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Ives Rey-Otero , Jeremias Sulam , Member, IEEE, and Michael Elad , Fellow, IEEE

Abstract—Over the past decade, the celebrated sparse repre-
sentation model has achieved impressive results in various signal
and image processing tasks. A convolutional version of this model,
termed convolutional sparse coding (CSC), has been recently rein-
troduced and extensively studied. CSC brings a natural remedy to
the limitation of typical sparse enforcing approaches of handling
global and high-dimensional signals by local, patch-based, process-
ing. While the classic field of sparse representations has been able to
cater for the diverse challenges of different signal processing tasks
by considering a wide range of problem formulations, almost all
available algorithms that deploy the CSC model consider the same
�1 − �2 problem form. As we argue in this paper, this CSC pursuit
formulation is also too restrictive as it fails to explicitly exploit some
local characteristics of the signal. This work expands the range of
formulations for the CSC model by proposing two convex alterna-
tives that merge global norms with local penalties and constraints.
The main contribution of this work is the derivation of efficient and
provably converging algorithms to solve these new sparse coding
formulations.

Index Terms—Sparse representation, convolutional sparse
coding, parallel proximal algorithm, convex optimization.

I. INTRODUCTION

THE sparse representation model [1] is a central tool for a
wide range of inverse problems in image processing, such

as denoising [2], [3], super-resolution [4], [5], image deblur-
ring [6], [7] and more. This model assumes that natural signals
can be represented as a sparse linear combination of a few
columns, called atoms, taken from a matrix called dictionary.
The problem of recovering the sparse decomposition of a given
signal over a (typically overcomplete) dictionary is called sparse
coding or pursuit. Such an inverse problem is usually formulated
as an optimization objective seeking to minimize the �0 pseudo-
norm, or its convex relaxation, the �1-norm, while allowing
for a good1 signal reconstruction. An effective deployment of
the sparse representation model calls for the identification of
a dictionary that suites the data treated. This is known as the
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1The desired representation accuracy, or fitting, is problem dependent and it

varies for different applications.

dictionary learning problem, of finding the best sparsifying
dictionary that fits a large set of signal examples [8], [9].

Alas, when it comes to the need to process global high-
dimensional signals (e.g., complete images), the sparse rep-
resentation model hits strong barriers. Dictionary learning is
completely intractable in such cases due to its too high memory
and computational requirements. In addition, the global pursuit
fails to grasp local varying behaviors in the signal, thus leading to
inferior treatment of the overall data. Because of these reasons,
it has become a common practice to split the global signal into
small overlapping blocks, or patches, identify the dictionary that
best models these patches, and then sparse code and reconstruct
each of these blocks independently before averaging them back
into a global signal [2]. Although practical and effective [10],
this patch-based strategy is inherently limited since it does not
account for the natural dependencies that exist between adjacent
or overlapping patches, and therefore it cannot ensure a coherent
reconstruction of the global signal [11], [12].

This limitation of the patch-based strategy has been tackled
in two ways. One way maintains the patch-based strategy while
extending it by modifying the objective so as to bridge the gap
between local prior and global reconstruction. This is achieved
either by taking into account the self-similarities of natural im-
ages [3], [7], by exploiting their multi-scale nature [12]–[14], or
by explicitly requiring the reconstructed global signal to be con-
sistent with the local prior [11], [15]. The second way consists in
dropping the heuristic patch-based strategy altogether in favor of
global, yet computationally tractable and locally-aware, models.
Such is the case of the CSC [16]–[18], allowing the pursuit to be
performed directly on the global signal by imposing a specific
banded convolutional structure on the global dictionary. This
implies, naturally, that the signal of interest is a superposition of
a few local atoms shifted to different positions. And so, while
the CSC is a global model, it has patch-based flavor to it and in
addition, learning its dictionary is within reach [19].

Recent years have seen a renewed interest in the CSC model,
including a thorough theoretical analysis along with new pursuit
and dictionary learning algorithms for it, and its deployment to
problems such as image inpainting, super-resolution, dynamic
range imaging, and pattern classification [19]–[26]. Never-
theless, the research activity on the CSC model is still in its
infancy. In particular, while the classic sparse representation
model has assembled an extensive toolbox of problem for-
mulations, diverse sparsity promoting penalty functions along
with countless pursuit algorithms (with greedy, relaxation and
Bayesian alternatives), most pursuit approaches to recover the
CSC representationΓ from a global signalX and a convolutional
dictionary D rely on minimizing the same �2 − �1 objective,
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namely

minimize
Γ

1

2
‖X −DΓ‖22 + λ‖Γ‖1, (1)

where λ is a Lagrangian parameter. This problem formulation is
too restrictive and dull. Indeed, both terms in this formulation,
the �2 reconstruction term and the �1 sparsity promoting penalty,
are global quantities - as is the scalar Lagrangian parameterλ that
controls the trade-off between them. This contrasts with state-of-
the-art patch-based methods where sparsity is controlled locally,
typically through a per-patch constraint on the maximum num-
ber of non-zeros or on the maximal allowed patch error [2]. This
calls for alternative problem formulations where local sparsity
and local representation errors are explicitly taken into account
in the global model.

