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Improving Pursuit Algorithms Using
Stochastic Resonance

Dror Simon, Jeremias Sulam, Yaniv Romano, Yue M. Lu and Michael Elad

Abstract—Sparse Representation Theory is a sub-field of signal
processing that has led to cutting edge results in many applica-
tions such as denoising, deblurring, super resolution and many
other inverse problems. Broadly speaking, this field puts forward
a model that assumes that signals are originated from a sparse
representation in terms of an over-complete dictionary. Thus,
when a corrupted measurement is given, we seek to estimate
its original, clean form by finding the best matched sparse
representation of the given signal in the dictionary domain. This
process is essentially a non-linear estimation solved by a pursuit
or a sparse coding algorithm.

The concept of Stochastic Resonance (SR) refers to the
counter-intuitive idea of improving algorithms’ performance by
a deliberate noise contamination. In this work we develop novel
techniques that apply SR for enhancement of the performance of
known pursuit algorithms. We show that these methods provide
an effective MMSE approximation and are capable of doing so
for high-dimensional problems, for which no alternative exists.

Index Terms—Sparseland, Stochastic Resonance, Basis Pursuit,
Orthogonal Matching Pursuit, Noise-enhanced pursuit.

I. INTRODUCTION

IN signal processing, often times we have access to a
corrupted signal and we wish to retrieve its clean version.

This process includes a wide variety of problems, such as
denoising, where we wish to remove noise from a noisy signal;
deblurring where we look to sharpen an image that has been
blurred or was taken out of focus; and inpainting in which
we fill-in missing data that has been removed from the image.
All the aforementioned tasks and many others, include a linear
degradation operator and a stochastic corruption, and as such
they can be described by the relation y = Hx+ ν, where x
is the ideal signal, H is the linear degradation operator, ν is
the additive noise, and y stands for the noisy measurements.

In order to successfully restore x, the Bayesian approach
relies on some statistical properties of the corruption and a
prior knowledge on the signal. When using a prior model
assumption, we essentially estimate the original signal by
obtaining a solution that is constrained by the model, while
also being similar to the corrupted data. In image processing
many such priors were developed over the years, among which
one can mention the Total-Variation, exploiting self-similarity,
relying on sparsity, and many others [1–3]. The literature in
image processing shows an evolution of models, all seeking
to improve the performance of the inverse problems described
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above. In this work we focus our attention to the sparse model
prior, as described next.

The Sparseland model assumes that a signal x ∈ Rn
originates from an over complete dictionaryD ∈ Rn×m where
n < m, multiplying it by a representation vector α ∈ Rm, i.e.
x = Dα. The vector α is sparse, meaning that the number of
non-zeros in it is very small compared to the data dimension,1

||α||0 � n. This implies that x is a linear combination of a
small number of the columns from the dictionary D, called
atoms. One of the most fundamental problems in Sparseland
is termed “Atom-Decomposition”: Given x, our goal is to
find the sparsest explanation for it α. Essentially this calls
for solving the (P0) optimization problem:

(P0) : α̂ = arg min
α

||α||0 s.t. Dα = x.

In typical situations, we do not get access to the clean signal
x, but rather to a corrupted version of it by some noise ν with
bounded energy ||ν||2 ≤ ε. The measurements are modeled as
y = x+ ν and therefore the above (P0) problem is modified
in order to take the noise into account, leading to the following
(P ε0 ) task:

(P ε0 ) : α̂ = arg min
α

||α||0 s.t. ||Dα− y||2 ≤ ε.

In the more general case, as described above, the degradation
might include a corruption operator. In these cases, the re-
sulting measurements are modeled as y = Hx + ν, leading
to a similar optimization problem in which the constraint is
replaced by ||HDα− y||2 ≤ ε. Once the problem is solved,
we can estimate the original signal simply by x̂ = Dα̂.

The (P ε0 ) optimization is non-convex, posing a hard problem
to tackle. Indeed, in general this problem is NP-Hard [4].
Nevertheless, approximation algorithms have been developed
in order to manage this task effectively. One of these approx-
imations, known as the Basis-Pursuit (BP) [5] is a relaxation
method where the l0 norm is replaced by an l1. An alternative
approach adopts a greedy strategy, such as in the case of the
Orthogonal Matching Pursuit (OMP) [6], where the non-zeros
in α̂ are found one-by-one by minimizing the residual energy
at each step.

These approximation algorithms have been accompanied by
theoretical guarantees for finding a sparse representation α̂
leading to a bounded error ||α̂−α||2 [7]. These results rely
on the cardinality of α, the range of the non-zeros values
and properties of the dictionary D. In practice, under non-
adversarial assumptions, these algorithms succeed with high

1The l0 pseudo-norm stands for a count of the number of non-zeros in the
vector.
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probability even when the theoretical conditions of the worst
case analysis are not met [8, 9].

Adopting a probabilistic point of view, as in [10], the
fundamental purpose of these pursuit algorithms is to ap-
proximate the most likely support of the original signal, and
therefore can be interpreted as a Maximum a Posteriori (MAP)
estimator approximation under the sparsity prior. Clearly, the
MAP is inferior to the Minimum Mean Square Error (MMSE)
estimator in terms of mean square error and therefore it is not
the optimal choice for some problems such as denoising. When
applying a Bayesian approach, the MMSE is composed of an
impractical sum of all the possible supports S ∈ Ω

α̂MMSE = E [α|y] =
∑
S∈Ω

E [α|y, S]P (S|y)

and therefore it is usually avoided. As surprising as it might
seem, the MMSE is actually a dense vector.

In a previous work [11] an MMSE estimator approximation
under the Sparseland model was suggested. The proposed
Random-OMP (RandOMP) algorithm has been proven to
coincide with the MMSE estimator in the case where the
dictionary D is unitary, and in the case where D is over-
complete and ||α||0 = 1. RandOMP also improves the MSE
results in general cases where the MMSE cannot be practically
computed. In [12] a pursuit based on a Bayesian approach
was suggested. The Fast Bayesian Matching Pursuit (FBMP)
proposed a method to recover the most probable supports and
approximate their posterior probabilities in order to achieve
MMSE estimator approximation. Both algorithms, RandOMP
and FBMP, rely on a greedy search where the support is
updated one coefficient at a time. For this reason, these
algorithms are restricted to low dimensional problems. In
this work we propose methods to approximate the practically
unattainable MMSE estimator regardless of the pursuit used,
therefore being applicable to large dimensions as well.

