local energy
of the noise, εL , corresponding to the highest energy of a n-
dimensional patch of E.

Recall that the theorem in the previous subsection poses two
claims: 1) the stability of the result in terms of ‖ΓOMP − Γ‖2 ;
and 2) the success in recovering the correct support. In Fig. 4
we investigate the first of these points, presenting the distance
between the estimated and the true sparse codes as a function of
the �0,∞ norm of the original vector. As it is clear from the graph,
the empirical distances are below the theoretical bound depicted
in black, given by ε2

1−μ(D)(‖Γ‖0 ,∞−1) . According to the theorem’s

assumption, the sparse vector should satisfy ‖Γ‖0,∞ < 1
2 (1 +

1
μ(D) ) −

1
μ(D) ·

ε
L

|Γm in | . The red dashed line delimits the area
where this is met, with the exception that we omit the second
term in the previous expression, as done previously in [34]. This
disregards the condition on the |Γmin | and ε

L
(which depends

on the realization). Yet, the empirical results remain stable.
In order to address the successful recovery of the support, we

compute the ratio
ε

L

|Γm in | for each realization in the experiment.
In Fig. 5(a), for each sample we denote by • or × the success
or failure in recovering the support, respectively. Each point is
plotted as a function of its �0,∞ norm and its corresponding
ratio. The theoretical condition for the success of the OMP
can be rewritten as

ε
L

|Γm i n | < μ(D)
2 (1 + 1

μ(D) ) − μ(D)‖Γ‖0,∞,

presenting a bound on the ratio
ε

L

|Γm in | as a function of the �0,∞
norm. This bound is depicted with a blue line, indicating that
the empirical results agree with the theoretical claims.

One can also observe two distinct phase transitions in
Fig. 5(a). On the one hand, noting that the y axis can be in-
terpreted as the inverse of the noise-to-signal ratio (in some
sense), we see that once the noise level is too high, OMP fails in
recovering the support.8 On the other hand, similar to what was
presented in the noiseless case, once the �0,∞ norm becomes too
large, the algorithm is prone to fail in recovering the support.

8Note that the abrupt change in this phase-transition area is due to the log
scale of the y axis.
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Fig. 5. The ratio ε
L

/|Γm in | as a function of the �0 ,∞ norm, and the theoretical
bound for the successful recovery of the support, for both the OMP and BP
algorithms. (a) Orthogonal matching pursuit. (b) Basis pursuit.

Fig. 6. The distance ‖ΓBP − Γ‖∞/εL as a function of the �0 ,∞ norm, and
the corresponding theoretical bound.

We now shift to the empirical verification of the guarantees
obtained for the BP. We employ the same dictionary as in the
experiment above, and the signals are constructed in the same
manner. We use the implementation of the LARS algorithm
within the SPAMS package9 in its Lagrangian formulation with
the theoretically justified parameter λ = 4εL , obtaining ΓBP.
Once again, we compute the quantities: |Γmin |, ‖Γ‖0,∞ and εL .

Theorem 19 states that the �∞ distance between the BP solu-
tion and the true sparse vector is below 15

2 εL . In Fig. 6 we depict

the ratio ‖ΓBP−Γ‖∞
εL

for each realization, verifying it is indeed be-
low 15

2 as long as the �0,∞ norm is below 1
3 (1 + 1

μ(D) ) ≈ 4.
Next, we would like to corroborate the assertions regarding the
recovery of the true support. To this end, note that the theorem
guarantees that all entries satisfying |Γi | > 15

2 εL shall be recov-
ered by the BP algorithm. Alternatively, one can state that the
complete support must be recovered as long as εL

|Γm in | < 2
15 . To

verify this claim, we plot this ratio for each realization as func-
tion of the �0,∞ norm in Fig. 5(b), marking every point according
to the success or failure of BP (in recovering the complete sup-
port). As evidenced in [27], OMP seems to be far more accurate

9Freely available from http://spams-devel.gforge.inria.fr/.

than the BP in recovering the true support. As one can see by
comparing Fig. 5(a) and 5(b), BP fails once the �0,∞ norm goes
beyond 20, while OMP succeeds all the way until ‖Γ‖0,∞ = 40.