An additional motivation for an alternative formulation of the
CSC pursuit stems from the findings of [27], which is the first
work to derive a theoretical analysis framework for the CSC
model. In order to leverage the convolutional structure in this
pursuit problem, the authors in [27] advocate for a new notion of
local sparsity. In particular, they provide recovery and stability
guarantees conditioned on the sparsity of each representation
portion responsible for encoding individual patches, as opposed
to the traditional global �0 norm. The CSC pursuit formulations
proposed in the present work aim at explicitly controlling the
sparsity level in these portions of the representation vectors,
called stripes. The first formulation employs the �1,∞ norm as
the sparsity promoting function, providing a convex relaxation of
the �0,∞ pseudo-norm that was introduced in [27] and explored
further in [28], [29]. The second formulation controls the spar-
sity of the stripes by considering the maximum reconstruction
error on each patch simultaneously, via an �2,∞ norm. Such an
approach is motivated by patch averaging techniques that have
been successfully deployed for denoising and other inverse prob-
lems [2], [10]. We derive, for each of these two formulations,
simple, efficient, and provably converging algorithms.

The remainder of the paper is organized as follows.
Section II introduces notations and definitions for the CSC
model that we use throughout the paper. The two proposed alter-
nate formulations, the �2 − �1,∞ and �2,∞ − �1, are discussed in
Section III and Section IV respectively, along with derivations
of algorithms to solve them. Section V illustrates their behavior
and performance in a series of experiments. Section VI contains
a final discussion.

II. CONVOLUTIONAL SPARSE CODING

Throughout the paper, an image of sizeH ×W is represented
in its vectorized form as a vector X of length N = HW . Simi-
larly, image patches of size n× n are represented in vectorized
form as vectors of length n2. We denote Ri, the patch extraction
operator that extracts from the vectorized image, the image patch
at the i-th position.2 Naturally, RT

i denotes the operator that
positions, within the vectorized image, a n2-long vectorized

2By assuming that the image is extended beyond its borders via periodization,
the number of n× n patches that can be extracted from the image equals N , its
total number of pixels.

Fig. 1. Illustration of the CSC model for the 1D case. At the global scale,
the image X can be decomposed into the product of the global convolutional
dictionary D and a global sparse representation Γ. At the patch scale, the patch
RiX can be decomposed into the product of the stripe dictionary Ω and the
stripe representation vector SiΓ.

patch in the i-th position and pads the rest of the entries with
zeroes.

The CSC model assumes that X can be decomposed as X =
DΓ, with D denoting the global convolutional dictionary of
size N ×Nm, and Γ denoting the corresponding global sparse
representation vector of length Nm. The global convolutional
dictionaryD is built as the concatenation ofm (block-) circulant
matrices of size N ×N , each representing one convolution.
These convolutions employ small support filters of size n× n,
thus causing the above-mentioned circulant matrices to be nar-
rowly banded. Another way to describe D is by combining all the
shifted versions of a local dictionary Dl ∈ Rn2×m composed of
the m vectorized 2D filters. Such construction is best illustrated
by expressing the global signal in terms of the local dictionary,
X =

∑N
i=1 R

T
i Dlαi. In this expression, the quantity Dlαi is

called a slice, with αi being the portion of the sparse represen-
tation vector Γ, called needle, that encodes the slice [27]. It is
important to stress that slices are not patches but rather simpler
components that are combined to form patches.

To better understand which parts of the dictionary D and of
the sparse vector Γ represent an isolated patch, it is convenient
to consider the patch extraction operator Ri and apply it to the
system of equations X = DΓ. This yields the system RiX =
RiDΓ consisting of the n2 rows relating to the patch pixels. Due
to the banded structure of D, the extracted rows RiD contain
only a subset of (2n− 1)2 m columns that are not trivially
zeros. Denoting by ST

i the operator that extracts such columns
and rewriting our system of equations as RiX = RiDST

i SiΓ
make two interesting entities come to light. The first is the
vector SiΓ, a subset of (2n− 1)2 m coefficients of Γ called the
stripe that entirely encodes the patch RiX . The second entity is
the sub-matrix Ω = RiDST

i ∈ Rn2×(2n−1)2 m, called the stripe
dictionary, which multiplies the stripe vector SiΓ to reconstruct
the patch. These two entities were first defined and discussed
in [27]. The notations and definitions employed in the remainder
of the paper are illustrated in Figure 1 and summarized in Table I.

For the CSC model in its most common formulation, the
�2 − �1, a variety of algorithms have been proposed [20], [22],
[30]–[34]. All of them use the ADMM framework [35] as their
workhorse to solve Problem (1) but differ in the subproblems
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TABLE I
SUMMARY OF NOTATIONS

in which they decompose it into. See [36] for a comparative
review.

