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ABSTRACT
Compressed learning (CL) is a joint signal processing and machine learning frame-

work for inference from a signal, using a small number of measurements obtained

by a linear projection. In this chapter, we review this concept of compressed leaning,

which suggests that learning directly in the compressed domain is possible, and with

good performance. We experimentally show that the classification accuracy, using an

efficient classifier in the compressed domain, can be quite close to the accuracy

obtained when operating directly on the original data. Using convolutional neural net-

work for the image classification, we examine the performance of different linear

sensing schemes for the data acquisition stage, such as random sensing and PCA

projection. Then, we present an end-to-end deep learning approach for CL, in which

a network composed of fully connected layers followed by convolutional ones, per-

forms the linear sensing and the nonlinear inference stages simultaneously. During

the training phase, both the sensing matrix and the nonlinear inference operator

are jointly optimized, leading to a suitable sensing matrix and better performance
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for the overall task of image classification in the compressed domain. The

performance of the proposed approach is demonstrated using the MNIST and

CIFAR-10 datasets.

Keywords: Compressed learning, Compressed sensing, Sparse coding, Sparse repre-

sentation, Neural networks, Deep learning.
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1 INTRODUCTION

Compressed learning (CL) (Calderbank and Jafarpour, 2012) is a mathematical

framework that combines compressed sensing (CS) (Candès, 2006; Candès and

Wakin, 2008; Donoho, 2006) with machine learning. In contrast to CS, the goal

of CL is inference from the signal rather than its reconstruction. In the CL

framework, the measurement device acquires the signal by linearly projecting

it to a lower dimension, and the inference is performed in this domain directly

using machine learning tools.

In many cases, the data we operate on can be assumed to have a sparse

representation with respect to a specific dictionary (Elad, 2010). This dictio-

nary could be a fixed one such as wavelet for representing images or learned

in order to adapt to the data source (Rubinstein et al., 2010). Compressed

sensing leverages this property by replacing the traditional direct and full

acquisition of the signals of interest, with their linear projection to a lower

dimension. The core idea is that while such projection clearly loses informa-

tion, the original signals can still be recovered from this limited data due to

their inner structure, manifested by their sparse representation. Hence, this

approach replaces the traditional set of steps of sensing, compressing, stor-

ing, and then decompressing, offering instead a fusion of the sensing and the

compression stages. Indeed, compressed sensing provides an efficient sens-

ing, leaving the recovery algorithm with the daunting task of reversing the

process and returning back to the data domain. The theory of CS clearly

shows that such recovery is practically possible, by providing clear theoret-

ical guarantees for the successful reconstruction of the signal from its mea-

surements (Candès, 2006; Candès and Wakin, 2008; Donoho, 2006).

In many sensing applications, the objective is classification or detection with

respect to some signature, instead of a full signal reconstruction. For instance, in

radar applications, signal reconstruction is not the true objective, but rather to

discern whether the sensed signal is consistent with some target signatures or

not. Another application is classification in a data streaming model: assume that

a compressed sensing hardware (e.g., a single pixel camera (Duarte et al., 2008;

Li et al., 2015)) sends compressed signals to a receiver, which is concerned with

the detection of specific signal patterns or anomalies. The natural question to pose

in these cases is whether one should first recover the signal form its measure-

ments and then address the decision task or could this detection/classification

be done directly on the low-dimensional data.
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Recent work touched on the CL concept in various ways, turning it into a

practical methodology. Such is the case with the work on reconstruction-free

action recognition (Kulkarni and Turaga, 2012, 2016; Lohit et al., 2015),

which is an important inference problem in many security and surveillance

applications, and compressive watermark detection (Wang et al., 2014) that

support data storing and processing in the cloud. There are also biology

applications, such as compressive prediction of protein–protein interactions

(Zhang et al., 2011), where the authors proposed to analyze the protein’s

original, high-dimensional sequential feature vector, using compressive mea-

surements. This way, they have reduced the redundancy in the data’s feature

vector for conserving computations. Another application is compressive hyper-

spectral image analysis (Hahn et al., 2014), which aims to achieve high classifi-

cation accuracy using hyperspectral imaging, while avoiding the expensive

reconstruction that usually occurs when dealing with immense amount of data.