The term noise has the natural connotation of unwanted
disturbance in signal processing. Usually, this is indeed the
case, and the scientific community often tries to diminish
its influence in almost every signal processing application
that involes estimation [13]. Without invalidating the previous
statement, noise has also shown to be of great constructive
value. Stochastic algorithms such as simulated annealing,
genetic algorithms and image dithering rely on the properties
of noise in order to succeed [5, 14, 15]. Stochastic Resonance
(SR) is known as a phenomenon in which adding noise
to a weak sub-threshold periodic signal increases its output
Signal-to-Noise Ratio (SNR) when going through a threshold
quantizer. This field has been further developed and has
shown the ability to improve the performance of sub-optimal
detectors [16], non-linear parametric estimators [1] and some
image processing algorithms [17]. A well-known application
that uses noise in order to improve a system’s response is
Dithering.

SR has been used in the past in order to improve sub-optimal
non-linear systems’ performance. As we saw throughout this
section, pursuit algorithms form MAP estimator approxima-
tions. Could we consider a pursuit algorithm as a sub-optimal
non-linear system whose performance can be improved by

SR? In this work we intend to establish a novel MMSE
approximation for the Sparseland model by integrating SR
with known pursuit algorithms. More specifically, in our work
we will seek answers to the following questions:

1) Can noise be employed to improve the performance of
sparse coding algorithms?

2) How significant can this improvement be? Can we use
noise enhancement to achieve MMSE approximation in
the special unitary dictionary case?

3) Can we apply noise enhancement to approximate the
MMSE of the denoising problem in a more general case?

In this paper we address these and closely related ques-
tions, showing how SR could be of great benefit for pursuit
algorithms, and indeed provide MMSE approximation. Section
II reviews Bayesian estimation in Sparseland and an initial
intuition to SR in sparseland. In Section III we introduce SR
pursuits in the special case where the dictionary is unitary
and Section IV refers to the general dictionary case. Then,
in In Section V we discuss two extensions regarding the SR
and sparse model: one regarding the noise that should be
used and another linking SR to Monte Carlo Methods. Section
VI demonstrates a practical usage of our proposed algorithm
for image reconstruction and image denoising and finally, in
section VII we conclude this work.

II. BAYESIAN ESTIMATION IN SPARSELAND

Before we dive into the estimators themselves, we first
introduce the generative model assumed. In this work we lean
on the model introduced in [11] which is described as follows.
D ∈ Rn×m is an over-complete dictionary n < m and a
sparse vector α ∈ Rm with either a known number of non-
zeros ||α||0 = K or some prior probability Pi for each atom to
be chosen (we will variate between the two along this work).
The non-zeros themselves, noted as αS , are drawn from a
Gaussian distribution αS ∼ N (0, σ2

αI). Using the dictionary
and sparse representation, we create a signal x. The received
samples are its noisy measurements y = x + ν = Dα + ν,
where ν is a random Gaussian noise, i.e. ν ∼ N (0, σ2

νI).
Unless stated otherwise, throughout the following sections we
assume the described model and our goal is to acquire an
estimation of the original signal x̂(y). We shall now describe
the estimators under the described model as were developed
in [10].

The first estimator introduced is the Oracle estimator, which
seeks to estimate the representation given the (oracle) informa-
tion of it’s support. The task of retrieving the true support S of
the original sparse representation α is the essence of the (P ε0 )
problem. If the support is known, then the MMSE estimator is
simply the conditional expectation α̂Oracle

S = E [α|y, S]. From
[10], this expectation has the following form:

α̂Oracle
S,y =

1

σ2
ν

Q−1
S D

T
Sy, (1)

where DS is a subdictionary containing only the columns
(atoms) in the given support S, and QS is:

QS =
1

σ2
α

I |S| +
1

σ2
ν

DT
SDS
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originating from the Wiener filter solution. We refer to this
estimator as the Oracle as there is no possible way of knowing
the true support beforehand.

The second estimator is the MAP. In this case we look for
the most probable support given our measurements and use it
in order to estimate the signal2.

Ŝ = arg max
S

P (S|y) = arg max
S

P (y|S)P (S)

= arg max
S

1

2

∣∣∣∣∣∣∣∣ 1

σ2
v

Q
− 1

2

S DT
Sy

∣∣∣∣∣∣∣∣2
2

− 1

2
log(det(CS))

+
∑
i∈S

log(Pi) +
∑
j /∈S

log(1− Pj),

where C−1
S = 1

σ2
ν
In − 1

σ4
ν
DSQ

−1
S D

T
S In the case where the

number of non-zeros is known to be a constant ||α||0 = K and
all are equally likely, we can omit the last two sums since they
indicate the prior of the support P (S) and they are uniformly
distributed. As described, the final estimator is:

α̂MAP
y = α̂Oracle

ŜMAP,y

The last estimator is the MMSE. A well known result from
estimation theory is that the MMSE estimator is given by the
conditional expectation:

α̂MMSE
y = E [α|y] =

∑
S

P (S|y)E [α|y, S]

=
∑
S

P (S|y)α̂Oracle
S,y .

This is a weighted sum of all the possible supports. The
probability P (S|y) is given in [10]:

P (S|y) =
tS
t
, t ,

∑
S

tS

ts ,
1√

det(CS)
exp

{
−1

2
yTC−1

S y

}∏
i∈S

Pi
∏
i/∈S

(1− Pi) .

(2)

Note that both estimators, the MMSE and the MAP, are gener-
ally NP hard, since they require either to sum all the possible
supports or to compute all the posterior probabilities and pick
the highest one. Also, from the formulation given above,
the essence of both estimators is the posterior probability
P (S|y). The better an algorithm estimates and leverages these
probabilities, the better the original signal’s estimation will
be. All of the described estimators are for the representation
vector α. In order to achieve estimations for the signal x we
simply multiply x̂ = Dα̂ due to their linear relation. Given
these estimators and the model we now begin our journey for
pursuit improvement, starting with the unitary case.

As described in the Introduction, in this paper we use
Stochastic Resonance in order to achieve MMSE approxima-
tion using many MAP approximations. The algorithm to do
so is described in Algorithm 1. This algorithm simply adds

2Actually this is the MAP of the support. This is used in order to avoid the
very probable case where the recovered signal is the 0 vector as described in
[10]

Algorithm 1 SR Estimation algorithm

1: procedure SR-EST(y,D, PursuitMethod, σn)
2: for k=1...K do
3: nk ← SampleNoise(σn)
4: α̃k ← PursuitMethod(y + n,D)
5: Ŝk ← Support(α̃k)
6: α̂k ← α̂Oracle

ŜK
(y)

7: end for
8: α̂non-subtractive = 1

K

∑K
k=1 α̃k

9: α̂subtractive = 1
K

∑K
k=1 α̂k

10: return α̂non-subtractive, α̂subtractive
11: end procedure

a small amount of noise nk to the already noisy signal y
and then applies any pursuit given which is simply a MAP
approximation and finally averages all the evaluations to a
single final estimation. Note that two forms of estimations are
given. The first one, the “non-subtractive”, uses the extra-noisy
evaluations as the basic estimators and averages them. The
second one, the “subtractive”, uses only the supports recovered
by the noisy evaluations in order to achieve an estimation that
is not effected by the added noise, and finally averages them
out to achieve a final single estimation.