III. THE �2 − �1,∞ CSC FORMULATION

The first alternate formulation that we explore drops the global
�1 as a sparsity promoting penalty and uses instead a mixed norm
function, adding an explicit and local control of sparsity. This
is motivated by the work in [27], whose analysis centers around
a new notion of local sparsity, the �0,∞. This measure, instead
of quantifying the total number of non-zeros in a vector, reports
the �0 norm of the densest stripe:

‖Γ‖0,∞ = max
i

‖SiΓ‖0. (2)

Such a localized norm is a somewhat more appropriate measure
of sparsity in the convolutional setting, since with it one is able
to significantly improve on the theoretical guarantees for the
CSC model [27]. Although that work established that the �2 − �1
formulation approximates the solution to an �0,∞ problem, it
also conjectured that further improvement could be achieved by
considering a new �1,∞-norm. This norm, defined as ‖Γ‖1,∞ =
maxi ‖SiΓ‖1, will be the center of our current discussion: the
�2 − �1,∞ formulation,

min
Γ

1

2
‖X −DΓ‖22 + λ‖Γ‖1,∞. (3)

The �1,∞ is nothing but a mixed norm on the global repre-
sentation Γ. Mixed-norms have been commonly used in signal
processing to promote various types of structure in the sparsity
pattern [37]. In the context of the CSC model, using this mixed
norm is expected to promote a distribution of non-zero coeffi-
cients that makes use of more diverse local atoms and is less
affected by the global attributes of the image.

This formulation, in fact, first appeared in [29], which pro-
posed two algorithms to solve Problem (3). The first is a nested
ADMM algorithm, in which one of the updates involves a
multi-block ADMM solver. Using a multi-block ADMM poses
a practical challenge, as it does not enjoy the same convergence
guarantees of the standard ADMM and requires delicate param-
eter tuning [38]. To alleviate this problem, the second algorithm
proposed in [29] maps Problem (3) to a non-negative problem.
This second algortihm relies on standard ADMM formulation
combined with the standard DFT-domain Sherman-Morrison
approach [32] and is faster and easier to setup that the first one.
We will revisit this alternative in our experimental comparison.

A. The Proposed Algorithm

Recalling the �2 − �1,∞ formulation in Equation (3), consider
N splitting variables {γi}Ni=1, so as to rewrite the problem
equivalently as

minimize
Γ,{γi}

1

2
‖Y −DΓ‖22 + λmax

i
‖γi‖1

subject to ∀i, γi = SiΓ. (4)

This constrained minimization problem is handled by consider-
ing its augmented Lagrangian:

1

2
‖Y −DΓ‖22 + λmax

i
‖γi‖1 + ρ

2

∑

i

‖γi − SiΓ + ui‖22,
(5)

where {ui}Ni=1 denote the scaled dual-variables associated with
each equality constraint γi = SiΓ. The ADMM algorithm [35]
minimizes this augmented Lagrangian by alternatively updat-
ing the variable Γ and the set of splitting variables {γi}Ni=1.
Formally, an iteration of the ADMM algorithm consists of the
following steps:

Γ(k) := argmin
Γ

1

2
‖Y −DΓ‖22

+
ρ

2

∑

i

∥
∥
∥γ

(k−1)
i − SiΓ + u

(k−1)
i

∥
∥
∥
2

2
. (6)

{γ(k)
i } := argmin

{γi}
λmax

i
‖γi‖1

+
ρ

2

∑

i

∥
∥
∥γi − SiΓ

(k) + u
(k−1)
i

∥
∥
∥
2

2
. (7)

u
(k)
i := u

(k−1)
i + γ

(k)
i − SiΓ

(k). (8)

The update of Γ in Equation (6) is straightforward, as it is a
least-square minimization that boils down to solving the linear
system of equations

(

DTD + ρ
∑

i

ST
i Si

)

Γ = DTY

+ ρ
∑

i

ST
i (γi + ui). (9)

Bearing in mind that fast implementations are widely available
for the convolution DT and the transpose convolution D, and
using the fact that

∑
i S

T
i Si = (2n− 1)2I , this regularized

least-square minimization can be carried out efficiently and reli-
ably via a few iterations of the conjugate gradient method [39].

The updates of the variables {γi}Ni=1 in Equation (7) are
seemingly more complicated, due to the max operation between
the different stripes and the fact that they overlap. To make it
more manageable, we cast the Problem (7) in epigraph form as

minimize
{γi},t

λt+
ρ

2

∑

i

∥
∥
∥γi − SiΓ

(k+1) + u
(k)
i

∥
∥
∥
2

2
,

subject to ∀i, ‖γi‖1 ≤ t. (10)
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Here, the initial problem with variables {γi}Ni=1 has just been
replaced with an equivalent minimization over variables {γi}Ni=1

and t. Note that, for a fixed value of variable t, this new objective
in Equation (10) is now separable in the variables {γi}Ni=1. More
precisely, it can be broken down into N separate minimization
problems

γ̄i(t) := argmin
γi

∥
∥
∥γi − SiΓ

(k) + u
(k−1)
i

∥
∥
∥
2

2
,

subject to ‖γi‖1 ≤ t. (11)

Each of these is simply a projection onto the �1-ball [40] that
can be performed via the shrinkage operator:3

γ̄i(t) = Sλ∗
(
SiΓ

(k) − u
(k−1)
i

)
, (12)

where the shrinkage parameter λ∗ can be efficiently estimated
by sorting the vector’s coefficients and computing over them a
cumulative sum (see [40] for details).