Several works suggested an extension to the original CL framework, such as

compressive acquisition of dynamic scenes (Sankaranarayanan et al., 2010),

which extends the CS imaging architecture to adapt video scenes and showed

good video recovery and classification results. Another example is compressive

least-squares regression (Maillard and Munos, 2009), which considered the

problem of learning a regression function rather than classification weights from

the compressed domain.

In this chapter, we review our own recent results on this topic (Adler

et al., 2016, 2017), suggesting that by relying on the data to have a sparse

representation, even in some unknown basis, linear compression (i.e., pro-

jection) can be used as a beneficial transform, preserving the learnability

of the problem under examination, all the while bypassing the computa-

tional curse of dimensionality that is prevalent in many machine learning

problems. Our approach towards this task leverages deep learning tools,

which learn simultaneously the best projection to apply and the decision

algorithm that follows.

Broadly speaking, learning directly from the compressed domain is beneficial

both from compression and learning aspects. From the compression perspective,

it reduces the required storage space and the cost of recovering irrelevant data.

From the learning perspective, it mitigates the curse of dimensionality, which

can place a huge computational barrier—compromising accuracy or even jeopar-

dizing the feasibility of the classification task. Compressed learning can be per-

ceived as a sieve which enables restoration of only the relevant data or even

enables to skip the restoration stage altogether while preserving the intrinsic

structure of the signal space. This is akin to finding a needle in a compressively

sampled haystack without recovering all the hay (Calderbank and Jafarpour,

2012). Compressed learning can therefore be regarded as an efficient universal

dimensionality reduction from the original data domain to a more effective and

concise subspace, while preserving the intrinsic structure of the data manifold.

Hence, CL can be used as a way to reduce the cost of the learning process, while

maintaining classifier reliability.
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In this chapter, we examine several solutions to compressed learning using

a neural network architecture as an efficient classifier and compare their per-

formance. We present an end-to-end deep learning solution (Goodfellow

et al., 2016), and the effectiveness of this approach is demonstrated for the

task of image classification (Lohit et al., 2016). It is worth mentioning that

classification is just one discipline, and this approach can be applied to any

other machine learning task. The main novelty of this approach is that the

sensing matrix is jointly optimized with the inference operator. This is in

contrast to previous approaches, which decouple the choice of the sensing

matrix from the inference operator, and employ standard compressed sensing

matrices. In our proposed approach, joint optimization during the training

stage allows the network to generate compressed representation that fits the

dedicated learning task, thus leading to a significant advantage compared with

other methods.

This chapter is organized as follows: Section 2 reviews compressed sens-

ing and learning concepts and describes existing CL approaches. In

Section 3 the end-to-end deep learning approach is introduced. Then,

Section 4 discusses structure and training aspects, while evaluating the per-

formance of the different approaches for compressively classifying images.

Finally, Section 5 concludes the chapter and discusses future research

directions.

2 COMPRESSED LEARNING OVERVIEW

This section details the principles of compressed sensing and introduces the

concept of CL (Calderbank and Jafarpour, 2012).

