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Abstract—Single Image Super-Resolution (SISR) aims to reco-
ver a high-resolution image from a given low-resolution version of
it. Video Super Resolution (VSR) targets series of given images,
aiming to fuse them to create a higher resolution outcome.
Although SISR and VSR seem to have a lot in common, most
SISR algorithms do not have a simple and direct extension to
VSR. VSR is considered a more challenging inverse problem,
mainly due to its reliance on a sub-pixel accurate motion-
estimation, which has no parallel in SISR. Another complication
is the dynamics of the video, often addressed by simply generating
a single frame instead of a complete output sequence.

In this work we suggest a simple and robust super-resolution
framework that can be applied to single images and easily
extended to video. Our work relies on the observation that denoi-
sing of images and videos is well-managed and very effectively
treated by a variety of methods. We exploit the Plug-and-Play-
Prior framework and the Regularization-by-Denoising (RED)
approach that extends it, and show how to use such denoisers
in order to handle the SISR and the VSR problems using a
unified formulation and framework. This way, we benefit from
the effectiveness and efficiency of existing image/video denoising
algorithms, while solving much more challenging problems. More
specifically, harnessing the VBM3D video denoiser, we obtain
a strongly competitive motion-estimation free VSR algorithm,
showing tendency to a high-quality output and fast processing.

Index Terms—Single Image Super-Resolution, Video Super-
Resolution, Plug-and-Play-Prior, RED, Denoising, ADMM

I. INTRODUCTION

The single-image super-resolution (SISR) problem assumes
that a given measured image y is a blurred, spatially decima-
ted, and noisy version of a high quality image x. Our goal
in SISR is the recovery of x from y. This is a highly ill-
posed inverse problem, typically handled by the Maximum
a’posteriori Probability (MAP) estimator. Such a MAP strategy
relies on the introduction of an image prior, representing
the minus log of the probability density function of images.
Indeed, most of the existing algorithms for SISR differ in the
prior they use – see for example [1]–[9]. We should mention
that convolutional neural networks (CNN) have been brought
recently as well to serve the SISR [10]–[12], often times
leading to state-of-the-art results.

The Video Super Resolution (VSR) task is very similar to
SISR but adds another important complication – the temporal
domain. Each frame in the video sequence is assumed to
be a blurred, decimated, and noisy version of a higher-
resolution original frame. Our goal remains the same: recovery
of the higher resolution video sequence from its measured
degraded version. However, while this sounds quite close in
spirit to the SISR problem, the two are very much different
due to the involvement of the temporal domain. Indeed, one
might be tempted to handle the VSR problem as a simple

sequence of SISR tasks, scaling-up each frame independently.
However, this is highly sub-optimal, due to the lack of use of
cross relations between adjacent frames in the reconstruction
process.

More specifically, the VSR task can be formulated using the
MAP estimator in a way that is similar to the formulation of
the SISR problem. Such an energy function should include a
log-likelihood term that describes the connection between the
desired video and the measured one, and a video prior. While
the first expression is expected to look the same for SISR and
VSR, the video prior is likely to be markedly different, as it
should take into account both the spatial considerations, as
in the single image case, and add a proper reference to the
temporal relations between frames. Thus, although SISR and
VSR have a lot in common, the suggested priors for each task
differ substantially, and hence SISR algorithms do not tend to
have an easy adaptation to VSR.

The gap between the two super-resolution problems explains
why VSR algorithms tend to use entirely different methods to
tackle their recovery problem, rather than just extending SISR
methods. Classic VSR methods commonly turn to explicit
subpixel motion-estimation1 [13]–[25], which has no parallel
in SISR. For years it was believed that this ingredient is
unavoidable, as fusing the video frames amounts to merging
their grids, a fact that implies a need for an accurate sub-
pixel registration between these images. Exceptions to the
above are the two algorithms reported in [26], [27], which use
implicit motion-estimation, and thus are capable of handling
more complex video content.

This work’s objective is to create a robust joint framework
for super resolution that can be applied to SISR and easily be
adapted to solve the VSR problem just as well. Our goal is
to formulate the two problems in a unified way, and derive
a single algorithm that can serve them both. The key to the
formation of such a bridge is the use of the Plug-and-Play-
Prior (PPP) method [28], and the more recent framework of
Regularization-by-Denoising (RED) [29]. Both PPP and RED
offer a path for turning any inverse problem into a chain of
denoising steps. As such, our proposed solution for SISR and
VSR would rely on the vast progress made in the past two
decades in handling the image and video denoising problems.

This work presents a novel and highly effective SISR and
VSR recovery algorithm that uses top-performing image and
video denoisers. More importantly, however, this algorithm
has the very same structure and format when handling either
a single image or a video sequence, differing only in the

1Even CNN based solutions have been relying on such motion estimation
and compensation.
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deployed denoiser. In our previous work [30] we have success-
fully harnessed the PPP scheme to solve the SISR problem. In
this paper our focus is on extending this formulation to VSR
while keeping its architecture. With the recent introduction of
the Regularization-by-Denoising (RED) framework [29], we
use this as well in the migration from the single image case to
video. As demonstrated in the results section, the proposed
paradigm is not only simple and easy to implement, but
also leads to state-of-the-art results in video super-resolution,
favorably competing with the best available alternatives.

We should note that in parallel to the release of our work
several VSR methods based on deep-learning were published
[31]–[36]. These methods achieve very impressive results,
yet CNN based algorithms often need to be re-tuned due
to small changes in the restoration task. [36], for example,
has different hyper-parameters for different upscaling ratios.
A change in the input’s size might call for a change in
the network’s architecture, and a different blur might require
separate training. Our unified framework has only a few
parameters and is stable for a variety of scale factors, blur
kernels and input sizes.

The rest of this paper is organized as follows: Section II in-
troduces the PPP and RED schemes, which play a critical role
in this work. Section III presents our suggested framework and
its properties, and section IV provides extensive experimental
results. Section V concludes this work.

II. BACKGROUND ON PPP AND RED
In this section we present the Plug-and-Play-Prior [28] and

Regularization-by-Denoising [29] schemes, which are central
to our framework. This section mostly follows [28], [29], [37].