In this way, solving the initial problem (7) boils down to
finding the optimal t leading to the minimum of the objective,
namely {γ(k)

i }Ni=1 = {γi(t∗)}Ni=1 with

t∗ := argmin
t

(

λt+
∑

i

∥
∥
∥γ̄i(t)− SiΓ

(k) + u
(k−1)
i

∥
∥
∥
2

2

)

.

(13)
As a sum of an affine function and squared distances to the
�1 ball of radius t, the previous objective is a convex function
of t. Indeed, the distance to the �1 ball is a convex function
of the radius t (see Proposition 1 in Appendix A). Leveraging
the unimodality of the objective, we can iteratively estimate the
location of its minimum via a simple ternary-search, which only
requires the evaluation of function values.

This simple algorithm, by not involving an over-sensitive
Lagrange multiplier setting, and by enjoying the convergence
properties of the standard ADMM is simpler in practice than
the first algorithm proposed in [29], namely the nested ADMM
method. In practice, it will also be slightly faster than the efficient
alternative proposed in [29].

IV. THE �2,∞ − �1 CSC FORMULATION

We move on to consider our second formulation, of explic-
itly incorporating a local control on the CSC model. This is
inspired by the patch-based strategy for image denoising and
other inverse problems. Recall that patch-based sparse denoising
methods [2], [10] control the sparsity level on each patch by
upper-bounding the patch reconstruction error. We will borrow
such an idea, and translate it into the convolutional setting.

For a noisy image Y , patch methods rely on a global objective
of the form

minimize
{βi},X

λ

2
‖X − Y ‖22 +

∑

i

‖βi‖0

subject to ∀i, ‖Dlβi −RiX‖22 ≤ T, (14)

3Sλ(x) denotes the shrinkage operator, formally Sλ(x) = sign(x)�
max(|x| − λ, 0), with � denoting the element-wise product.

where βi is the sparse vector for the patch RiX and the upper-
bound T over the patch reconstruction error is typically set to
Cn2σ2

noise, the assumed patch noise level (up to a multiplicative
constant). This is typically solved via a block-coordinate descent
algorithm, which means first initializingX = Y and seeking the
sparsest αi for each patch via the set of local problems

minimize
βi

‖βi‖0

subject to ‖Dlβi −RiY ‖22 ≤ T, (15)

which yields a reconstruction for each overlapping patch and,
in turn, an intermediary global reconstruction 1

n2

∑
i R

T
i DLβi.

While state-of-the-art methods typically consider approximate
solutions through greedy pursuit algorithms, it is also possible
to consider an �1 relaxation of the same sparse coding problem.
We will employ the latter option in order to benefit from the
resulting convexity of the problem.

The second stage of the block-coordinate descent algorithm
consists in updating the estimate of X , the restored image, by
solving the least-square problem in closed form [2] according
to:

X =
(
λI +

∑
RT

i Ri

)−1
(

λY +
∑

i

RT
i DLβi

)

, (16)

essentially averaging the input signalY with the patch-averaging
estimate 1

n2

∑
i R

T
i DLβi.

In order to bring this classic approach into a convolutional
setting, note that the CSC global representationΓ can be decom-
posed into its constituent needles, and so

∑
i ‖αi‖1 = ‖Γ‖1.

Recalling the definitions and notations in Section II, a patch
from the reconstructed image RiX in the CSC model can
be equivalently written as RiX = RiDΓ = ΩSiΓ. With these
elements, the problem in (14) can be naturally transformed into

minimize
Γ,X

λ

2
‖X − Y ‖22 + ‖Γ‖1

subject to ∀i, ‖ΩSiΓ−RiX‖22 ≤ T. (17)

One might indeed adopt a similar block-coordinate descent strat-
egy for this problem as well. After an initialization of X = Y ,
the first step considers the resulting �2,∞ − �1 formulation:

minimize
Γ

‖Γ‖1

subject to ∀i, ‖ΩSiΓ−RiY ‖22 ≤ T, (18)

where the constraint on patch reconstruction considers the stripe
dictionary. Again, the second stage consists in updating the
estimate of X by solving the least-square problem

X =

(

λI +
∑

i

RT
i Ri

)−1 (

λY +
∑

i

RT
i ΩSiΓ

)

. (19)

whose solution, since
∑

i R
T
i ΩSiΓ = n2DΓ and since∑

i R
T
i Ri = n2I , boils down to an average between the input

image and the intermediary global reconstruction DΓ. In this
manner, and similarly to the patch-averaging strategy, the trade-
off between sparsity and reconstruction is controlled locally via
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an upper-bound on the reconstruction error of each individual
patch. However, while in the original method each vector βi en-
codes one patch in disregard with other patches, now each needle
αi becomes part of various stripes SiΓ and therefore contributes
in various patches. In other words, the classic patch-averaging
approach performs these pursuit independently, whereas this
convolutional counterpart will need to update all needles jointly.

In what follows, we show that this seemingly complex prob-
lem can in fact be addressed by using traditional �1 solvers
such as the Fast Iterative Shrinkage-Tresholding Algorithm
(FISTA) [41] in conjunction with the Parallel Proximal Algo-
rithm (PPXA).