2.1 Compressed Sensing

Compressed sensing (CS) is a recent, growing field that has attracted sub-

stantial attention in signal processing, statistics, computer science and other

scientific disciplines. The classic Nyquist–Shannon theorem on sampling

continuous-time band-limited signals asserts that signals can be recovered

perfectly from a set of uniformly spaced samples, taken at a rate of twice

the highest frequency present in the signal of interest. By exploiting this prop-

erty, much of the signal processing has moved from the analog to the digital

domain, creating sensing systems that are more robust, flexible, and cost-

effective than their analog counterparts. However, in many important real-life

applications, the resulting Nyquist rate is so high that it is not viable, or

even physically impossible, to build such a device that can acquire in this

rate. Despite the rapid growth of computational power, the acquisition and

processing of signals in many fields continue to pose a great challenge. Con-

sequently, practical solutions addressing these computational and storage
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challenges of working with high-dimensional data often rely on compression,

which aims at finding the most concise representation that is able to achieve

an acceptable distortion—one kind of popular approach for signal compres-

sion relies on finding a basis that provides a sparse, and thus compressible,

representation of the signal.

Sparse representation means that a signal of length N can be represented

with only S ≪ N nonzero coefficients. By storing only the values and loca-

tions of the nonzero coefficients, we get a compressed representation of the

signal. Sparse approximation has paved the way towards many standard

transform-coding schemes that exploit sparsity for compression, including

JPEG, JPEG2000, MPEG, and MP3 standards. Compressed sensing takes this

concept a step further; it reduces complexity and the computational cost of the

acquisition stage. Rather than first sampling in high rate and then compressing

the sampled data, we would like to directly sense the data in a compressed

form. In a series of pioneering works by Candes (Candès, 2006; Candès and

Wakin, 2008), Donoho (2006), and their coauthors, it was shown that when

a signal has a sparse representation in a known basis, one can vastly reduce

the number of samples that are required—below the Nyquist rate and still

be able to perfectly recover the signal (under appropriate conditions). This

framework suggests to compress the data while sensing it, hence the name

compressed sensing.

Compressed sensing differs from the classical sampling theory in three

aspects. First, classical sampling theory deals with the question of sampling

infinite length, continuous-time signals. Compressed sensing, in contrast, is

a mathematical theory that disregards the physical-continuous time aspects

of the signal, focusing instead on measuring or projecting finite dimen-

sional vectors in RN to lower dimensional ones in RM. Second, instead

of sampling the signal at specific points in time, the compressed sensing

framework measures the signal by linearly projecting it to a known basis.

Third, the recovery stage in the traditional Nyquist–Shannon framework

is performed through Sinc interpolation, which is a linear process with

low complexity. In compressed sensing, however, the signal recovery is

more involved, typically achieved using convex-optimization-based recov-

ery methods.

Compressed sensing has made noteworthy contributions to several fields.

A prominent example is medical imaging. Scanning sessions of MRI images

can be significantly accelerated by measuring fewer Fourier coefficients and

reconstructing the under-sampled MRI image while preserving its diagnostic

quality (Lustig et al., 2007, 2008). Other applications include building an

efficient systems for sub-Nyquist sampling and filtering (Mishali and

Eldar, 2010; Tropp et al., 2006), compression of networked data (Haupt

et al., 2008), and compressive imaging architectures (Davenport et al., 2010;

Duarte et al., 2008; Romberg, 2008).
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For the completeness of the presentation of this chapter, we briefly review

the mathematical formulation of compressed sensing. Given a signal x 2 RN,

an M � N sensing matrix F (such that M ≪ N) and a measurements vector

y ¼ Fx, the goal of CS is to recover the signal from its measurements y.

The sensing rate is defined by R ¼ M/N, since R ≪ 1 the recovery of x is

not possible in the general case. CS theory (Candès and Wakin, 2008;

Donoho, 2006) suggests that for signals that admit a sparse representation

with respect to a dictionary can be exactly recovered with high probability

from their measurements: Let x ¼ Cc, where C is the aforementioned dictio-

nary, and c is a sparse coefficients vector with only S ≪ N nonzeros entries.