A. Plug-and-Play-Prior

Many inverse problems (including the super-resolution
ones) are formulated as a MAP estimation, a factored sum
of two expressions, or penalties: a data fidelity term (usually
the log-likelihood) and a prior function. Such a general inverse
problem may appear as follows:

x∗ = argmin
x

1

2
‖Gx− y‖22 + βR (x) , (1)

where x is the unknown image to be recovered, y is the
measured image, assumed to be a noisy contaminated version
of Gx, G being the degradation operator. The functional R(·)
stands for the image prior, and the parameter β multiplying it
sets the relative weights between the two penalties.

The Plug-and-Play-Prior (PPP) scheme [28] offers a method
to separate the two in a manner that allows us to use prior
functions that are already integrated into Gaussian denoising
algorithms. Thus, we use the denoiser as a black-box tool,
while solving for another, more challenging, inverse problem.
Let us illustrate the PPP on the problem posed in Equation
(1). Using variable splitting, we can separate the degradation
model (the `2 data fidelity term) from the prior:

x∗ =argmin
x

1

2
‖Gx− y‖22 + βR(v),

s.t x = v.
(2)

Using the Augmented Lagrangian strategy, the constraint can
be turned into an additive penalty,

x∗ = argmin
x

1

2
‖Gx− y‖22 + βR(v) +

ρ

2
‖x− v + u‖22,

(3)

where u is the scaled Lagrange multipliers vector, and ρ is
a parameter to be set2. Applying the ADMM [37], we obtain
the following iterative scheme to minimize Equation (2):

xk+1 = argmin
x

1

2
‖Gx− y‖22 +

ρ

2
‖x− vk + uk‖22 (4a)

vk+1 = argmin
v

βR(v) +
ρ

2
‖xk+1 − v + uk‖22 (4b)

uk+1 = uk + xk+1 − vk+1 (4c)

Notice that Equation (4a) is quadratic in x and therefore can
be solved analytically. Moving to Equation (4b), this can be
re-written as

vk+1 = argmin
v

βR(v) +
1

2( 1√
ρ )

2
‖v − ṽ‖22, (5)

where ṽ = xk+1 + uk. The above is nothing but a denoising
problem, aiming at cleaning the noisy image ṽ, with σ = 1√

ρ .
Hence we can use the denoiser as a black-box tool for solving
step (4b), even without having access to the explicit prior R(v)
we are relying on.

B. Regularization by Denoising

Like PPP, Regularization by Denoising (RED) is another
scheme that integrates denoisers into a reconstruction algo-
rithm in order to solve other inverse problems. Yet, as opposed
to the PPP scheme, RED defines an explicit prior, constructed
by a chosen denoising algorithm. Then RED solves the MAP
estimator with the defined prior in order to achieve a global
optimizer (under mild conditions).

More specifically, given a denoising function f(x), RED
sets the prior to be R(x) = 1

2x
T (x− f (x)). This is an image-

adaptive Laplacian-based regularization functional, penalizing
over the inner product between a signal x and its denoising
residual x−f(x). Under the assumptions that (i) ∇f(x) exists
(i.e. f is differentiable) and is symmetric, (ii) f (cx) = cf (x),
for c→ 1 (local homogeneity), and (iii) the spectral radius of
∇f(x) is smaller or equal to 1, the authors of [29] prove two
key properties:

(i) The gradient of the prior expression is nothing but the
denoising residual,

R(x) =
1

2
xT (x− f(x))→ ∇R(x) = x− f(x).

(ii) The convexity of the suggested prior (and thus the
overall objective) is guaranteed, meaning that the MAP op-
timization process will yield a global minimizer.

It turns out that various state-of-the-art denoising algorithms
satisfy these conditions [29], or nearly so, posing RED as an
appealing alternative to the PPP approach.

2Often times, it is found beneficial to increase this parameter throughput
the iterative algorithm given below.
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Equation (1) with the newly introduced prior may be solved
using several different strategies, as indeed was done in [29].
One of the proposed strategies uses ADMM, derived in a
similar manner to the one in Section II-A. However, this time
we have a specific regularizer at hand. Concentrating on step
(4b), by plugging the RED regularizer we get

vk+1 = argmin
v

β

2
vT (v − f (v)) + ρk

2
‖xk+1 − v + u‖22.

(6)

Exploiting the relation ∇R(x) = x − f(x), and setting the
gradient of this cost function to zero, we obtain

β (v − f (v)) + ρ
(
v − xk+1 − u

)
= 0, (7)

which can be solved by the fixed point strategy, leading to
the following update rule for v (please refer to [29] for more
details):

vj+1 =
1

β + ρ

(
βf
(
vj
)
+ ρ

(
xk+1 + u

))
. (8)

The signal vj is the estimate of the j-th step of the fixed
point method that minimizes Equation (6). Notice that this
strategy leads to an inner iteration (denoted with index j) in the
iteration described in (4) (denoted with index k). As a result,
once again, the solution of v amounts to the application of a
denoiser as a black-box tool (possibly for several iterations).3

In summary, we have in our hands powerful tools to take
denoisers and use them in order to solve other, more involved,
inverse problems. Our next step is to harness these to the super
resolution problem, both for single images and video.

III. THE PROPOSED SUPER-RESOLUTION FRAMEWORK

In this section we present our novel unified formulation of
the SISR and the VSR problems, and the common algorithm
that served them both. We start by describing the SISR
problem, and then move to the video counterpart. Our next step
is to describe our PPP/RED based approach to super-resolution
reconstruction, and as this relies on denoising algorithms, we
precede this by mentioning the existing state-of-the-art denoi-
sing methods for stills and video. We conclude this section by
discussing computational complexity and convergence issues.

A. The Singe-Image Super-Resolution Problem

The single-image super-resolution (SISR) problem starts
with an unknown High-Resolution (HR) image x ∈ RsM×sN

(s > 1), of which we are only given a blurred, spatially
decimated (in a factor s in each axis), and noisy Low-
Resolution (LR) measurement y ∈ RM×N . Our aim is to
recover x from y. This inverse problem can be formulated
by the following expression that ties the measurements to the
unknown:

y = SHx+ η. (9)

The matrix H ∈ Rs2MN×s2MN blurs the original image,
S ∈ RMN×s2MN is the down-sampling operator and η ∼

3We note that in [29], an alternative scheme to the ADMM was proposed
based on a direct Fixed-Point strategy.