IX. FROM GLOBAL PURSUIT TO LOCAL PROCESSING

We now turn to analyze the practical aspects of solving the
P ε

0,∞ problem given the relationship Y = DΓ + E. Motivated
by the theoretical guarantees of success derived in the previous
sections, the first naı̈ve approach would be to employ global
pursuit methods such as OMP and BP. However, these are
computationally demanding as the dimensions of the convolu-
tional dictionary are prohibitive for high values of N , the signal
length.

As an alternative, one could attempt to solve the P ε
0,∞ problem

using a patch-based processing scheme. In this case, for exam-
ple, one could suggest to solve a local and relatively cheaper
pursuit for every patch in the signal (including overlaps) using
the local dictionary DL . It is clear, however, that this approach
will not work well under the convolutional model, because atoms
used in overlapping patches are simply not present in DL . On
the other hand, one could turn to employ Ω as the local dictio-
nary, but this is prone to fail in recovering the correct support
of the atoms. To see this more clearly, note that there is no way
to distinguish between any of the atoms having only one entry
different than zero; i.e., those appearing on the extremes of Ω
in Fig. 2.

As we can see, neither the naı̈ve global approach, nor the
simple patch-based processing, provide an effective strategy.
Several questions arise from this discussion: Can we solve the
global pursuit problem using local patch-based processing? Can
the proposed algorithm rely merely on the low dimensional dic-
tionaries DL or Ω while still fully solving the global problem?
If so, in what form should the local patches communicate in or-
der to achieve a global consensus? In what follows, we address
these issues and provide practical and globally optimal answers.

A. Global to Local Through Bi-Level Consensus

When dealing with global problems which can be solved
locally, a popular tool of choice is the Alternating Direction
Method of Multipliers (ADMM) [26] in its consensus for-
mulation. In this framework, a global objective can be de-
composed into a set of local and distributed problems which
attempt to reach a global agreement. We will show that this
scheme can be effectively applied in the convolutional sparse
coding context, providing an algorithm with a bi-level consensus
interpretation.

The ADMM has been extensively used throughout the liter-
ature in convolutional sparse coding. However, as mentioned
in the introduction, it has been usually applied in the Fourier
domain. As a result, the sense of locality is lost in these ap-
proaches and the connection to traditional (local) sparse coding
is non-existent. On the contrary, the pursuit method we propose
here is carried out in a localized fashion in the original domain,
while still benefiting from the advantages of ADMM.

Recall the �1 relaxation of the global pursuit, given in Eq. (9).
Note that the noiseless model is contained in this formulation as
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a particular case when λ tends to zero. Using the separability of
the �1 norm, ‖Γ‖1 =

∑
i ‖αi‖1 , where αi are m−dimensional

local sparse vectors, as previously defined. In addition, using
the fact that RiDΓ = Ωγi , we apply a local decomposition on
the first term as well. This results in

min
{αi },{γi }

1
2n

∑

i

‖RiY − Ωγi‖2
2 + λ

∑

i

‖αi‖1 ,

where we have divided the first sum by the number of contribu-
tions per entry in the global signal, which is equal to the patch
size n. Note that the above minimization is not equivalent to
the original problem in Eq. (9) since no explicit consensus is
enforced between the local variables. Recall that the different
γi overlap, and so we must enforce them to agree. In addition,
αi should be constrained to be equal to the center of the corre-
sponding γi . Based on these observations, we modify the above
problem by adding the appropriate constraints, obtaining

min
{αi },{γi },Γ

1
2n

∑

i

‖RiY − Ωγi‖2
2 + λ

∑

i

‖αi‖1

s.t.

{
Qγi = αi

SiΓ = γi
∀i,

where Q extracts the center m coefficients corresponding to αi

from γi , and Si extracts the ith stripe γi from Γ.
Defining fi(γi) = 1

2n ‖RiY − Ωγi‖2
2 and g(αi) = λ‖αi‖1 ,

the above problem can be minimized by employing the ADMM
algorithm, as depicted in Algorithm 1. This is a two-level local-
global consensus formulation: each m dimensional vector αi

is enforced to agree with the center of its corresponding (2n −
1)m dimensional γi , and in addition, all γi are required to agree
with each other as to create a global Γ. The above can be shown
to be equivalent to the standard two-block ADMM formulation
[26]. Each iteration of this method can be divided into four steps:

1) Local sparse coding that updates αi (for all i), which
amounts to a simple soft thresholding operation.