Then, the recovered signal is synthesized by x̂¼Cĉ, where ĉ is obtained by

solving the following nonconvex optimization problem:

ĉ¼ argmin
c

ck k0 subject to y¼FCc, (1)

where ak k0 is the ‘0-pseudo-norm that counts the number of nonzero entries

of a. The problem posed in Eq. (1) can also be approximated by its more trac-

table convex relaxation version,

ĉ¼ argmin
c

ck k1 subject to y¼FCc: (2)

The exact recovery of x is guaranteed with high probability if c is sufficiently

sparse and if certain conditions are met by the sensing matrix and the trans-

form (clearly M � S is part of these conditions) (Donoho, 2006).

2.2 Compressed Learning

CL was introduced in Calderbank and Jafarpour (2012), showing theoretically

that a direct inference from compressive measurements is feasible with high

classification accuracy. In particular, this work provided analytical bounds

for training a linear support vector machine (SVM) classifier in the com-

pressed sensing domain y ¼ Fx: it proved that under certain conditions on

the sensing matrix, called the Distance-Preserving Property, the performance

of a linear SVM classifier operating in the compressed sensing domain is

almost equivalent to the performance of the best linear threshold classifier

operating in the signal x directly. These results were also shown to be robust

to noise in the measurements. The work also showed that a large family of

standard compressed sensing matrices satisfies the required Distance-

Preserving Property. Moreover, the work demonstrated an application of com-

pressed learning in texture classification, where the goal is to classify a

texture-image into one of three classes: “horizontal,” “vertical,” or “other.”

The classification was performed based on the horizontal and vertical wavelet

coefficients of the image, hence exploiting the underlining sparse representa-

tion of texture images. The work demonstrated that an SVM classifier trained

directly over the compressed images has high accuracy, close to the one

obtained by an SVM that was trained in the data domain.
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A different yet very closely related approach termed smashed filters was
presented in Davenport et al. (2007). This work has shown that accurate clas-

sification can be done in the compressed domain, under the assumption that

the number of measurements matches the dimensionality of the data manifold.

The follow-up paper (Baraniuk and Wakin, 2009) further strengthened these

results, showing that if a sufficient number M of random projections are

provided, the essential structure of the manifold is preserved. Moreover, the

projection dimension M that ensures satisfactory classification performance

depends only on this manifold’s intrinsic dimension K. This approach was

extended and termed smashed correlation filters for activity recognition by

Kulkarni and Turaga (2016) and for face recognition by Lohit et al. (2015).

Another work of relevance is the one reported in Lohit et al. (2016).

A deep learning approach was introduced by the authors, in which random

sensing matrices were employed for image classification in the compressed

domain. Their work utilized convolutional neural networks (CNNs) that oper-

ated on the image domain, and used the following projected measurement

vector as the input to the network:a

z¼FTy2RN: (3)

By training a network similar to LeNet (LeCun et al., 1998) for classifying

MNIST handwritten digits images, and using the projected measurement z,

good classification results were obtained in this work, significantly outper-

forming the smashed filters approach at sensing rates as low as R ¼ 0.01. This

approach was also successfully verified for the challenging task of classifying

a subset of the ImageNet dataset, consisting of 1.2 million images and 1000

categories, also demonstrating excellent classification performance.

3 THE PROPOSED END-TO-END CL APPROACH

This section presents an end-to-end deep learning solution for CL, which

jointly optimizes the sensing matrix F and the inference operator, parameter-

ized by a coefficients matrix W. The proposed method provides a solution to

the following joint optimization problem:

fF� , W
� g¼ arg min

F,W

1

N

XN

i¼1

LðNWðFxiÞ,diÞ, (4)

where fxi,digNi¼1 is the collection of N pairs of signals xi and their

corresponding labels di. The loss function Lð�,�Þ measures the distance

between the true label and the estimated one, provided by the inference oper-

ator NWð�Þ, whose input is the compressed sample, denoted by Fxi. Here we
have employed the negative-log-likelihood loss function, which is commonly

used for learning classification networks. Note that during training the sensing

aThis was fed as a replacement to the true image, after reshaping it to
ffiffiffiffi
N

p � ffiffiffiffi
N

p
pixels.
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layer (matrix) F and the subsequent layers represented by NWð�Þ are treated

as a single deep network. Thus, the goal of the learning phase is to propose F
and W that would perform best classification. However, once training is com-

plete, the sensing matrix is detached from the subsequent inference layers, and

used for performing signal sensing. The input of the inference operator is

therefore the second layer of the end-to-end learned network.