A. Proposed Algorithm

PPXA is a generic convex optimization algorithm introduced
by Combettes and Pesquet [42], [43] that extends the Douglas-
Rachford algorithm and aims to minimize an objective of the
form

minimize
x

N∑

i

fi(x), (20)

where each fi is a convex function that admits an easy-to-
compute proximal operator [44], [45]. Recall that the proximity
operator proxfi

(y) : RN → RN of fi is defined by

proxfi
(y) := argmin

x
fi(x) +

1

2
‖x− y‖22. (21)

In our context, PPXA offers a way to manage the explicit use
of overlapping stripes. Indeed, by encapsulating each inequality
constraint into its corresponding indicator function, the objective
in Equation (18) can be recast as a sum, namely

minimize
Γ

N∑

i=1

(
1

N
‖Γ‖1 + I{‖ΩSiΓ−RiY ‖22≤T }

)

, (22)

where I{‖ΩSiΓ−RiY ‖22≤T } denotes the indicator function4 on
the constraint feasibility set. The successful deployment of the
PPXA algorithm for this problem depends on our ability to
compute, for each patch, the proximal operator

proxfi
(Γ) := argmin

Γ̂

‖Γ̂‖1 + 1

2 Nμ
‖Γ− Γ̂‖22

+ I{‖ΩSiΓ̂−RiY ‖22≤T }, (23)

with parameter μ scaling the least-square term. The solution to
the above problem is also the solution to a Lagrangian

argmin
Γ̂

‖Γ̂‖1 + 1

2 Nμ
‖Γ− Γ̂‖22 + λ∗

i‖Ri(DΓ̂− Y )‖22, (24)

in which the Lagrange multiplier is set to an optimal valueλ∗
i : the

smallest Lagrange multiplier such that the inequality constraint
is satisfied. Observe that, while transitioning from Equation (23)
to Equation (24), we moved from Ω to D, in order to pose
the algorithm w.r.t. the global dictionary. Fortunately, for a
given Lagrangian multiplier λi, such objective can be efficiently

4The indicator function IS equals 0 inside the set S and ∞ elsewhere.

minimized by a proximal gradient method such as (ISTA) [46]
or its fast version FISTA [41]. Indeed, denoting gi(Γ̂, λi) :=

1
2 Nμ‖Γ− Γ̂‖22 + λi‖Ri(DΓ̂− Y )‖22, ISTA and FISTA revolve
around the update step

Γ̂(k+1) = Stk

(

Γ̂(k) + tk
∂gi

∂Γ̂
(Γ̂(k), λi)

)

, (25)

where tk denotes the step-size.5 The dominant effort here is
the evaluation of the gradient of gi with respect to Γ̂. This
boils down to the computation of convolutions. Running FISTA
successively with warm-start initialization allows to estimate
the minimizer for different values of λi with only few extra
iterations. This allows to use a binary-search scheme to estimate
the optimal Lagrange multiplier λ∗

i which in turn provides the
solution to the proximal operator in Equation (23).

Armed with this procedure to compute the proximal operators,
an iteration of the PPXA algorithm boils down to the following
steps:

1) Compute the proximal operators for each patch

∀i = 1 . . . N, Γ̂
(l)
i = proxfi

(Γ
(l)
i ), (26)

following the procedure described above. The evaluations
can be carried out in parallel.

2) Aggregate the solutions

Γ̂(l) =
1

N

N∑

i

Γ̂
(l)
i . (27)

3) Update the estimate of Γ along with the auxiliary
variables Γi

∀i, Γ
(l+1)
i = Γ

(n)
i + ρl

(
2Γ̂(l) − Γ(l) − Γ̂

(l)
i

)
,

Γ(l+1) = Γ(l) + ρl(Γ̂
(l) − Γ(l)), (28)

where ρl denotes the relaxation parameter6 on this iteration. The
sequence of sparse vector estimates Γ(l) is proven to converge
to the solution of the �2,∞ − �1 CSC problem (18) [42]. Note
that using FISTA in conjunction with PPXA makes it possible to
take full advantage of GPU hardware and high-level libraries for
fast convolutions, in contrast with most sparse coding algorithm
that operate in the Fourier domain [20], [22].

B. Extension Via Weighted Stripe Dictionary

The method described above for the �2,∞ − �1 formulation
brings an additional level of flexibility by offering a generic
way to enforce a wider range of structured sparsity. Indeed,
because the proposed method splits the global pursuit into
parallel pursuits on each stripe, a specific local structure can
be imposed on individual stripes. This can be achieved naturally
by simply weighting the columns of the stripe dictionary, so as to

5For convergence, the step-size tk must satisfy tk ≤ 1

λmax
, where λmax

denotes the maximum eigenvalue of ∇gi which can be approximated efficiently
via the power method.

6To guaranty convergence, the relaxation parameters (ρl) must satisfy∑
l∈N

ρl(2− ρl) = +∞.
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relatively promote or penalize the use of certain atoms. Formally
this corresponds to

minimize
Γ

‖Γ‖1

subject to ∀i, ‖ΩWiSiΓ−RiY ‖22 ≤ T, (29)

where Wi denotes the weighting diagonal matrix relative to the
i-th patch.7 In the context of the proposed algorithm, this boils
down to an extra weighting within each FISTA iterations.