2) Solution of a linear system of equations for updating γi

(for all i), which boils down to a simple multiplication by
a constant matrix.

3) Update of the global sparse vector Γ, which aggregates
the γi by averaging.

4) Update of the dual variables.
As can be seen, the ADMM provides a simple way of breaking
the global pursuit into local operations. Moreover, the local
coding step is just a projection problem onto the �1 ball, which
can be solved through simple soft thresholding, implying that
there is no complex pursuit involved.

Since we are in the �1 case, the function g is convex, as are the
functions fi . Therefore, the above is guaranteed to converge to
the minimizer of the global BP problem. As a result, we benefit
from the theoretical guarantees derived in previous sections.
One could attempt, in addition, to enforce an �0 penalty instead
of the �1 norm on the global sparse vector. Despite the fact
that no convergence guarantees could be claimed under such
formulation, the derivation of the algorithm remains practically
the same, with the only exception that the soft thresholding is
replaced by a hard one.

B. An Iterative Soft Thresholding Approach

While the above algorithm suggests a way to tackle the global
problem in a local fashion, the matrix involved in the stripe pro-
jection stage, Z−1 , is relatively large when compared to the
dimensions of DL . As a consequence, the bi-level consensus
introduces an extra layer of complexity to the algorithm. In
what follows, we propose an alternative method based on the
Iterative Soft Thresholding (IST) algorithm that relies solely
on multiplications by DL and features a simple intuitive inter-
pretation and implementation. A similar approach for solving
the convolutional sparse coding problem was suggested in [47].
Our main concern here is to provide insights into local alterna-
tives for the global sparse coding problem and their guarantees,
whereas the work in [47] focused on the optimizations aspects
of this pursuit from an entirely global perspective.

Let us consider the IST algorithm [48] which minimizes the
global objective in Eq. (9), by iterating the following updates

Γk = Sλ/c

(
Γk−1 +

1
c
DT (Y − DΓk−1)

)
,

where S applies an entry-wise soft thresholding operation with
threshold λ/c. Interpreting the above as a projected gradient
descent, the coefficient c relates to the gradient step size and
should be set according to the maximal singular value of the
matrix D in order to guarantee convergence [48].

The above algorithm might at first seem undesirable due to
the multiplications of the residual Y − DΓk−1 with the global
dictionary D. Yet, as we show in the Supplementary Material,
such a multiplication does not need to be carried out explicitly
due to the convolutional structure imposed on our dictionary. In
fact, the above is mathematical equivalent to an algorithm that
performs local updates given by

αk
i = Sλ/c

(
αk−1

i +
1
c

DT
L rk−1

i

)
,
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where rk
i = Ri(Y − DΓk−1) is a patch from the global resid-

ual. This scheme is depicted in Algorithm 2.
From an optimization point of view, one can interpret each it-

eration of the above as a scatter and gather process: local residu-
als are first extracted and scattered to different nodes where they
undergo shrinkage operations, and the results are then gathered
for the re-computation of the global residual. From an image
processing point of view, this algorithm decomposes a signal
into overlapping patches, restores these separately and then ag-
gregates the result for the next iteration. Notably, this is very
reminiscent of the patch averaging scheme, as described in the
introduction, and it shows for the first time the relation between
patch averaging and the convolutional sparse model. While the
former processes every patch once and independently, the above
algorithm indicates that one must iterate this process if one is to
reach global consensus.

Assuming the step size is chosen appropriately, the above
algorithm is also guaranteed to converge to the solution of the
global BP. As such, our theoretical analysis holds in this case as
well. Alternatively, one could attempt to employ an �0 approach,
using a global iterative hard thresholding algorithm. In this case,
however, there are no theoretical guarantees in terms of the �0,∞
norm. Still, we believe that a similar analysis to the one taken
throughout this work could lead to such claims.