This approach is motivated by the success of CNNs for the task of com-

pressive image classification (Lohit et al., 2016), which employed a random

sensing matrix (with Gaussian entries) for classifying the MNIST (LeCun

et al., 1998) dataset, and a Hadamard matrix for classifying a subset of the

ImageNet dataset. In our approach, the first layer learns the sensing matrix

F
�
, and subsequent layers (a fully connected layer followed by LeNet

(LeCun et al., 1998) or ResNet (Zagoruyko and Komodakis, 2016) layers as

described in the next section) perform the nonlinear inference stage. Fig. 1

illustrates the aforementioned flow. Note that the second fully connected layer

performs a similar operator to the one posed in Eq. (3), however, a different

matrix C
�2RN�M is learned.

The proposed method was tested on two well-known datasets: MNIST

hand written digit recognition database and CIFAR10 image recognition data-

base, and the behaviour of this scheme is detailed in the next section.

4 PERFORMANCE EVALUATION

This section describes the proposed architectures and provides performance

evaluation of the results.

4.1 MNIST Dataset

The MNIST dataset (LeCun et al., 1998) contains 70,000 grayscale 28 � 28 ¼
784 pixel images of handwritten digits, each belongs to one of 10 classes, i.e.,

denoting one digit in the range [0, 1, 2, …, 9]. The dataset is split into 60,000

FIG. 1 A scheme of the proposed approach: end-to-end solution for CL that jointly optimizes

the sensing and the inference operators. The specific CNN architecture depends on the dataset,

as described in Section 4.
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training images and 10,000 test images. The proposed network architecture

for MNIST includes the following layers and elements:

1. An input layer with N nodes.

2. A compressed sensing fully connected layer with NR nodes, R ≪ 1 (its

weights denote the sensing matrix).

3. A fully connected reprojection layer that expands the output of the sens-

ing layer to the original image dimensions N.
4. Tanh activation units to control the values entering the network.

5. A fully connected layer with N nodes.

6. Reshape operator to two-dimensional
ffiffiffiffi
N

p � ffiffiffiffi
N

p
tensor (size of the origi-

nal image).

7. A convolution layer with kernel sizes of 5 � 5, which generates six

feature map.

8. ReLU activation units.

9. Max pooling layer which selects the maximum of 2 � 2 feature maps ele-

ments, with a stride of 2 in each dimension.

10. A convolution layer with kernel sizes of 5 � 5, which generates

16 feature map.

11. ReLU activation units.

12. Max pooling layer which selects the maximum of 2 � 2 feature maps ele-

ments, with a stride of 2 in each dimension.

13. Reshape operator that reshapes the 16 4 � 4 max-pooled features maps

into a single 256-dimensional vector.

14. A fully connected layer of 256 to 120 nodes.

15. ReLU activation units.

16. A fully connected layer of 120 to 84 nodes.

17. ReLU activation units.

18. A softmax layer with 10 outputs (corresponding to the 10 MNIST

classes).

We have trainedb the proposed network using the training images of the

MNIST dataset, using stochastic gradient descent (SGD) with a learning rate

of 0.0025, over 100 epochs. The network was initialized with random weights.

The classification error performance was evaluated using the test set for sens-

ing rates in the range of R ¼ 0.25 to R ¼ 0.01, and averaged over the collec-

tion of 10,000 MNIST test images.