N(0;σ2I) ∈ RM×N is an additive zero-mean white Gaussian
noise. Note that x, y and η are all held as column vectors,
after lexicographic ordering, that is, they are vectors of length
s2MN and MN respectively, where the columns of the
image are concatenated one after another to form a long one-
dimensional vector.

The Maximum Likelihood (ML) estimator for this problem
is defined by

x∗ = argmin
x

‖SHx− y‖22, (10)

yet the ill-posed nature of this problem (SH is non-invertible)
renders this approach useless. Using the MAP estimator
instead leads us to minimize the ML, augmented with a
predefined prior. That is, Equation (10) should be regularized,

x∗ = argmin
x

‖SHx− y‖22 +R (x) , (11)

R(x) being the prior, discriminating “good looking” images
from “bad” ones by giving the “good” images a lower nu-
merical value. And so, the quest of the holy grail, so to
speak, begins: What is the appropriate prior to use for images?
Vast amount of work has been invested in addressing this
question. Indeed, most of the existing algorithms for SISR
differ in the prior they use, or the numerical method they
deploy for solving the presented optimization problem (11).
Commonly chosen priors are based on sparse representations
[1]–[5], spatial smoothness such as Total Variation [6], self-
similarity [7]–[9], and more.

In recent years convolutional neural networks (CNN) have
been used for SISR quite successfully [10]–[12]. Observe
that this approach bypasses the explicit use of the MAP
formulation, replacing it by a direct learning of the recovery
process from the input low-resolution image to the desired
high-resolution output. One may argue that this supervised
approach incorporates the MAP strategy and the prior in it
implicitly, by shaping the solver as a minimizer of the MAP
energy task.

B. Moving to Video Super-Resolution

The Video Super Resolution (VSR) task may seem to be
similar to the SISR problem, but it adds another compli-
cating factor – the temporal domain. Here, the HR video,
x ∈ RsM×sN×T , is composed of T frames that are assumed
to have some relation between them, manifested as motion or
flow. Often, as introduced in [13] and later used in [14], [16],
[22], [23], a warp or motion operator is used to express this
relation between the frames,

xi = Fix0 +mi, (12)

where xi is the i-th frame, Fi is the motion operator that
takes us from the 0-th frame to the i-th one, and mi is new
information appearing in xi, such as new objects entering the
frame or changes in lighting. The given low-resolution video
y ∈ RM×N×T is obtained from x via the same relation as
in Equation (9), where the operators H and S apply their
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degradations on the entire video sequence x, operating on each
frame independently4.

Using the MAP estimator for the VSR task can be formu-
lated exactly as in Equation (11), where x and y are now the
complete high-resolution and low-resolution video sequences.
Here again we face the need to find an appropriate prior that
could grade video quality, and as already mentioned in the
Introduction, such a prior is expected to be very different from
a single image one, due to the need to refer to the temporal
relations in Equation (12).

And so, although some of the SISR algorithms mentioned
above are considered state-of-the-art, and although SISR and
VSR have very similar formulations, none of these known
algorithms was adapted to VSR (apart from the trivial adap-
tation of performing SISR for each frame independently).
Put very simply, SISR algorithms do not generally have an
easy adaptation to VSR. Indeed, VSR algorithms tend to use
entirely different methods to tackle their recovery problem,
built around an explicit optical-flow or (subpixel-)motion-
estimation process, which has no parallel in SISR. Hence,
most of the VSR algorithms are heavily dependent on such
highly performing motion-estimation algorithms, a fact that
leads to more costly overall recovery processes [13]–[25].
An additional unfortunate by-product of this strategy is an
extreme sensitivity of these methods to motion-estimation
errors, causing severe artifacts in the resulting frames. As a
consequence, classic VSR algorithms are known to be limited
in their ability to process videos with only simple and global
motion trajectories.

As a side note, we mention the following: The work reported
in [26] is the first VSR algorithm to abandon explicit motion-
estimation by generalizing NLM [38] for super-resolution. The
3DSKR algorithm [27] followed it, replacing the accurate
motion-estimation by a multidimensional kernel regression.
Both these algorithms and their follow-up work [39] are
capable of processing videos with far more complex motion.
Still, these methods rely on the computation of weights
based on every pixel’s neighbourhood or patch, making them
computationally heavy. As in the SISR, CNNs have made
their appearance to the VSR problem as well [22]–[25], yet
these methods too often integrate motion-estimation into their
algorithmic process, hence being computationally heavy.

C. Advancements in Denoising Algorithms

We move now to discuss a simpler inverse problem –
denoising – the removal of additive noise from images and
video. This task is a special case of the SISR and VSR
problems, obtained by setting S = H = I. While this
may appear as a diversion from this paper’s main theme, the
opposite is true. As we rely on the PPP or the RED sche-
mes to construct an alternative super-resolution reconstruction
algorithm, denoising algorithms are central to our work.

Image and video denoising have made great advancements
over the past two decades, resulting in highly effective and effi-
cient algorithms. As denoising is the simplest inverse problem,

4In fact, a spatio-temporal blur can be easily accommodated as well by the
algorithms discussed in this paper.

such algorithms clearly encompass in them some sort of a prior
knowledge on the image or video, even if used implicitly. In
the context of single image denoisers, leading algorithms rely
on sparse representations [2], [40]–[42], self-similarity [43],
[44], and more [45]–[48]. In addition, highly effective deep
learning solutions of this problem are also available [12], [49],
[50]. The performance of all these methods (deep-learning-
based and others) is so good that recent work investigated the
possibility that we are nearing a performance limit [51]–[53].

As expected, the priors used for image denoising are very
similar to the ones used in SISR. Yet migrating these denoising
algorithms to serve a different problem, such as SISR, is
difficult. Consider the NCSR algorithm [2], which is a state-
of-the-art denoiser. It was adapted to solve other inverse
problems, one of which is the SISR task. However, the code
for NCSR-SISR and NCSR-Denoising ships in two different
code packages, indicating that the migration from denoising
to SISR is not achieved only by a small modification to the
degradation model.