C. Experiments

Next, we proceed to provide empirical results for the above
described methods. To this end, we take an undercomplete DCT
dictionary of size 25 × 5, and use it as DL in order to construct
the global convolutional dictionary D for a signal of length
N = 300. We then generate a random global sparse vector Γ
with 50 non-zeros, with entries distributed uniformally in the
range [−2,−1] ∪ [1, 2], creating the signal X = DΓ.

We first employ the ADMM and IST algorithms in a noiseless
scenario in order to minimize the global BP and find the under-
lying sparse vector. Since there is no noise added in this case,
we decrease the penalty parameter λ progressively throughout
the iterations, making this value tend to zero as suggested in the

Fig. 7. The sparse vector Γ after the global update stage in the ADMM
algorithm at iterations 20 (top), 200 (middle) and 1000 (bottom). An �1 norm
formulation was used for this experiment, in a noiseless setting.

previous subsection. In Fig. 7 we present the evolution of the es-
timated Γ̂ for the ADMM solver throughout the iterations, after
the global update stage. Note how the algorithm progressively
increases the consensus and eventually recovers the true sparse
vector. Equivalent plots are obtained for the IST method, and
these are therefore omitted.

To extend the experiment to the noisy case, we contaminate
the previous signal with additive white Gaussian noise of differ-
ent standard deviations: σ = 0.02, 0.04, 0.06. We then employ
both local algorithms to solve the corresponding BPDN prob-
lems, and analyze the �2 distance between their estimated sparse
vector and the true one, as a function of time. These results are
depicted in Fig. 8, where we include for completion the distance
of the solution achieved by the global BP in the noisy cases. A
few observations can be drawn from these results. Note that
both algorithms converge to the solution of the global BP in all
cases. In particular, the IST converges significantly faster than
the ADMM method. Interestingly, despite the later requiring a
smaller number of iterations to converge, these are relatively
more expensive than those of the IST, which employs only mul-
tiplications by the small DL .

X. CONCLUSION AND FUTURE WORK

In this work we have presented a formal analysis of the con-
volutional sparse representation model. In doing so, we have
reformulated the objective of the global pursuit, introducing the
�0,∞ norm and the corresponding P0,∞ problem, and proven the
uniqueness of its solution. By migrating from the P0 to the P0,∞
problem, we were able to provide meaningful guarantees for the
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Fig. 8. Distance between the estimate Γ̂ and the underlying solution Γ as a
function of time for the IST and the ADMM algorithms compared to the solution
obtained by solving the global BP.

success of popular algorithms in the noiseless case, improving
on traditional bounds that were shown to be very pessimistic
under the convolutional case. In order to achieve such results,
we have generalized a series of concepts such as Spark and
the mutual coherence to their counterparts in the convolutional
setting.

Striding on the foundations paved in the first part of this
work, we moved on to present a series of stability results for the
convolutional sparse model in the presence of noise, providing
guarantees for corresponding pursuit algorithms. These were
possible due to our migration from the �0 to the �0,∞ norm,
together with the generalization and utilization of concepts such
as RIP and ERC. Seeking for a connection between traditional
patch-based processing and the convolutional sparse model, we
finally proposed two efficient methods that solve the global
pursuit while working locally.

We envision many possible directions of future work, and
here we outline some of them:

� We could extend our study, which considers only worst-
case scenarios, to an average-performance analysis. By
assuming more information about the model, it might be
possible to quantify the probability of success of pursuit
methods in the convolutional case. Such results would
close the gap between current bounds and empirical results.

� From an application point of view, we envision that inter-
esting algorithms could be proposed to tackle real problems
in signal and image processing while using the convolu-
tional model. We note that while convolutional sparse cod-
ing has been applied to various problems, simple inverse
problems such as denoising have not yet been properly
addressed. We believe that the analysis presented in this
work could facilitate the development of such algorithms
by showing how to leverage on the subtleties of this model.

� Interestingly, even though we have declared the P0,∞ prob-
lem as our goal, at no point have we actually attempted to
tackle it directly. What we have shown instead is that pop-
ular algorithms succeed in finding its solution. One could
perhaps propose an algorithm specifically tailored for solv-
ing this problem – or its convex relaxation (�1,∞). Such a
method might be beneficial from both a theoretical and a
practical aspect.

All these points, and more, are matter of current research.
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