Before we dive in to the mathematical justifications given
in the following sections, we first introduce the results of this
algorithm using a simple synthetic example. In this experiment
we generated random signals of length 50 with one non-zero
(to make the MAP and MMSE attainable). Each non-zero
is a Gaussian random variable, and the measurements are
contaminated with additive white Gaussian noise ν. We used
OMP as a basic MAP approximation and the reader can see the
MSE results in Figure 1a. The improvement in performance is
clearly seen. We repeated this experiment for a varying amount
of added noise σv and tested the optimal SR MSE vs. the
MMSE and the results can be seen in Figure 1b. Finally, in
Figure 1c we show the optimal amount of SR added noise σn
for different input noise energy values.

III. IMPROVING PURSUITS IN THE UNITARY CASE

A. The Unitary Sparse Estimators
Continuing the Bayesian analysis of the sparse prior, we

can specialize and simplify the expressions associated with
the oracle estimator, MMSE and the MAP estimator. In [10]
they mention the special case where the dictionary D is a
unitary n× n matrix. In this case the dictionary is no longer
over-complete and due to its special properties, the described
estimators can be simplified. The MAP estimator is reduced
to the elementwise Hard Thresholding operator applied on the
projected measurements β = DTy, given by:

α̂MAP (β) = HλMAP (β) =

{
c2β if |β| ≥ λMAP ,

0 else
,

where we denote c2 , σ2
α

σ2
α+σ2

ν
and λMAP ,

√
2σν
c

√
log
(

1−pi
pi
√

1−c2

)
, and α and β are the elements

of the vectors α and β.
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Fig. 1: 100 iterations of SR with OMP as a basic support
estimator. D50×100 is an over-complete normalized random
dictionary. The measurements are y = Dα + ν where ν ∼
N
(
0, σ2

νI
)
, ||α||0 = 1 and αs ∼ N (0, 1).

The MMSE estimator in the unitary case is a simple
elementwise shrinkage operator of the following form:

α̂MMSE = ψ(β) =
exp

(
c2

2σ2
ν
β2
)

pi
1−pi

√
1− c2

1 + exp
(
c2

2σ2
ν
β2
)

pi
1−pi

√
1− c2

c2β.

Note that this shrinkage operator does not enforce a sparse
vector, just as in the general case. The above scalar operators
are also extended to act on vectors in an entry-wise manner.

B. The Unitary SR Estimators

In the previous section we saw that the MMSE is a weighted
sum of all the probable solutions, where the weights are the
posterior probabilities of each support. Similarly, we propose
to approximate the MMSE by summing many probable solu-
tions, by the following procedure: First, we add white zero
mean Gaussian noise nk to the signal y. Note that since D
is unitary, it does not matter if the noise is added to y or to
its projection β = DTy. Then, we pass it through the MAP
estimator H resulting with an estimation α̂k of the original
signal. This process is repeated many times, each time with a
different noise realization. The final step includes an arithmetic
mean over all the estimations3

α̂stochastic =
1

K

K∑
k=1

α̂k =
1

K

K∑
k=1

H (β + nk) .

3Notice that the written equation operates on the the vectors element-wise.

The described process is an empirical arithmetic average
approximating the expected value described as:

En [Hλ (β + n)] =

∫ ∞
−∞
Hλ (β + n) p (n) dn

= c2
[
βQ

(
λ+ β

σn

)
+ βQ

(
λ− β
σn

)]
+

c2
[
σn√
2π

(
e
− (λ−β)2

2σ2n − e−
(λ+β)2

2σ2n

)]
,

where we have denoted Q(•) as the tail probability of the
standard normal distribution, i.e. Q(x) = 1√

2π

∫∞
x
e−

u2

2 du.
The full derivation can be found in Appendix A. We shall
define the above estimator as the non-subtractive SR estimator.

The term non-subtractive is used here to note that each
estimation α̂k is still contaminated with the noise nk that
was added in the process. Conversely, one might consider the
subtractive estimator, in which we remove the projection of
the added noise, resulting in the following shrinkage operator:

α̂k (β, nk) =H− (β, nk)

H− (β, nk) =

{
c2 (β + nk)− c2nk if |β + nk| ≥ λMAP ,

0 else

=

{
c2β if |β + nk| ≥ λMAP ,

0 else
.

Using this shrinkage operator and following the same process
described above, we end up with the following estimator:

En
[
H− (β, n)

]
=

∫ ∞
−∞
H− (β + n) p (n) dn

=c2β

[
Q

(
λ+ β

σn

)
+Q

(
λ− β
σn

)]
.

Again, The full derivation can be found in Appendix A.
Notice that the described estimators have two parameters yet

to be set: σn and λ. The former tunes the magnitude of the
added noise, while latter controls the value of the thresholding
operation. Note that the original MAP threshold might be sub-
optimal due to the added noise and therefore, we leave λ as a
parameter needed to be set. We will explore how to set these
parameters later in this section.

C. Unitary SR Estimation Results

In order to demonstrate the similarity of the proposed esti-
mators to the MMSE, we can simply compare their shrinkage
curves, as seen in Figure 2. One can see that, while the curves
do not overlap completely, for the right choice of parameters
(λ and σn), the curves are indeed close to each other. In terms
of MSE, in Figure 3 we can see the results of these methods as
a function of σn (λ is fixed to the optimal value). It seems that
the subtractive method is a slightly closer. We now discuss how
to set the parameters in order to reach these optimal results.