The gap between VSR and video denoising is even wider.
Video denoisers such as [54]–[60] have already abandoned the
explicit motion-estimation algorithms still so commonly used
by VSR. This results in very efficient, and highly effective
denoisers for video noise removal. In contrast, with the ex-
ception of [26], [27], [39], VSR algorithms are left behind,
still relying on explicit optical flow estimation.

D. Our Unified Super-Resolution Framework

This work’s objective is to create a robust and unified fra-
mework for super resolution that can be applied to both SISR
and VSR problems. Our goal is to propose a single formulation
that covers both cases, leading to a single algorithm that
operates on both these problems in the same manner. The
path towards achieving this goal passes through the use of
the PPP/RED schemes, and this implies that we shall also
rely on image/video denoisers. Our starting point is the MAP
formulation in Equation (11),

x∗ = argmin
x

‖SHx− y‖22 +R (x) .

We choose to interpret this expression in two different ways.
For the single image case, x and y are single images, and R(x)
is a single image prior. When moving to image sequences, the
same equation remains relevant, where this time x and y are
assumed to be complete image sequences (i.e., two volumetric
datasets), and now the blur and the subsampling operations
are assumed to apply to each of the frames in the sequence
independently. As for R(x), it represents a video prior, able
to grade complete video solutions, by taking into account both
inter-frame relations (as given in Equation (12)), along with
intra-frame dependencies.

Now that the two problems are posed as a common energy
minimization objective, the PPP and RED schemes as des-
cribed in Section II are applicable and relevant to our needs.
All that should be done is to replace the general degradation
operator G in Equations (4a)-(4c) by SH. More specifically,
Equation (4b) is solved differently in the PPP and the RED
schemes, yet both methods use a denoiser to solve this step,
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be it a single image denoiser or a video one. Equation (4a)
is quadratic in x and can be solved using simple Linear
Algebra algorithms, such as conjugate gradient and similar
tools. Therefore, both schemes lead to a sequence of denoising
computations, surrounded by simple algebraic operations. To
summarize, Equations (4a)-(4c) are relevant to both the single
image and the video cases. As we move from SISR to VSR, the
only difference is this: The denoiser to be applied in Equation
(4b) should a video denoiser, operating on the complete video
volume xk+1 + uk at once, thus exploiting both inter- and
intra redundancies.

We note that we could have proposed a more classical
frame-by-frame MAP estimator for VSR in the spirit of the
work reported in [13]. This would have been done by embar-
king from Equation (11) and inserting the geometrical warp
relations shown in Equation (12) into the log-likelihood term.
However, the warp operators Fi are not known in advance,
and therefore a preceding step of sub-pixel motion estimation
would have been needed in order to estimate them. As a result,
such a frame-by-frame VSR framework becomes a sequence of
motion estimations followed by single-frame denoising steps.
Thus, the classical frame-by-frame approach cannot simply
apply the existing SISR framework, but rather solves first
another challenging task of motion estimation. The approach
we have proposed above overcome all these difficulties by
deferring the inter-frame relations into the video prior.

Algorithm 1 formulates the unified super-resolution scheme
for images and videos using PPP and RED. The input to the
algorithm is a LR image in the SISR case, or the whole LR
video in the VSR case (i.e. VSR operates on the whole video at
once and not frame-by-frame). The algorithm follows closely
Equation (4) and its adaptations discussed in sections II-A and
II-B. The last two steps in the for-loop are a small modification
to Equation (4), and their goal is to improve the convergence
of the scheme. We shall elaborate more on this modification
in the following subsection.

Regarding computations and implementation, the x-update
step, although given in a closed form, is not computed ana-
lytically, since S and H are huge matrices. Indeed, observe
that applying L is the same as blurring, down-sampling, up-
sampling and blurring again, all operations are linear in the
input size. Hence instead of solving the x-update analytically,
we use the conjugate-gradient method to solve(

L+ ρkI
)
xk+1 =

1

σ2
(SH)

T
y + ρk

(
vk − uk

)
.

Hence, no vectorization is needed, and this update consists of
several computations, linear in the input size. All other steps,
excluding the denoising step, are simple algebraic operations,
linear in the input size as well. Therefore, denoising is the
bottleneck in the iteration. RED (in red) and PPP (in blue)
differ only in the v-update stage. Both apply a denoiser,
yet PPP applies it only once, whereas RED applies it as
part of a fixed-point iteration – possibly several times. The
above implies that RED is expected to be slower as iterinner
increases.

We should note that the work reported in [61] suggests an
alternative to the conjugate gradient for the x-update stage,

Input: y – a LR image/video;
D(x, σ) – image/video denoiser, cleaning an
image/video x contaminated by noise with std
σ;
σ – The noise level in y
S – The scaling operator;
H – The blur operator;
β – parameter of confidence in the prior;
ρ – ADMM penalty parameter;
α – ADMM penalty parameter update factor;
iter – Number of iterations.
iterinner – Number of iterations in fixed-point
method when using RED.

Output: a SR image/video

Initialization: u0 = 0;
ρ0 = ρ;
x0 = v0 = bicubic interpolation(y);
L = 1

σ2 (SH)
T
SH.

for k = 1 : 1 : iter do
• xk+1 =(
L+ ρkI

)−1 ( 1
σ2 (SH)

T
y + ρk

(
vk − uk

))
if PPP then
• vk+1 = D

(
xk+1 + uk,

√
β
ρk

)
else //RED
• z0 = vk

for j = 0 : 1 : iterinner − 1 do
• zj+1 =

1
β+ρk

(
βD

(
zj ,
√

β
ρk

)
+ ρk

(
xk+1 + uk

))
end
• vk+1 = ziterinner

end
• Estimate the dual gap by computing
‖ρk

(
vk+1 − vk

)
‖22, and decrease ρk+1 if this

measure constantly increases. Otherwise
ρk+1 = αρk

• uk+1 = ρk

ρk+1

(
uk + xk+1 − vk+1

)
end

return vk+1

Algorithm 1: Our proposed scheme for turning an
image/video denoiser into a super-resolution solver
using PPP/RED.