One particularly interesting application of such strategy con-
sists in combining the CSC and patch-averaging models. Such
a combination allows for the benefits of both the global and
local models, which respective performances on various tasks
are increasingly well understood. From an analysis stand point,
being able to examine the entire spectrum separating the CSC
model and the patch-averaging approach is highly valuable,
as the understand of their precise inter-relation has been of
interest to the image processing community [47]. With the
proposed method, such combination can be achieved via a mere
re-weighting of the columns that amounts to replacing the stripe
dictionary with the convex combination

Ωθ = (1− θ)Ω + θn2D̄l, (30)

with0 ≤ θ ≤ 1 and with D̄l denoting the local dictionary padded
with zero columns. The parameter θ allows to regulate the level
of patch aggregation that has been proven to be critical in denois-
ing problems [47]. Setting θ = 0 corresponds to the �2,∞ − �1
CSC formulation above. By increasing θ, filters which locations
are shifted with respect to the patch are increasingly penalized.
Setting θ = 1 is synonymous with the patch averaging strategy
in which the reconstruction relies exclusively on Dl and none of
its shifted atoms. As an illustration, let us local-normalize test
image barbara and sparse-code it with the resulting problem,

minimize
Γ

‖Γ‖1

subject to ∀i, ‖ΩθSiΓ−RiY ‖22 ≤ T, (31)

where parameter θ ranges from 0 (�2,∞ − �1 CSC) to 1 (patch
averaging). Figure 2(a) shows the average representation error
‖ΩθSiΓ−RiY ‖2 (in blue) and the average Euclidean distance
between individual slices and patches ‖n2D̄lSiΓ−RiY ‖ (in
red) as a functions of the parameter θ. Threshold T in (31) is
plotted as a green dotted line. In accordance to the inequality
constraints in Problem (18), the patch reconstruction error stays
below the threshold T irrespective of parameter θ. On the other
hand, and as expected, the Euclidean distance between slices
and patches is above the threshold T , as it is the combination
of overlapping slices, rather than an isolated slice, that approx-
imates the patch. However, as θ increases, the term ΩθSiΓ in
the representation error in Problem (31) is increasingly similar
to a slice n2Dlα. This in turn constrains the individual slices to
better approximate the corresponding patch on their own.

7Note that to be consistent with the global CSC model, the set of matrices
{Wi} must satisfy the relation D = 1

n2

∑
RT

i ΩWiSi.

Fig. 2. Effect of replacing the stripe dictionary Ω with the convex com-
bination Ωθ = (1− θ)Ω + θn2D̄l, with 0 ≤ θ ≤ 1. Test image barbara
is sparse-coded using formulation (31) for various values of parameter θ.
(a) The average reconstruction error ‖ΩθSiΓ−RiY ‖2 (in blue) and the
average Euclidean distance between patches and slices ‖n2D̄lSiΓ−RiY ‖2
(in red) are plotted as functions of θ. Threshold T in (31) is plotted as a green
dotted line. In accordance to (31), the reconstruction error remains below T for
any θ. As θ increases, individual slices n2D̄lSiΓ become increasingly similar
to patches on their own. Weighted stripe dictionary mitigates imbalances in the
distribution of used atoms. (b) Number of non-zero coefficients for each of the
20 most commonly used atoms for the non-weighted �2,∞ − �2 formulation.
(c) In contrast, the weighted �2,∞ − �2 formulation with θ = 0.8 leads to more
diverse local atoms being used.

An additional benefit of the weighted extension is that it
helps mitigate imbalance in the atom usage distribution, a typ-
ical problem affecting the CSC model. Indeed, consider the
sparse-coding of test image barbara using the non-weighted
�2,∞ − �1 formulation. In Figure 2(b), which depicts how often
the first 20 atoms in the local dictionary are used in the solution
Γ, shows that one atom is predominantly used. In fact, most of
the needles in Γ contain at most just one active atom, and many
of them (about 70%) remain completely empty. This behavior
is characteristic of the CSC model because, while patch-based
approaches rely solely on the local dictionary atoms to encode
a patch, the CSC pursuit can rely on the atoms as well as their
shifts. In practice, the CSC pursuit tends to use less diverse
atoms and favors instead a juxtapostion of the simplest atom
shifted at different locations to reconstruct the image. For a CSC
based dictionary learning method, this tendency is problematic
since an unbalanced selection of atoms during sparse-coding
results in one atom being predominantly updated at the expense
of all others. The weighted formulation offers a remedy to this
problem. Indeed, Figure 2(c) shows the number of non-zero
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coefficients for the weighted �2,∞ − �1 formulation with θ =
0.8. Even though this formulation for θ = 0.8 is consistent with
the global CSC model, it leads to more diverse local atoms being
used.

V. EXPERIMENTS

To illustrate the behavior and performance of the proposed
formulations, we now move to consider two image process-
ing applications: the texture-cartoon separation problem and
inpainting.