D. Finding the Optimal Parameters for the Unitary Case

In the cases where the dictionary D is known but other
parameters such as σα or σn are not known, the MMSE
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(a) Non-subtractive SR (b) Subtractive SR

Fig. 2: The proposed SR estimators shrinkage curve compared
to the MMSE. The parameters λ and σn values chosen to
obtain the the optimal MSE.
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Fig. 3: 100 iterations of SR for varying σn values. D is a
unitary 100×100 dictionary. The measurements are y = Dα+
ν where ν ∼ N

(
0, σ2

νI
)
, σν = 0.2, Pi = 0.05 ∀i and αs ∼

N (0, I).

estimator cannot be computed. In such cases, we may try and
estimate the MMSE by using SR. Since our added noise is
Gaussian, we can use Stein’s unbiased risk estimate (SURE)
[18] which measures an estimator’s MSE up to a constant, in
order to optimize the free parameters λ and σn. The SURE
formulation is:

µ(H(β, λ, σn),β) = ||H(β, λ, σn)||22
− 2H(β, λ, σn)Tβ + 2σ2

ν∇H(β, λ, σn).

In the unitary case this is further simplified to an element-wise
sum:

µ(H(β, λ, σn),β) =
∑
i

µ(H(βi, λ, σn), βi)

=
∑
i

H(βi, λ, σn)2 − 2H(βi, λ, σn)βi

+ 2σ2
ν

d

dβi
H(βi, λ, σn), (3)

and we wish to optimize σn and λ:

σn, λ = arg min
σn,λ

µ(H(β, λ, σn),β).

Plugging in the subtractive estimator H− results in a closed
form expression as can be seen in Appendix B. Also, in
Appendix B we show the surface Enµ for a specific experi-
ment. Interestingly, we would like to note that empirically, the
obtained optimal λ is quite close to the λ suggested by the
MAP estimator.

IV. IMPROVING PURSUITS IN THE GENERAL CASE

The unitary case is a good testing environment for new ideas
since it is relatively simple and easy to analyze. That being
said, SR in the unitary case has a slim importance since the
MMSE has a closed form solution in the form of a shrinkage
curve and therefore an approximation made by many sparse
coded estimators is not needed. Also, most of the sparse theory
applications use over-complete dictionaries.

In order to provide an analysis for the general case some
assumptions should be made. We start by analyzing the single-
atom case.

A. Single-Atom Analysis

In this section we analyze the over-complete case with the
assumption that the cardinality of the sparse representation is
known to be 1, i.e. ||α||0 = 1. From [11] we have that in this
case, the MAP estimator described in the Introduction boils
down to the following form:

x̂(y) = c2yS , yS = dSd
T
Sy, c2 =

σ2
α

σ2
α + σ2

ν

,

where the chosen atom dS is:

dS = arg min
dS

||yS − y||22

= arg min
dS

||dSdTSy − y||22 = arg max
dS

yTdSd
T
Sy. (4)

Following the subtractive concept we proposed in the unitary
case, we introduce the following SR estimator:

x̂(y) = c2yS , yS = dSd
T
Sy,

where this time the choice of the atom dS is affected by an
additional additive SR noise:

dS = arg min
dS

||yS(n)− y(n)||22 =

arg max
dS

(y + n)TdSd
T
S (y + n).

Employing this as a pursuit to be used in Algorithm 1 we now
analyze the proposed asymptotic estimator:

Enx̂(y,n) = Enc2yS(n) = ES
[
En|S

[
c2yS

∣∣S]] =

c2
m∑
i=1

En|S
[
did

T
i y
]
P
(
Ŝ = i

)
= c2

m∑
i=1

did
T
i yP

(
Ŝ = i

)
.

Similar to the MMSE in the general case (2), we have the sum
of the solutions under all the possible supports (all supports
with a single atom in this case), and each support is weighted
by its probability to be chosen. We now turn to analyze this
probability. As stated in Equation (4), the chosen atom i is the
most correlated atom with the input signal:

P (Ŝ = i) = P

(∣∣∣dTi (y + n)
∣∣∣ > max

j 6=i

∣∣∣dTj (y + n)
∣∣∣) =

= P

(
|ñi| > max

j 6=i
|ñj |
)
, (5)
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where we defined ñ as a random Gaussian vector such that:

ñ =


ñ1

ñ2

...
ñm

 ∼ N (DTy, σ2
nD

TD
)
.

We have that the probability of choosing the atom i is
distributed as the probability of the maximum value of a ran-
dom Gaussian vector with correlated variables. The vector’s
variables are correlated since in the non-unitary case, DTD
is not a diagonal matrix.
Facing this dilemma, we can tackle it in several directions:

1) Instead of adding the Gaussian noise to the image y, we
can add it to the projected signal DTy thus avoiding the
variables {ñi}mi=1 being correlated.

2) We can add some assumptions on the prior properties
of the dictionary D, thus deriving average case conclu-
sions.

3) We can change the pursuit to use a constant threshold
λ for the choice of the support instead of comparing
the correlated variables. This means that when applying
the algorithm, a cardinality of |s| = 0 or |s| ≥ 2 might
enter the averaging process. This is clearly a sub-optimal
choice and we leave the study of this option for future
work.

We shall now analyze the first two proposed alternatives.
1) Adding Noise to the Representation: Under this assump-

tion, we continue from Equation (5), only this time the noise
ñi is white and has the following properties:

ñ ∼ N
(
DTy, σ2

nIm×m

)
Plugging this into (5):

P (Ŝ = i) = P

(∣∣∣dTi y + n
∣∣∣ > max

j 6=i

∣∣∣dTj y + n
∣∣∣)

= P

(
|ñi| > max

j 6=i
|ñj |
)

=

∫ ∞
0

P

(
max
j 6=i
|ñj | < t

∣∣∣∣|ñi| = t

)
P (|ñi| = t) dt

=

∫ ∞
0

P

(
max
j 6=i
|ñj | < t

)
P (|ñi| = t) dt. (6)

Starting with the first element in the above product, since these
are independent variables, we have:

P

(
max
j 6=i
|ñj | < t

)
=
∏
j 6=i

P (|ñj | < t) =
∏
j 6=i

[1− P (|ñj | > t)]

=
∏
j 6=i

[
1−

(
Q

(
t+ βj
σn

)
+Q

(
t− βj
σn

))]
,

where the last equality follows similar steps as in Appendix A
with βi , dTi y and t = λ. The second term in (6) is simply
an absolute value of a Gaussian, therefore:

P (|ñi| = t) =
1√

2πσn

(
e
− (t−βi)

2

2σ2n + e
− (t+βi)

2

2σ2n

)

Putting the two terms back into (6):

P (ŝ = i) =

∫ ∞
0

1√
2πσn

[
e
− (t+βi)

2

2σ2n + e
− (t−βi)

2

2σ2n

]
·

∏
j 6=i

[
1−

(
Q

(
t− βj
σn

)
+Q

(
t+ βj
σn

))]
dt (7)

The obtained expression cannot be solved analytically but can
be numerically calculated. In Figure 4 we present a simulation
for the single atom case where the noise is added to the
projection βi = dTi y. In Figure 4a we can observe that indeed,
even in the non-unitary case, SR for the optimal choice of σn
applied on the representation DTy approximates the MMSE
pretty well.