replacing it with a closed-form formula in the frequency dom-
ain. This alternative was used there for the SISR problem as-
well. Since we only aim to extend our SISR framework from
[30] to handle VSR, we remain with the conjugate gradient
approach. [62] on the other hand, suggests implementing PPP
using primal-dual splitting [63] instead of using ADMM. Since
both PPP and RED have an ADMM implementation, we chose
to use this one in order to easily compare between the two.
Neither [61] nor [62] were extended to VSR yet.
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E. Convergence

It is shown in [37] that ADMM is guaranteed to converge
under two conditions:
• The two terms being minimized in Equation (2), that is,

the log-likelihood term and the prior, are closed, proper
and convex, and

• The unaugmented Lagrangian has a saddle point.
Optimality conditions are primal and dual feasibility. Primal
feasibility is reached when x = v. Increasing ρ will increase
the penalty for ‖x − v‖22 and hence will guarantee primal
feasibility. On the other hand, [37] stresses that for dual
feasibility, ρ

(
vk+1 − vk

)
→ 0 must hold. Hence, to achieve

primal feasibility ρ should increase, but in a manner that
prevents the increase of ρ

(
vk+1 − vk

)
, so dual feasibility may

be achieved as-well. ρ’s update in Algorithm 1 is meant to
increase ρ as long as ρ

(
vk+1 − vk

)
keeps decreasing. Since

u is the scaled Lagrange multipliers vector, a change in ρ
demands a rescale of u. Hence, Equation (4c) is rescaled by
the factor ρk

ρk+1 in the algorithm.
PPP’s convergence was discussed in [28], [64], yet, since the

prior is implicit in this scheme, convergence is not guaranteed
in general. RED, on the other hand, is known to converge
under mild conditions (see [29] for more details). Indeed our
experimental results in section IV show this very well.

IV. EXPERIMENTAL RESULTS

In this section we present various experimental results5 that
demonstrate the effectiveness of our scheme. In our previous
work [30], we tested the PPP scheme on the SISR problem,
aiming to increase the resolution of a single LR image. The
SISR problem is considered simpler, and less time consuming
than VSR, and hence tuning our framework is made easier
in this case. We used the NCSR [2] algorithm, both as a
denoiser in Algorithm 1 and as a super-resolution algorithm to
compare with. The proposed approach proved successful and
the experiments are detailed in [30]. The transition to VSR
leads to a counter-intuitive paradigm that shows how the VSR
problem can be handled without relying on an accurate and
explicit motion-estimation algorithm. A careful test of this core
idea is the focus of this work, and is therefore detailed in the
remainder of this section.

We use the VBM3D algorithm [54] as a video denoiser
both in PPP and RED, as it provides state-of-the-art denoising
results; it is motion-estimation free, and hence very fast and
efficient. By doing so we achieve a VSR algorithm which
is motion-estimation free, and benefits from the efficiency
of the chosen denoiser. In this section, we show that the
resulting algorithm is indeed more efficient than existing VSR
algorithms, without compromising quality of the final result.
We use the same tuned parameters as in the SISR case [30]
but with a small increase in the number of iterations:

ρ0 = 0.0001, β = 0.2048, α = 1.2, iter = 40,

where ρ0 is the initial penalty parameter, β is the confidence
in the prior, α is the penalty parameter step, meaning each

5All tests were conducted on a computer running Windows 8.1, with an
Intel Core i7-4500U CPU 1.80GHz and 8GB RAM installed.

iteration ρ will be multiplied by α (unless the dual gap incre-
ases) and iter is the number of iterations. For the conjugate
gradient method, which is used for the x-update, we set the
tolerance to 1e− 6 with a maximum of 30 iterations. We use
the last value of x as the initial guess. For RED, the number of
fixed-point iterations, iterinner, should be set as well. RED-
1 represents a setting where iterinner = 1 and similarly, for
RED-2 iterinner = 2. We compare our framework on several
scenarios:

1) Single frame super resolution from multiple frames of
global translations.

2) Single frame super resolution from real videos.
3) Super-resolved video from real videos.

The scenarios and their corresponding experiments are de-
picted in the following subsections. Table I details the resolu-
tion of all the data sets used in the following sections.

Video / Image Resolution
TIP04-lines 66 × 72
TIP04-smiley 72 × 66
TIP04-text 360 × 168
TIP04-hemingway 524 × 344
Calendar 720 × 576 × 31
City 720 × 480 × 31
Penguin 1200 × 800 × 31
Temple 1200 × 800 × 31
Walk 720 × 480 × 31
Coastguard 168 × 144 × 30
Bicycle 720 × 576 × 30
Foreman 348 × 288 × 30
MissAmerica 360 × 288 × 30
Salesman 348 × 288 × 30
Tennis 348 × 240 × 30

TABLE I: Resolution of images and videos used in the
presented experiments

A. Single frame super resolution from multiple frames of
global translations

In this test our input is a group of multiple frames, which
are all a global translation of the first frame. The goal of
this synthetic experiment is to validate that the proposed
scheme leads to a truly super-resolved outcome in a controlled
case, and verify that it extracts most of the aliasing for
producing this result. We should note that multiple frames
super resolution (not necessarily of global translations) is also
studied in [14], [65]–[69].

The translation is chosen randomly for each frame, up to
5 pixels in each axis. We generate 30 frames, blurred with a
Gaussian kernel of s.t.d. 1 and size 3× 3, then down-sampled
by factor 2 and contaminated with a white Gaussian noise
of s.t.d.

√
2. On these LR frames we run the shift-and-add

algorithm reported in [14] (referred to hereafter as TIP04),
which suggests a fast and robust algorithm for recovering a
high-resolution image from the group of LR global translati-
oned, blurred and noisy versions of it. TIP04 minimizes an
L1 energy term and uses a Biliteral-TV regularization. A fast
implementation is suggested for pure translations, and this is
the one we use.