A. �2 − �1,∞ for Texture-Cartoon Separation

We illustrate the �2 − �1,∞ formulation on the texture-cartoon
separation task. This problem consists in decomposing an input
image X into a piecewise smooth component (cartoon) Xc and
a texture component Xt such that X = Xc +Xt. The typical
prior for the cartoon component Xc is based on the total vari-
ation norm, denoted ‖Xc‖TV, which penalizes oscillations. In
addition, we propose to assume that the texture component Xt

admits a decomposition Xt = DtΓ where Dt is a convolutional
texture dictionary and Γ is the solution of the �2 − �1,∞ CSC
formulation. Under these assumptions, the task of texture and
cartoon separation boils down to a minimization problem over
three variables: the cartoon component Xc, the CSC represen-
tation Γ and a convolutional texture dictionary Dt, namely

minimize
Γ,Dt,Xc

1

2
‖X −DtΓ−Xc‖22 + λ‖Γ‖1,∞ + ζ‖Xc‖TV,

(32)
with parameter ζ controling the level of TV regularization pe-
nalizing oscillations in Xc. Such minimization is carried out
iteratively in a block-coordinated manner until convergence.
Each iteration consists of the three following steps:

X(k+1)
c := argmin

Xc

1

2

∥
∥
∥X −D

(k)
t Γ(k) −Xc

∥
∥
∥
2

2

+ ζ‖Xc‖TV (33)

Γ(k+1) := argmin
Γ

1

2

∥
∥
∥X −D

(k)
t Γ−X(k+1)

c

∥
∥
∥
2

2

+ λ‖Γ‖1,∞ (34)

D
(k+1)
t := argmin

Dt

1

2

∥
∥
∥X −DtΓ

(k+1) −X(k+1)
c

∥
∥
∥
2

2
. (35)

A TV denoiser.8 is used to solve Problem (33) while Prob-
lem (34) relies on our �2 − �1,∞ solver. For the dictionary
update, one option is to use a standard patch-based dictionary
learning such as K-SVD using overlapping patches as training
sets and the needles of the current Γ estimate. However this
would not be consistent with the CSC model. Indeed, the patch
would then be assumed to stem from the local dictionary alone,
disregarding all the contributions of shifted atoms to its recon-
struction. We adopt instead a more coherent alternative that was
recently proposed in [28] in which standard dictionary update

8The TV denoiser used here is the publicly available implementation of [48].

Fig. 3. Noiseless texture-cartoon separation. Comparing the �2 − �1,∞ and
�2 − �1 formulations. The input images consist of the test image cat and
pineapple.

procedures are adapted to a convolutional setting and carried
out via conjugate gradient descent [39] in conjunction with fast
convolution computations. The proposed method is applied to
the test images cat and pineapple, the results of our method
are shown in Figure 3 along with the results from the �1 − �2
based method in [30] The algorithm relies on GPU/CUDA based
implementations for faster convolutions. The computation time
for a the sparse coding of a 256 × 256 in 156 seconds. While
it compares favorably to the fastest algorithm proposed in [29]
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TABLE II
IMAGE INPAINTING. THE �2 − �1 BASED METHOD OF [30] AND [20] ARE COMPARED TO THE PROPOSED METHODS: THE �2,∞ − �1 FORMULATION AND ITS

VARIANT WITH A WEIGHTED STRIPE DICTIONARY, AND THE �2 − �1,∞. IN THE FIRST AND SECOND BLOCKS, THE LOCAL DICTIONARY IS PRETRAINED FROM THE

fruit DATASET USING THE METHOD FROM [30]. METHODS IN THE FIRST BLOCK ARE BASED ON THE �2 − �1 CLASSIC FORMULATION WHILE THE SECOND

BLOCK CONSIDERS THE ALTERNATIVE FORMULATIONS. THE �2,∞ PRIOR IMPROVES OVER THE BEST �2 − �1 BASED METHOD FORMULATION. THE WEIGHTED

STRIPE DICTIONARY Ωθ WITH θ = 0.8 BRINGS AN ADDITIONAL IMPROVEMENT IN PSNR OVER THE STANDARD �2,∞ BY PROMOTING PATCH AVERAGING. THE

�2 − �1,∞ VARIANT ON THE OTHER HAND IS OUTPERFORMED BY THE OTHER FORMULATION IN MOST CASES. IN THE RESULT REPORTED IN THE THIRD BLOCK,
THE LOCAL DICTIONARY USED IS LEARNED FROM THE CORRUPTED IMAGE. IN THIS SCENARIO, THE WEIGHTED �2,∞ − �1 FORMULATION WITH θ = 0.8

GENERALLY OUTPERFORMS [30]

(533 s), it is nevertheless slower than methods for the �1 − �2
formulation (7.6 s for [30]).

B. Inpainting

We illustrate the behavior of the proposed variants on the
classic problem of image inpainting. Let us consider an image
X and a diagonal binary matrix M , which masks the entries in
X in which Mi,i = 0. Image inpainting is the process of filling
in missing areas in an image in a realistic manner. That is, given
the corrupted image Y = MX , the task consists in estimating
the original signal X .