In 4b we show the probability of recovering the true support
Psuccess as a function of σn, both from (7) and from actual
pursuit simulations. We also compare it to the MMSE weight
from (2) and we marked the optimal MSE σn as a black
line. We can see that the derived expression agrees with the
simulations. In addition, we notice that the optimal σn in terms
of MSE, also approximates the probability of the true support
to the weight given in the MMSE solution. In other words,
the optimal σn is the one that approximates the weight of
the support to the weight given by the MMSE expression.
The trend in (7) shows, unsurprisingly, that as we add noise,
the probability of successfully recovering the true support
decreases. In the limit, when σn → ∞ the signal will be
dominated by the noise and the success probability will be
uniform among all the atoms, i.e. equal to Psuccess = 1

m .
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(a) 100 iterations of subtractive
SR MSE with non unitary

overcomplete dictionary and a
single atom sparse representation.
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(b) Numeric integration vs.
simulations for probability
P (s = True Suport|y).

Fig. 4: One atom SR simulations with additive noise in the
representation domain.

Due to the fact that the MSE is almost the same when
the probability PSR(s = True Support|y) ≈ PMMSE(s =
True Support|y), one might expect a similar behavior for all
the other possible supports. To emphasize this we draw the
following experiment. We randomize an index and draw many
signals α with the non-zero in the same location. Then, we plot
the histogram of the average empirical probability (obtained
by pursuit) of each element in the vector α to be non-zero.
We compare these probabilities to those of the MMSE. This
experiment will run for different σn values and each time
we can compare the entire support histogram. We expect the
two histograms (SR and MMSE) to fit for the right choice of
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added noise σn. In Figure 5 we see the results of the described
experiment.

Analyzing the results of this experiment, we notice that
when no noise is added (this is the actually average case of
the MAP estimator), most of the elements (apart from the true
support element) have a much lower weight than the MMSE.
As noise is added, the true support’s probability decreases and
its weight is divided among the other elements. At some point
the two histograms almost match each other. This is the point
where SR MSE almost equals that of the MMSE . As we add
more noise, the true support’s probability keeps decreasing
and the other elements keep increasing and the histograms are
now farther apart from each other. When we reach σn → ∞
we obtain uniform probability for all the supports.

In Figure 6 we show on the left axis the DK||L distance
(kullback-leibler divergence) between the two histograms, and
on the right axis the MSE. We see, as expected, that when the
histograms are close, the MSE is minimal.

We have shown empirically that SR approximates the
MMSE well also when the dictionary is not unitary in the
one atom case. We now need to find a way of estimating a
proper σn. Using SURE is possible but seems impractical due
to the complexity of the estimator.

2. Prior Assumptions on the Dictionary D: In this section
we will try to simplify the expression in (5) by adding
assumptions regarding the dictionary D. We will now show
that if we assume that the columns of the dictionary, i.e. the
atoms, are statistically uncorrelated, then adding noise in the
image domain is the same as adding it to the representation.
Formally, our assumption is that the atoms di are drawn from
some random distribution that obeys the following properties:

EdTi dj = 0, ∀i 6= j 1 ≤ i, j ≤ m, (8)

and of course that the atoms are normalized:

||di||2 = 1, ∀i 1 ≤ i ≤ m. (9)

We now look to analyze the properties of the random vector
in (5):

ñ = DT (y + n).

First we observe that given the dictionary D, each of the
elements in this vector is asymptotically a Gaussian variable:

ñi|di = dTi (y + n) =

n∑
k=1

di,k(yk + nk) =

n∑
k=1

di,kyk +

n∑
k=1

di,knk = µi +

n∑
k=1

di,knk.

Given the measurements and the dictionary, the first sum∑n
k=1 di,kyk , µi is some constant. The second term in

the expression is a weighted sum of n iid random variables
{nk}nk=1. Therefore, using the Central Limit Theorem, and the
fact that ||di||2 = 1, asymptotically for large dimension n, this
is a Gaussian variable. It is easy to see that its mean value is 0,
and its standard deviation is σn, hence ñi|di ∼ N (dTi y, σn)
for n→∞.

Now we turn to analyze the properties of the entire vec-
tor ñ. From the previous analysis we know that given the

dictionary D, it is a random Gaussian vector with the mean
vector µñ|D = DTy. Using the properties of the noise
EnnT = σ2

nI , the auto-correlation matrix of ñ|D is by
definition:

Σ|D = E
[
DTnnTD

∣∣∣D] = DTE
[
nnT

]
D = σ2

nD
TD.

Analyzing the average case, the mean vector is of the form:

µñ = EDDTy,

and the auto-correlation matrix is simply diagonal:

Σ =ED[Σ|D] = E
[
σ2
nD

TD
]

= σ2
nI,

where we used the assumptions in (8) and (9). This means that
the uncorrelated atoms assumption leads ñ to have the same
properties as seen in the previous section, and therefore their
analysis is the same.

To show that practically the two are the same, we propose
the following experiment. We sample a random dictionary
D and random sparse representations α with cardinality of
1 as the generative model described earlier suggests. In this
experiment we used a dictionary D of size 200×400 and 2000
random sparse representations. Using the generated vectors
and dictionary we created signals y simply by multiplying
and adding noise y = Dα + ν. To denoise the signals,
we once run the stochastic resonance algorithm with noise
n1 ∼ N (0, σnIn×n) added to the signal vectors y + n1, and
once with noise n2 ∼ N (0, σnIm×m) added to the represen-
tation domain DTy+n2. Observe that due to the cardinality
of the sparse representation, a simple Hard Thresholding is
the MAP estimator, thus we shall use that as our non-linear
estimator. In Figure 7 we see that the MSE of the two cases
result in an almost identical curve. Small differences might
exist due to the finite dimensions used in the experiment.

Note that the total noise energy added in the representation
domain is much larger than that of the noise added to the
signal, i.e. E||n2||22 = mσ2

n > nσ2
n = E||n1||22 but the

results remain the same due to the unit norm of the dictionary
||di||2 = 1, and of course the uncorrelated atoms assumption.

To conclude this section, under the statistically uncorrelated
atoms assumption, we have shown that adding noise in the
signal domain y, asymptotically converges to the analysis
addressed in the previous section in which the noise was
added to the representation domain DTy. Therefore, under
this assumption the previous section’s analysis holds, and its
results and conclusions can be inferred in this case as well.