We compare the results to RED-2, by treating the whole
set of frames jointly, reconstructing a whole SR video, and
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then taking only the first from the outcome. For both com-
peting methods we compute the Peak Signal to Noise Ratio
(PSNR6) of the first frame (without its borders). Notice that
our algorithm is unaware of the fact that the input video is just
a translation of the first frame, whereas TIP04 relies on this
knowledge explicitly. TIP04 shows exceptionally good results
for images with large and smooth edges, yet when the details
became smaller and sharper, TIP04 encounters difficulties, and
RED-2 outperforms it, as can be seen in Figure 1. Figure 2
presents the results of a second and similar experiment on
a real world image, down-sampled with factor 3. Observe the
aliasing in the word ”Adult” in the bicubic restoration (mainly
in ’l’ and ’t’), which has no trace in super-resolved results of
the two competing methods.

These two experiments we have just described are charac-
terized by exhibiting a simple and global motion, for which
classic super-resolution methods, such as TIP04, are very
effective. In such scenarios, a near perfect super-resolved
outcome can be expected, recovering small details immersed in
strong aliasing effects. The goal in these tests was to verify that
the proposed algorithms maintain this super-resolution capabi-
lity. The results indicate that, indeed, our methods successfully
resolve higher resolution images, being competitive with state-
of-the-art methods that are explicitly designed for this regime.
We now turn to more challenging experiments with more
complex video content, for which classic methods are expected
to fail.

B. Single frame super resolution from real videos

The recently published DeepSR [23] is a state-of-the-art
algorithm that aims to solve a slightly different problem
than the classic VSR: Given the whole LR video, instead of
restoring the entire sequence, DeepSR estimates only the mid-
frame. It does so in two steps: First, several SR estimates for
the mid-frame are generated from the LR video using different
motion-estimations. The second stage is to merge HR details
into a single frame by feeding all the above estimates to a
trained CNN. The software package for DeepSR is available
online [70], along with the dataset it was tested on. The code
includes the pre-configured hyper parameters and a pre-trained
CNN model. The provided package assumes a Gaussian blur
of s.t.d. within the range of 1.2 to 2.4. The LR videos are
created by (i) blurring each HR frame with a 7× 7 Gaussian
kernel of s.t.d. 1.5, followed by (ii) down scaling by a factor
4 in each axis, and (iii) adding a Gaussian noise with σ = 1
to the outcome.

We also find it interesting to compare our algorithm also to
a trivial extension of SISR to VSR, hence we tested IRCNN
[12], which is a state-of-the-art SISR method, on the same
data set (applying it frame by frame). IRCNN uses a trained
CNN that learned denoising priors to form a new denoiser that
aids in solving inverse problems in a manner similar to PPP
or RED.

Table II compares our PPP and RED schemes to the bicubic
interpolation and IRCNN, where the PSNR is averaged over

6PSNR(X,Y ) = 10 log10
(
2552/ 1

P
‖X − Y ‖22

)
), where P is the size of

the image.
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Fig. 1: Three image reconstructions from a group of images
with pure translations between them. Scale=2, Noise s.t.d=

√
2.

the entire sequence of frames in each video. As can be seen,
RED outperforms PPP, and both lead to better reconstructions
than the bicubic and IRCNN. Table III compares the proposed
algorithms to DeepSR, where we measure the PSNR on
the luminance channel of the mid-frame of each video. On
average, RED is leading this table, the second best approach
being the PPP, and both results lead to better reconstruction
than DeepSR and IRCNN. Figure 3 compares visually cropped
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(a) Original (b) LR

(c) Bicubic (21.07 dB)

(d) TIP04 (25.03 dB)

(e) RED-2 (26.48 dB)

Fig. 2: TIP04 and RED results on a real image and a zoom-in
on the word Adult. Scale=3, Noise s.t.d=

√
2.

regions that are extracted from the recovered mid-frames of
the Penguin video. As can be seen, DeepSR suffers from
artifacts around fast moving objects such as the Penguin’s
wings. Figure 4 shows the squared error for the same images.

Table IV displays the time consumption of each algorithm
per video. It is important to stress that we restore the entire
sequence of frames in the reported time, whereas DeepSR
reconstructs only the mid-frame. One can see that the PPP
scheme restores the whole video in about half of the time that
it takes for DeepSR to restore a single frame. As for RED-2,
it is slower, but still faster then DeepSR. On average IRCNN
is slower than applying RED-2.

(a) DeepSR (31.133 dB) (b) IRCNN (33.0867 dB)

(c) PPP (37.137 dB) (d) RED-2 (38.0377 dB)

(e) Original

Fig. 3: A zoomed-in area of the mid-frame of the Penguin
sequence, along with the corresponding PSNR. Scale=4, Noise
s.t.d=1.
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(a) DeepSR (b) IRCNN

(c) PPP (d) RED-2

Fig. 4: Squared error of the areas presented in Figure 3

Video / Alg. Bicubic IRCNN PPP RED-2
PSNR

Calendar 18.74 20.77 21.45 21.53
City 23.81 25.12 26.34 26.30
Foliage 21.54 23.58 25.01 24.99
Penguin 28.80 33.78 34.55 35.54
Temple 24.30 27.25 29.81 29.98
Walk 23.01 26.36 28.49 28.57
Average 23.37 26.14 27.60 27.82

SSIM
Calendar 0.492 0.634 0.698 0.700
City 0.526 0.632 0.702 0.699
Foliage 0.451 0.614 0.683 0.681
Penguin 0.915 0.950 0.958 0.963
Temple 0.744 0.843 0.895 0.897
Walk 0.708 0.819 0.855 0.857
Average 0.639 0.749 0.798 0.799

TABLE II: PSNR [dB] and SSIM comparison (averaged over
the entire sequence) between the bicubic interpolation, IRCNN
and our algorithms. Scale=4, Noise s.t.d=1. The best results
are highlighted.

Figure 5 shows a comparison between DeepSR and RED-2
on the Barcode sequence, a real low-resolution video with no
ground truth. One may notice that DeepSR suffers from halos,
which do not appear in RED-2’s output.