Table 1 summarizes the classification error results of MNIST database

compared to smashed filters (Davenport et al., 2007), and random sensing

matrix followed by convolutional network (Lohit et al., 2016). In addition,

we compared our results with a compression using principal component anal-

ysis (PCA) ( Jolliffe, 2002), followed by convolutional network for classifica-

tion. In this case, the sensing matrix F is obtained by taking the NR first

bThe network was implemented using Torch7 (Collobert et al., 2011) scripting language and

trained on NVIDIA Titan X GPU card.
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TABLE 1 Classification Error (%) for the MNIST Handwritten Digits Dataset vs Sensing Rate R 5 M/N (Averaged Over 10,000

Test Images)

Sensing

Rate

No. of

Measurements

Smashed Filters (Davenport

et al., 2007)

Random Sensing + CNN (Lohit

et al., 2016)

PCA +

CNN

End-to-End

Network

0.25 196 27.42% 1.63% 1.38 % 1.48%

0.1 78 43.55% 2.99% 1.6% 1.51 %

0.05 39 53.21% 5.18% 1.87% 1.67 %

0.01 8 63.03% 41.06% 6.9% 5.1 %

The lowest classification error rates are marked with bold.



eigenvectors corresponding to the largest eigenvalues of the covariance matrix

(estimated using the training set). This is followed by a reprojection of the

data z ¼FTy using the projection matrix transpose FT, and the resulting z is

then fed into the network as an image. Table 1 reveals the advantage of the

proposed approach, which increases significantly for lower sensing rates.

A strange behaviour is observed for high sensing rate, where the PCA pro-

jection slightly outperforms our trained approach. This can be explained by

the fact that for medium compression levels as in this case, PCA essentially

captures all the visual information in the given digit images, thus losing noth-

ing. Indeed, after recovery by C, the images fed to the CNN are of nearly the

same quality as the original ones. The question that remains is why the

learning method did not converge to a PCA projection? We believe that sev-

eral hundreds of additional epochs in the training would have made the neces-

sary difference.

Fig. 2 shows the sensing matrix F obtained through our end-to-end net-

work, compared to the sensing of the PCA projection, both obtained for a

sensing rate of R ¼ 0.25. Each image tile is the result of reshaping a row from

F to the size of an original MNIST image 28 � 28. Note that every value in

the resulting compressed image is obtained by an inner product between each

of these images and the input image. Thus, a high value after projection would

indicate a high correlation between the original image and the corresponding

row in the sensing matrix. As shown in Fig. 2B, the uppermost rows of the

PCA projection matrix have structures akin to digits or a composition of them,

as expected from a PCA projection, which optimizes for signal reconstruction.

Interestingly, Fig. 2A shows that the rows of the resulting learned sensing

FIG. 2 A comparison between the sensing matrix obtained by the PCA projection and the matrix

learned using our end-to-end network for R ¼ 0.25. Note that each image tile shows a row in its

respective sensing matrix, reshaped to a 28 � 28 image. (A) Our compressed-learning results;

(B) PCA.
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matrix do not exhibit any recognizable structures, neither are they representa-

tive of independent random sensing. In Fig. 3 we repeat this comparison for

R ¼ 0.01. Again, the sensing matrix of the network presents some structure

that differentiates it from a complete random matrix, but it is also dissimilar

to the structure of the PCA projection.

4.2 CIFAR10 Dataset

The CIFAR10 dataset (Krizhevsky et al., 2014) contains 60,000 colour images

of 32 � 32 ¼1024 pixels, drawn from 10 different classes. This dataset is

divided into training and test sets, containing 50,000 and 10,000 images

respectively. For training on CIFAR10 we used an architecture based on

ResNet—wide residual networks (WRN) (Zagoruyko and Komodakis, 2016)

composed of the following:

1. A three-channel (red, green, and blue) parallel network with fully

connected layers for compression, and fully connected reprojection layers

(which expand the output size to the original dimension) for each channel.

2. Reshape operator to three-dimensional tensor (size of the original image).

3. WRN layers (Zagoruyko and Komodakis, 2016) perform the classification

stage.