B. Multiple Atoms

We shall now show that the application of Algorithm 1
in the general case of an overcomplete dictionary and many
non-zeros results with superior denoising performance over
the classic pursuit. We also show that this algorithm can be
used with not only the l0 pseudo-norm (OMP) but rather with
l1 norm algorithms (Basis Pursuit) as well. Unlike previous
MMSE approximations under the sparseland model, such as
the Random OMP, this is the first time an approximation
using the l1 norm is addressed. We use a random Gaussian
dictionary and generate random Gaussian coefficients with
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Fig. 5: MMSE and 100 iterations of SR suppport weights histograms for varying values of σn;(a)-(c) show full
histograms;(d)-(f) show zoomed-in histograms to emphasize the differences in the smaller weights. Atom number 69 is the

true support.

0.0 0.1 0.2 0.3
n

0.00

0.02

0.04

0.06

0.08

0.10

D
KL

(P
SR

||P
M

M
SE

)

0.12

0.14

0.16

0.18

0.20

SR
 M

SE

DKL(PSR||PMMSE)
Subtractive SR MSE
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a random number of non zeros and their locations, with an
average sparsity of 5%. As in the previous experiments, we
add Gaussian noise to the signal domain and use BP and
OMP to denoise the signals. Since the number of non zeros is
unknown, we use the bounded noise formulation of the pursuit
algorithms, i.e.

(OMP) min
α
||α||0 s.t. ||y −Dα||2 ≤ ε,

(BP) min
α
||α||1 s.t. ||y −Dα||2 ≤ ε.

The results of the described experiment can be seen in Figure
8. We acknowledge that although BP is in general inferior
to OMP in terms of MSE, the SR method improves both
algorithms’ performance, indicating the indifferent of this
concept to the pursuit algorithm used. We should mention that
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SE

1e 1 Different Noise Locations
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n2 Representation Domain

Fig. 7: Noise location comparison. 100 iterations of SR with
OMP as a basic support estimator. D ∈ R200×400 random
dictionary. The measurements are y = Dα + ν where ν ∼
N
(
0, σ2

νI
)
, σν = 0.2, ||α||0 = 1 and αs ∼ N (0, 1). The SR

noises are n1 ∼ N (0, σnIn×n). n2 ∼ N (0, σnIm×m).

even though OMP achieved better MSE performance, as the
number of non-zeros increases, BP converges much faster.

V. SR EXTENSIONS

In this section we represent some extensions to the basic
concept introduced in Algorithm 1. The first is a link between
SR and Monte Carlo Importance Sampling, and the second
discusses whether Gaussian noise is the optimal choice.

A. SR With Monte Carlo Methods

In the case where the generative model is fully known, the
MMSE can, in principle, be computed. The problem is that
due to the huge amount of possible supports, it is impractical.
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In order to solve this problem, we can turn to Monte Carlo
simulations in order to achieve an approximation. As assumed
previously in this work, the non-zeros come from a Gaussian
distribution, and the additive noise is also Gaussian. Hence, the
probabilities P (S|y) have an exponential nature as shown in
(2). This means that even though the true MMSE is a weighted
sum of all possible supports:

α̂(y) = E[α|y] = ES [E [α|y, S]] =
∑
S∈Ω

P (S|y)α̂(y, S),

the sum is practically dominated by only a few number of
elements:

α̂(y) =
∑
S∈Ω

P (S|y)α̂(y, S) ≈
∑
S∈ω
ω⊂Ω

P (S|y)α̂(y, S),

for a proper choice of the subset Ω. Can we somehow find the
significant elements, weight them accordingly and use them
as an approximation for the MMSE?

1) Importance Sampling: As we have seen, the Bayesian
approach requires a sum over all the possible supports (inte-
gration in the general Bayesian case) in order to achieve the
MMSE estimator. In the literature, there are numerous ways
of approximating non-analytic integrals [19]. Specifically for
the posterior expectation case, the Monte Carlo Importance
Sampling approach [20] is known to work well. Generally the
integral we wish to approximate is:

Ex [h(x)] =

∫
X
h(x)f(x)dx.

Importance Sampling essentially calculates the above integral
by using an additional sampling distribution g (also known as
importance sampling fundamental identity):

Ex [h(x)] =

∫
X
h(x)f(x)dx =

∫
X
h(x)

f(x)

g(x)
g(x)dx,

{g(x) 6= 0|x ∈ X , f(x) 6= 0} . (10)

Note that the condition given in brackets means that the
supp(g) ⊇ supp(f). The above integral can be approximated
by sampling J samples from the distribution g, i.e. Xj ∼
g, 1 ≤ j ≤ J and then average:

Ex [h(x)] ≈ 1

m

∑
Xj

f(x)

g(x)
h(x). (11)

This sum asymptotically converges to the integral in (10) by
the Strong Law of Large Numbers. A well known alternative
of the above sum is:

Ex [h(x)] ≈
∑
Xj

f(x)
g(x)h(x)∑
Xj

f(x)
g(x)

. (12)

This formulation addresses some stability issues regarding
the tail of f and g that are present in (11) and therefore is
commonly used. As the previous sum, it also converges to
(10) by the Strong Law of Large Numbers.

2) Importance Sampling using Stochastic Resonance: We
propose to use stochastic resonance in order to retrieve the
potentially important supports that have the dominant weights
in the MMSE, and weight them accordingly using Importance
Sampling. Formally, we use SR as a support generator PDF
Sj |y ∼ g(S|y), use the oracle estimators h(α|S,y) = α̂Oracle

Sj ,y

and their MMSE un-normalized weights f(S|y). Plugging this
into (12) we get:

α̂(y) = E [α|y] ≈
∑
Sj

f(Sj |y)
g(Sj)

α̂Oracle
Sj ,y∑

Sj

f(Sj |y)
g(Sj |y)

, Sj |y ∼ g(S|y).

We now write the explicit expressions for each of the compo-
nents described above:
• α̂Oracle

S,y – is as stated in (1)
• f(S|y) – This is the un-normalized probability for a

support S given the noisy measurements vector y. Again,
given the described generative model and from (2)

P (S|y) ∝ f(S|y) = tS

• g(S|y) – This is the support generator probability func-
tion given the noisy measurements y. As previously
mentioned we would like to have a way of generating
probable supports. Using the SR concept we shall create
likely supports simply by adding SR noise n to the
measurements y and run a pursuit. Clearly, as we add
more noise, in each of the iterations a pursuit might
retrieve a different support. If we add too much noise
then the supports recovered are not necessarily likely and
we might miss the “preferred supports” with the highest
MMSE weights. This means that another parameter for
this generating function g is also the amount of noise to
be added, σn.
In order to quantify gσn(S|y) we simply use the empirical
distribution. In other words, if we run K iterations and a
specific support occurred k times, its probability is simply
gσn(S|y) = k

K

By using the described components, we can now approxi-
mate the NP-Hard MMSE calculation simply by recovering
the likely supports using any pursuit on the SR-noisy mea-
surements and use (12). Note that this approximation will
asymptotically converge to the MMSE with probability 1.