Estimating the original signal via the �2,∞ − �1 CSC requires
solving the problem

minimize
Γ

‖Γ‖1

subject to ∀i, ‖Ri(MDΓ− Y )‖22 ≤ Ti, (36)

where the constraint on the representation accuracy incorporates
the binary matrix M, and where the threshold Ti is set on a
patch-by-patch basis to reflect the varying numbers of active
pixels in each patch. Minimizing this objective requires only a
slight modification of the algorithm described above, namely
incorporating the mask into the function gi and its gradient. The
PPXA relaxation parameter is set to λl = 1.6 and the scaling
factor in the proximal operator is set to μ = 100. The minimiza-
tion was performed with the weighted formulation introduced in
Section IV with 10 values of the blending parameter θ ranging
from 0 to 1. Similarly, estimating the original signal via the
�2 − �1,∞ formulation requires solving the problem

minimize
Γ

1

2
‖M(Y −DΓ)‖22 + λ‖Γ‖1,∞, (37)

which in practice only requires adapting the least-square mini-
mization stage for the update of Γ in (6).

We follow the experimental setting in [20]. In particu-
lar, input images are mean-substracted and contrast normal-
ized, the mask M is set to discard 50% of the pixel values.
The formulations proposed in this work are compared to four

Fig. 4. Visual comparison on a cropped region extracted from inpainting
estimations for test image barbara. The input image is mean-substracted,
contrast normalized, and 50% of its pixels are discarded. (a) �2 − �1,∞, PSNR
= 10.92. (b) �2,∞ − �1, PSNR= 11.65. (c) weighted �2,∞ − �1 with θ = 0.8,
PSNR = 11.78.

existing convex relaxation-based algorithms: three methods op-
erating in the DFT-domain [20], [32], [34] and the slice-based
approach of [30].

Table II contains the peak signal-to-noise ratio (PSNR) on
a set of publicly available standard test images. In the first two
blocks of experiments, the local dictionary is pretrained from the
fruit dataset, using the method from [30]. The method based
on the �2,∞ − �1 formulation outperforms the method proposed
in [20] and slightly improves over the slice-based approach
of [30] and the scalable online convolutional sparse coding
of [34]. The best performance are obtained in general with the
weighted �2,∞ − �1 with θ = 0.8, which formulation tends to
promote an averaging of similar local estimates. The �2 − �1,∞
formulation does not in general lead to improved results for
inpainting, not any more that the algorithm proposed in [29] for
the same formulation. Figure 4 shows crops of inpainted results
for test image barbara for the proposed formulation.

Significant additional improvements are achieved when learn-
ing the local dictionary Dl from the corrupted image. The third
block in Table II contains the inpainting PSNR obtained in this
scenario for the slice-based method [30] and for the weighted
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�2,∞ − �1 used along the dictionary update proposed in [28].
In this context, the weighting of the stripe dictionary is partic-
ularly beneficial as it encourages more atoms to be used and
therefore updated. The alternative formulations come however
at a cost in terms of speed, with the execution times averaging
103 seconds and 124 seconds for the �2 − �1,∞ and �2,∞ − �1
formulations respectively, compared to 12 seconds on average
for the slice-based algorithm [30].

VI. CONCLUSION

While enjoying a renewed interest in recent years, the CSC
model has been almost exclusively considered in its �2 − �1 for-
mulation. In the present work, we expanded the formulations for
the CSC with two alternative formulations, namely the �2 − �1,∞
and �2,∞ − �1 formulations in which mixed-norms, alter how
the spatial distributions of non-zero coefficients are controlled.
For both formulations, we derived algorithms that rely on the
ADMM and PPXA algorithms. The algorithms are simple and
easy to implement. Their convergence naturally follows from the
convergence properties of the two standard convex optimization
framework they build on. We examined the performance and
behavior of the proposed formulation on two image processing
tasks: inpainting and cartoon texture separation. Furthermore,
we showed that the �2,∞ − �1 formulation in particular opens
the door to a wide variety of structured sparsity, that could bring
additional practical benefits while still being consistent with the
CSC model. An interesting example of such structured sparsity
was offered in the combination of the CSC and patch-averaging
models, showing that such a mixture provides improved perfor-
mance. Finally, we envision that similar combinations of global
and local sparse priors, within the proposed unifying frame-
work, will allow to further benefits in several other restoration
problems.

APPENDIX

Proposition 1: For a point y and the �1-ball of radius r,Br :=
{x, s.t.‖x‖1 ≤ r}, the distance between y and the ball

d(y,Br) := inf {‖x− y‖2, | x ∈ Br} ,
is a convex function of the ball radius r.

Proof: From the �1-norm triangle inequality, it comes that
for any convex combination of two radii θr1 + (1− θ)r2, with
0 ≤ θ ≤ 1, we have the inclusion

θBr1 + (1− θ)Br2 ⊂ Bθr1+(1−θ)r2 ,

where θBr1 denotes the set of points {θx1|x1 ∈ Br1}. In par-
ticular, for the nearest points to y in Br1 and Br2 respectively,
i.e., forx1 ∈ Br1 such that ‖y − x1‖2 = d(y,Br1) andx2 ∈ Br2

such that ‖y − x2‖2 = d(y,Br2), we have

θx1 + (1− θ)x2 ∈ Bθr1+(1−θ)r2 ,

and therefore

‖y − (θx1 + (1− θ)x2)‖2 ≥ d(y,Bθr1+(1−θ)r2).

Finally, from the Euclidean norm triangle inequality, it comes
that

θd(y,Br1) + (1− θ)d(y,Br2) ≥ d(y,Bθr1+(1−θ)r2)

which proves that r → d(y,Br) is convex. �
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