The proposed network was trained on the training images of the CIFAR10

dataset, with initialization as follows:

1. The first two layers were initialized with weights obtained by minimizing

the mean squared reconstruction error (MSE) of the compressed signal.

2. The following ResNet layers were initialized with weights learned from

CIFAR10 without any compression.

The optimization algorithm of choice was SGD with an initial learning rate of

0.001 and learning rate decay of 0.2 every 50 epochs, with momentum of 0.9,

over 200 epochs. For this dataset we also used data augmentation to expand

the training set as in Zagoruyko and Komodakis (2016): horizontal flips

and random crops taken from image padded by four pixels on each side

using reflection of the image original boundary pixels. Table 2 shows the

FIG. 3 A comparison between the sensing matrix obtained by the PCA projection and the matrix

learned using our end-to-end network for R ¼ 0.01. (A) Our compressed-learning results;

(B) PCA.
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classification results obtained by averaging over 10,000 CIFAR10 test

images vs random sensing followed by WRN layers (Zagoruyko and

Komodakis, 2016), and PCA compression followed by the same layers.

Since this dataset is composed of colour images, we perform PCA projec-

tion and reprojection on each colour separately, and reshape the output to

a size of an image before feeding it to the network. We evaluated the clas-

sification performance on sensing rates in the range of R ¼ 0.25 to R ¼
0.01; on each of these we considered two setting options: (1) imposing the

projection and reprojection matrices of the colours to be the same (shared

weights) or (2) learning the projection and reprojection matrices of each col-

our independently (nonshared weights).

Table 2 demonstrates the advantage of the end-to-end approach at low

sensing rate over alternative methods. Note that here as well we see that

PCA seems to perform rather well in sufficiently high sampling rates, and

the explanation to this is the same as in the MNIST experiment. The results

in Table 2 suggest that the shared weights setting leads to better classification

accuracy. Shared matrices reduce the number of parameters, improve general-

ization, and lessen over-fit. Note that although nonshared weights allow the

network to learn a different matrix for each channel (and thus enable more

flexible projection structures), the increased number of parameters degrades

performance.

TABLE 2 Classification Error (%) for the CIFAR10 Image Recognition

Database vs Sensing Rate R 5 M/N (Averaged Over 10,000 Test Images)

Sensing

Rate

No. of

Measurements

Random

Sensing

+ WRN

(Lohit

et al.,

2016)

PCA +

WRN

End-to-

End

Network

End-to-

End

Network

Shared
Weights

Nonshared
Weights

1 (Oracle) 1024 4.65% 4.65% 4.65% 4.65%

0.25 256 30.25% 7.4% 7.68% 9.24%

0.1 102 40.61% 12.71% 12.73% 15.29%

0.025 26 55.63% 29.44% 26.68% 28.14%

0.01 10 68.03% 42.6% 40.65% 40.75%

The lowest classification error rates are marked with bold.
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5 CONCLUSIONS

In this chapter we reviewed the concept of compressed learning as a remedy

to the complexity and storage obstacles when working on high-dimensional

data. We indicated its advantages from compression and learning points of

view. We have shown that the simplest linear dimensionality reduction pro-

cesses (random sensing, PCA, etc.) are sufficient for crude classification

tasks. Moreover, we experimentally showed that optimizing the sensing

matrix jointly with a nonlinear inference operator using neural networks,

improved upon the other methods which used a simpler, standard linear pro-

jection matrices. In our examples, the signals were returned to the full dimen-

sion prior entering the CNN section, since we used redesigned networks and

added compression–decompression layers. In future work, other options that

do not return to the full dimension should be investigated. Other future

research directions include analyzing the properties of the learned sensing

matrices from an RIP perspective, and applying further constraints during

learning to the sensing matrices, such as limiting them to binary coefficients.

Beyond classification, the proposed approach can be extended to other CL

applications, such as detection and recognition of patterns in single and mul-

tichannel images or signals.
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