3) Results: Since asymptotically this method is guaranteed
to converge to the MMSE, the question that arises is how
fast do we converge versus the number of possible supports.
We start by repeating the previously described experiments
for comparison. Note that in this experiment there are only
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100 possibilities for the support and therefore when running
100 iterations we are not surprised that we have successfully
converged. These results can be seen in Figure 9a. To show
the efficiency of this technique we compare it with the same
settings, only this time the cardinality is ||α||0 = 3 giving it
Tot(S) =

(
100
3

)
= 161, 700 possibilities, all apriori equally

likely! These results can be seen in Figure 9b. Note that
the MAP and the MMSE are missing in this figure due to
the impractical amount of calculations required. Compared to
the previous SR methods described, this method is much less
sensitive to the amount of added noise. As the noise increases
we have minor degradation since the most likely supports
are not recovered anymore. That being said, it seems that as
the number of possible supports increases, it will take more
iterations to actually converge or at least beat the previous SR
method. In Figure 9c we see that after 200 iterations the two
perform roughly the same, but Importance Sampling is much
less sensitive to σn. Note that with 200 iterations we recover
at most 200 different supports and that is only ≈ 0.12% of all
the possible supports.

To summarize, as we add more iterations we are guaranteed
to asymptotically converge to the MMSE, but a major im-
provement can be achieved with a small amount of iterations.
The biggest advantage of this method is its robustness to the
energy of the SR noise.

B. What Noise Should be Used?

In the previous sections we used Gaussian noise by default.
In this section we question this decision and wonder whether
we can use noise models with different distributions and
whether it affects the performance of the stochastic resonance
estimator.

As mentioned briefly in IV-A1, the result of the additive
noise multiplied by the dictionary DT is Gaussian under mild
conditions. Denoting ñ ,DTn, each element ñi is:

ñi = dTi n =

m∑
j=1

di,jnj .

Without the loss of generality, assuming normalized atoms
||di||2 = 1, this expression a weighted average of m iid
variables {nj}mj=1. If the noise nj has bounded mean and
variance and, of course, assuming iid elements, we can use the
Central Limit Theorem. In this case, for large enough signal
dimensions, ñi is asymptotically Gaussian regardless of the
distribution of the original additive noise n.

Following the previous statement, we experiment with a dif-
ferent distribution for a random noise vector. We will employ
an element-wise iid uniform noise with 0 mean nU ∼ U [−r, r].
In order to compare with a Gaussian noise nN ∼ N (0, σ2

n) we
choose r =

√
3σn thus assuring the same standard deviation

for the two cases. Following the same experiment described
in Figure 1a, in Figure 10a we also use a uniform noise
distribution as described above. By using uniform noise with
a zero mean and the same standard deviation as the Gaussian
noise, we see a perfect match between the two curves. Due
to the Central Limit Theorem, the noise’s distribution will
practically not change much as long as they uphold the

described conditions, and the signal’s dimensions are large
enough.

Now that we know that the choice of the noise’s distribution
will not effect the performance, is there a distribution from
which we can benefit more than others? To explore this
question, consider the following. Given the signal y, we define
the subsampling noise nsubsample in the following way:

ni(yi) =

{
0 w.p. p

−yi w.p. 1− p
,

and the SR samples will now follow the following distribution:

yi + ni(yi) =

{
yi w.p. p

0 w.p. 1− p
.

This means that each of the elements of the SR-noisy mea-
surements will be zero with probability 1 − p and only p
measurements will remain in the signal. This distribution is
interesting because of the following reason. When zeroing
out an element in the vector y, the matching row in in the
dictionary D will always be multiplied by the zero element
when calculating the correlations DTySR as done in most
pursuits. This multiplication obviously has no contribution to
the inner product and we might as well omit the zero elements
from ySR and the corresponding rows from D, remaining with
only a subsampled version of the signal y and the dictionary
D. In other words, in each of the SR iterations we simply
subsample a random np portion from the signal y and the
matching np portion of rows from the dictionaryD, remaining
with ysubsample of size pn× 1 and a dictionary Dsubsample of
size pn×m and apply a pursuit. Recall that once the pursuit is
done, its result contains a noisy estimation of the signal due to
the added SR noise nsubsample. Just like in the previous cases we
should now use the pursuit’s result only as a support estimator
in order to calculate the subtractive SR estimator. To do so,
once the pursuit is done, we should turn back to the full sized
signal y and dictionary D and calculate the oracle estimator
using the support recovered by the subsampled pursuit.

The described process can be equally formulated by sam-
pling a random mask Mpn×n which is a random subsample
of pn rows from the diagonal identity matrix In×n. In this
formulation, we create many base estimators by applying
a pursuit on the sub-sampled signal ysub = My, using
the sub-sampled dictionary Dsub = MD. Note that when
applying this method, each pursuit has a computational benefit
over the previous methods due to the decreased size of the
signal’s dimension. In Figure 10b we show the results for the
same experiment described in Figure 10a, this time using the
subsampling approach. In this Figure the x axis represents the
probability p, the percentage of elements kept in each pursuit.
We see that the two methods have the same performance in
MSE for the optimal choise of σn and p, but this method is
faster due to the smaller size of the pursuit.

VI. IMAGE DENOISING

In this section we show the benefit of using SR for facial
image denoising. In this experiment we use the Trainlets [21]
dictionary trained on facial images from the Chinese Passport
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(a) 100 iterations of SR with OMP as a basic
support estimator and {20,40,60,80,100} it-
erations of Importance Sampling approxima-
tion. ||α||0 = 1.
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(b) 100 iterations of SR with OMP as a basic
support estimator and {20,40,60,80,100} it-
erations of Importance Sampling approxima-
tion. ||α||0 = 3.
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(c) 200 iterations of SR and {100,200} itera-
tions of Importance Sampling approximation.
||α||0 = 3.

Fig. 9: SR with OMP as a basic support estimator and SR Importance Sampling approximation. D50×100 is an over-complete
normalized non-unitary random dictionary. The measurements are y = Dα + ν where ν ∼ N

(
0, σ2

νI
)
, σν = 0.2 and

αs ∼ N (0, I).