Video / Alg. IRCNN DeepSR PPP RED-2
Calendar 20.76 21.53 21.53 21.62
City 24.54 25.83 25.52 25.50
Foliage 23.48 24.95 24.88 24.88
Penguin 33.88 32.10 34.56 35.57
Temple 27.49 30.60 30.77 30.81
Walk 26.42 26.46 28.54 28.59
Average 26.01 26.91 27.63 27.83

TABLE III: PSNR [dB] comparison between our algorithms,
IRCNN and DeepSR (PSNR computed only on the midframe
of our restoration). Scale=4, Noise s.t.d=1. The best results
are highlighted.

Video / Alg. DeepSR IRCNN PPP RED-2
Calendar 3983 4462 2421 4563
City 3929 4419 2367 3816
Foliage 3372 3695 1965 3094
Penguin 11574 11113 5321 8360
Temple 12031 10465 5874 9116
Walk 3359 3687 1951 3049
Average 6375 6307 3317 5333

TABLE IV: Duration of each algorithm measured [sec].
DeepSR only reconstructs the midframe while all the others
reconstruct 31 frames. The best results are highlighted.

(a) Input

(b) DeepSR

(c) RED-2

Fig. 5: Midframe of a real low resolution video constructed
by DeepSR and RED-2. Scale=4.

C. Super-resolved video from real videos
3DSKR [27] is a VSR algorithm free of explicit sub-pixel

motion-estimation, and thereby capable of processing videos
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Video / Alg. Bicubic 3DSKR
+Deblur PPP RED-1 RED-2

PSNR
Coastguard 23.77 24.75 25.16 25.16 25.27
Bicycle 21.62 24.32 28.79 28.80 29.15
Foreman 27.97 31.15 33.43 33.43 33.53
Salesman 24.18 25.96 26.64 26.64 26.77
MissAmerica 32.10 35.55 36.85 36.85 37.20
Tennis 21.91 22.78 23.14 23.14 23.16
Average 25.26 27.42 29.00 29.00 29.18

SSIM
Coastguard 0.531 0.577 0.613 0.614 0.616
Bicycle 0.777 0.853 0.926 0.926 0.934
Foreman 0.823 0.874 0.900 0.900 0.905
Salesman 0.654 0.727 0.770 0.770 0.774
MissAmerica 0.877 0.912 0.910 0.910 0.920
Tennis 0.361 0.395 0.440 0.441 0.440
Average 0.671 0.723 0.760 0.760 0.765

TABLE V: PSNR [dB] and SSIM comparison between the
bicubic, 3DSKR+deblurring, and our algorithms (PPP and
RED) (RED-X is RED with X inner iterations). The PSNR
is computed only on the areas restored by 3DSKR. Scale=3,
Noise s.t.d=2. The best results are highlighted.

with complex motion. Specifically, the 3DSKR is composed
of two-stages; The first is a super-resolution process (this
step is formulated as a weighted Least-Squares problem that
captures the local motion trajectories) that ignores the blurring
kernel, while the second is a deblurring step (can be thought
of as a post-processing operation) that takes into account the
blur kernel. Using the code supplied by the authors [71],
we perform a comparison of our methods and 3DSKR on
a standard dataset that contains several grayscale videos:
Coastguard, Bicycle, MissAmerica, Tennis and Salesman.
The 3DSKR package does not include the de-blurring phase.
Following previous work [22] and as suggested in the supplied
code [71], we further improve the performance of this method
by adding the state-of-the-art BM3D deblurring [72] algorithm
as a post processing step. The parameters of the deblurring
are tuned to achieve the highest PSNR. For each video, we
apply the same blur kernel as in 3DSKR’s demo (average
blur of size 3), same decimation (factor 3 in each axis) and
add the same Gaussian noise with σ = 2. Table V presents
the PSNR score of each recovered video (averaged over the
frames), estimated by the bicubic interpolation, 3DSKR, and
the proposed algorithms. Since 3DSKR does not restore the
borders of the video nor the first frame, we did not take
into consideration these parts in the PSNR computation. The
results in Table V suggest that RED-2 is the best performing
algorithm, followed by the PPP, and these two outperform the
3DSKR and bicubic methods. Figure 6 provides a frame-by-
frame PSNR analysis for the Foreman video.

Table VI depicts the runtime for the different videos and
algorithms, indicating that a massive boost in runtime is also
achieved. Specifically, the PPP is 30 to 50 times faster than
3DSKR (average factor of 42); RED is slightly behind, with
a gain in speed-up that is approximately 23. Note that PPP
is roughly 2 times faster than RED-2, as the later applies the
denoiser twice in each iteration, while PPP calls the denoiser

Fig. 6: PSNR [dB] per frame for the restoration of the
Foreman video. Scale=3, Noise s.t.d=2.

Video / Alg. 3DSKR 3DSKR
+Deblur PPP RED-1 RED-2

Coastgaurd 3268 3282 92 91 156
Bicycle 73485 73748 1835 1780 3170
Foreman 16590 16649 373 381 686
Salesman 15020 15081 343 351 662
MissAmerica 16463 16524 385 377 659
Tennis 13108 13159 290 300 560
Average 22989 23074 553 547 982

TABLE VI: Runtime [sec] of 3DSKR, 3DSKR+Deblurring,
and our algorithms (RED-X is RED with X inner iterations).
The best results are highlighted.

only once. This aligns with the observation that the denoising
operation is the most time consuming step in our algorithms.
At this point we should stress that the Fixed-Point algorithm,
suggested in RED [29], might be the key to obtain a much
faster process. We defer this for a future work.

Returning to the outcome visual quality, one might falsely
deduce that the small increase in PSNR between PPP and
RED-2 does not justify the increase in time consumption. Yet,
a closer look at the results shows that RED-2 performs much
better. Figure 7 shows how RED-2 restores the pattern of the
tie, while all the other algorithms confuse it with a tile-like
pattern due to aliasing. Figure 8 shows that RED-2 suffers less
from “pixelized” edges across the stripes.

Figure 9 displays the PSNR during the iterations of RED-2
and PPP on the Salesman sequence. The sharp drop in PSNR
occurs when ρ is decreased to ensure dual feasibility. One can
see that PPP converges more slowly, and is highly dependent
on the ρ-update (the PSNR is flattened until ρ is decreased).
RED, on the other hand, converges faster, and could have
stopped the iteration earlier with almost the same PSNR score.

Our last reported experiment offers a comparison with
a method called SPMC [36]. SPMC reconstructs the vi-
deo frame-by-frame using a batch of frames around the
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(a) Original (b) Bicubic
(22.72 dB)

(c)
3DSKR+BM3D
(23.98 dB)

(d) PPP
(25.65 dB)

(e) RED-1
(25.62 dB)

(f) RED-2
(26.00 dB)

Fig. 7: Zoomed in versions of the tie region (and the corre-
sponding PSNR), extracted from Salesman. Scale=3, Noise
s.t.d=2.

(a) Original (b) Bicubic (14.40 dB) (c) 3DSKR+BM3D
(17.88 dB)

(d) PPP (22.74 dB) (e) RED-1 (22.69 dB) (f) RED-2 (26.22 dB)

Fig. 8: Zoomed in versions of the striped region (and the
corresponding PSNR), extracted from Bicycle. Scale=3, Noise
s.t.d=2.

Fig. 9: PSNR during iteration of PPP and RED-2 on the
Salesman sequence.

reconstructed one. It is composed of several stages: motion-
estimation, followed by sub-pixel motion compensation, and
finally the aligned frames are given as an input to a detail-
fusion CNN. SPMC is very effective and achieves impressive
and stable results. Their code is available online [73], yet
supports only scale factors 2 and 4. Therefore we conducted
the same test as with 3DSKR, but with a scale factor 4. Since
[36] does not specify any assumption on the blur kernel, we
used two degradation models: an average- and a Gaussian-
blur kernel of size 7×7 and s.t.d. 1.5. The additive noise level
was set to σ = 1. Table VII presents the resulting PSNR and
SSIM when using average blur and Table VIII for the Gaussian
one. Figure 12 provides a frame-by-frame SSIM analysis for
the Foreman video with Gaussian blur. Following Tables VII
and VIII, SPMC yields disappointing PSNR results, but it
seems that this is mainly due to a change in grayscale level in
SPMC’s output as can be seen in Figures 10 and 11. SPMC’s
SSIM results remain high. A visual comparison shows that
SPMC performs very well for the Gaussian blur, while RED-
2 is roughly of the same quality. For the average blur, RED-2
seems to outperform SPMC.

V. CONCLUSION

In this work we have presented a simple unified scheme for
integrating denoisers into both single-frame and video super-
resolution, relying on the PPP and RED frameworks. The
integration is done by using the denoiser as a black-box tool,
applied within the iterative recovery process. The algorithm’s
parameters were first tuned for SISR, the easier problem,
and then used for VSR without a change. We compared our
proposed schemes to super-resolution algorithms for SISR,
Multi-Frame Super-Resolution and VSR, achieving in all cases
state-of-the-art results. More specifically, using an existing and
efficient video denoiser (VBM3D [54]) we have created a
robust and powerful VSR algorithm that does not depend on
good locality or explicit motion-estimation.
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(a) Original

(b) LR

(c) Bicubic (14.13 dB)

(d) SPMC (16.66 dB)

(e) RED-2 (21.89 dB)

Fig. 10: Zoomed in patch of the Bicycle video, frame 10
(and the corresponding PSNR) for Bicubic, SPMC and RED-2.
These results refer to the average blur case with scale=4.

(a) Original (b) LR

(c) Bicubic (28.31 dB)

(d) SPMC (28.94 dB)

(e) RED-2 (34.72 dB)

Fig. 11: Zoomed in patch of the Foreman video, frame 5,
(and the corresponding PSNR) for Bicubic, SPMC and RED-
2. These results refer to the Gaussian blur case with scale=4.
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Video / Alg. Bicubic SPMC RED-2
PSNR

Coastguard 22.63 22.97 24.34
Bicycle 18.88 20.38 24.60
Foreman 24.42 24.11 30.56
Salesman 23.06 23.37 25.79
MissAmerica 29.53 27.16 34.57
Tennis 21.38 21.88 22.76
Average 23.31 23.31 27.10

SSIM
Coastguard 0.483 0.494 0.542
Bicycle 0.635 0.685 0.842
Foreman 0.780 0.798 0.867
Salesman 0.572 0.675 0.700
MissAmerica 0.867 0.862 0.911
Tennis 0.319 0.335 0.377
Average 0.609 0.642 0.706

TABLE VII: PSNR [dB] and SSIM comparison between the
bicubic, SPMC, and RED-2 on average blur and scale=4. The
best results are highlighted.

Video / Alg. Bicubic SPMC RED-2
PSNR

Coastguard 22.85 23.72 24.48
Bicycle 19.00 23.46 25.18
Foreman 24.70 25.85 30.48
Salesman 23.19 24.25 25.63
MissAmerica 29.68 27.80 34.90
Tennis 21.38 23.02 22.76
Average 23.47 24.68 27.24

SSIM
Coastguard 0.483 0.551 0.560
Bicycle 0.635 0.841 0.868
Foreman 0.780 0.873 0.880
Salesman 0.572 0.675 0.6700
MissAmerica 0.867 0.885 0.914
Tennis 0.319 0.397 0.388
Average 0.610 0.704 0.713

TABLE VIII: PSNR [dB] and SSIM comparison between the
bicubic, SPMC, and RED-2 on Gaussian blur and scale=4.
The best results are highlighted.

Future work can adopt other optimization methods, sugge-
sted in [29], such as the fixed point strategy. Another option
is to use the alternative to the conjugate gradient presented
in [61]. This may lead to a further improvement in time
consumption. Another promising direction is modifying the
proposed scheme to work on batches or even sequentially and
causally rather than the entire sequence, reducing the memory
requirements. Another possibility would be to further improve
the results by plugging better denoising algorithms such as
the VBM4D [55] or using a CNN based denoiser in a similar
manner to [12], [74]. More work should be done regarding
the choice of the parameters in the ADMM. Currently, the
conditions to increase or decrease ρ were set empirically
according to the term ρ

(
vk − vk+1

)
. Other approaches are

suggested in [37], but thresholds with better mathematical
reasoning are yet to be found.

Fig. 12: SSIM per frame for the restoration of the Foreman
video. Scale=3, Noise s.t.d=2, Gaussian blur.
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