0.0 0.1 0.2 0.3 0.4
n

2.5

3.0

3.5

4.0

4.5

5.0

M
SE

1e 3 SR Estimators
MAP
Subtractive SR
Subtractive Uniform SR
MMSE

(a) Uniform vs. Gaussian SR
noise. D ∈ R50×100. Orange
curve has Gaussian noise. Green
curve has Uniform noise.
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results with Gaussian noise.

Fig. 10: 100 iterations of SR with OMP as a basic support
estimator. D is an over-complete normalized non-unitary
random dictionary. The measurements are y = Dα+ν where
ν ∼ N

(
0, σ2

νI
)
, σν = 0.2, ||α||0 = 1 and αs ∼ N (0, 1).

datase as described in [22]. In the dataset, each image is of size
100× 100 pixels and contains a gray-scale aligned face. The
application we demonstrate is denoising, that is approximating
the following optimization problem:

α̂ = arg min
α

||Dα− y||2 s.t. ||α||0 = L.

The approximation is achieved using the Subspace Pursuit (SP)
algorithm [23] which provides a fast converging algorithm for
a fixed number of non-zeros L. The number of non-zeros L
was achieved empirically and was chosen so that the denoising
performance would be optimal. For Stochastic Resonance we
used Algorithm 1 in its subtractive form with 200 iterations
and the same SP settings. Note that we do not seek optimal
denoising results but rather to show that SR can improve real
image processing tasks.

A. Experiment Description

We corrupt an image from the dataset with Additive White
Gaussian Noise (AWGN), each time with different standard
deviation σν . After that, for each image we applied SP using

the Trainlets dictionary and for each σv choose L such that the
denoised results would be optimal under the PSNR measure.
After that we took the noisy images and used Algorithm 1
to denoise using the same L with varying SR noise standard
deviations σn.

B. Results

In Figure 11 the results for σν = 40 can be seen. Un-
surprisingly, the SR results has a clearer image with much
less artifacts. Figure 12 presents the effectiveness of SR under
varying SR noise σn. We see that a gain of almost 2 dB
is achieved by using SR with a proper σn over the regular
pursuit. Figure 13 presents a comparison of SP vs. SR for
varying values of the noise’s standard deviation σν . In all
of the described experiments, SR improved the denoising
results. Generally we observe that as the noise is increased,
the improvement is more significant.

VII. CONCLUSION

In this work we introduced Stochastic Resonance which is a
phenomenon where noise improves the performance of a non-
linear system. We suggested algorithms leveraging Stochastic
Resonance under the context of sparse representation pursuit
algorithms. We analyzed their theoretical properties under the
SparseLand model setting and showed that MMSE approxi-
mation can be accomplished by repeatedly applying pursuits
with different SR noise realizations, thus achieving many
representations hypotheses and averaging all of them to a final
dense estimator. We have demonstrated Stochastic Resonance
as a practical and effective MMSE approximation that has
the ability to use any pursuit algorithm as a “black box”,
thus opening the door for MMSE approximations in large
dimensions.
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(a) Noisy image. PSNR=16.1 dB. (b) Subspace Pursuit.
PSNR=26.88 dB.

(c) Stochastic Resonance.
PSNR=28.76 dB.

(d) Clean Image

Fig. 11: Denoising results comparison. σν = 40, L = 90.
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Fig. 12: SR results with varying σn for a noisy image with
σν = 40, PSNR=16.1 dB. σn = 0 effectively does not use SR.
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Fig. 13: SR and SP results comparison for varying standard
deviation values σv .

APPENDIX A
UNITARY SR ESTIMATOR EXPECTATION

For the non-subtractive case:

En [Hλ (β + n)] =

∫ ∞
−∞
Hλ (β + n) p (n) dn

=

∫
|β+n|≥λ

c2 (β + n) p (n) dn

=c2

[∫ −λ−β
−∞

(β + n) p (n) dn+

∫ ∞
λ−β

(β + n) p (n) dn

]

=c2

[∫ −λ−β
−∞

(β + n)
1√

2πσ2
n

e
− n2

2σ2n dn

]
+

c2

[∫ ∞
λ−β

(β + n)
1√

2πσ2
n

e
− n2

2σ2n

]

=c2
[
βQ

(
λ+ β

σn

)
+ βQ

(
λ− β
σn

)]
+[

σn√
2π

(
e
− (λ−β)2

2σ2n − e−
(λ+β)2

2σ2n

)]
.

Similarly, for the subtractive case:

En
[
H− (β, n)

]
=

∫ ∞
−∞
H− (β + n) p (n) dn

=

∫
|β+n|≥λ

c2βp (n) dn

=c2

[∫ −λ−β
−∞

βp (n) dn+

∫ ∞
λ−β

βp (n) dn

]

=c2β

[∫ −λ−β
−∞

1√
2πσ2

n

e
− n2

2σ2n dn+

∫ ∞
λ−β

1√
2πσ2

n

e
− n2

2σ2n

]

=c2β

[
Q

(
λ+ β

σn

)
+Q

(
λ− β
σn

)]
.

APPENDIX B
SURE SURFACE FOR THE UNITARY CASE

Plugging in the subtractive estimator H−, into (3) results
with the following expression:

Enµ
(
H−
)

=
∑
i

(
c2βi

[
Q

(
λ+ βi
σn

)
+Q

(
λ− βi
σn

)])2

−

∑
i

2c2β2
i

[
Q

(
λ+ βi
σn

)
+Q

(
λ− βi
σn

)]
+

∑
i

2σ2
νc

2

[
Q

(
λ+ βi
σn

)
+Q

(
λ− βi
σn

)]
+

∑
i

2σ2
νc

2βi

[
1√

2πσn
e
− (λ−βi)

2

2σ2n − 1√
2πσn

e
− (λ+βi)

2

2σ2n

]
In order to show that it is indeed easy to optimize λ and
σ on the SURE surface, we demonstrate it by the following
experiment. We generated a sparse signal with probability of
Pi = 0.01 for a non-zero. The non-zeros were generated
randomly with a Gaussian distribution N (0, 1). We projected
the signal by a unitary dictionary and added random Gaussian
noise N (0, 0.2). Each signal has been estimated using the
described subtractive estimator. Figure 14 shows the SURE
surface over different λ and σn values, and Figure 15 shows
the MSE results respectively. We can see that the SURE
surface behaves just like the true MSE up to an additive
constant and that it is smooth and rather easy to optimize.
Also, in terms of MSE we see the obvious superiority of the
proposed estimator over the MAP estimator, and that it is quite
close to the MMSE.
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Fig. 14: SURE values.
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