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Abstract
Despite their impressive performance, deep convolutional neural networks (CNN) have been shown to be sensitive to small
adversarial perturbations. These nuisances, which one can barely notice, are powerful enough to fool sophisticated and well
performing classifiers, leading to ridiculous misclassification results. In this paper, we analyze the stability of state-of-the-art
deep learning classification machines to adversarial perturbations, where we assume that the signals belong to the (possibly
multilayer) sparse representation model. We start with convolutional sparsity and then proceed to its multilayered version,
which is tightly connected to CNN. Our analysis links between the stability of the classification to noise and the underlying
structure of the signal, quantified by the sparsity of its representation under a fixed dictionary. In addition, we offer similar
stability theorems for two practical pursuit algorithms, which are posed as two different deep learning architectures—the
layered thresholding and the layered basis pursuit. Our analysis establishes the better robustness of the later to adversarial
attacks. We corroborate these theoretical results by numerical experiments on three datasets: MNIST, CIFAR-10 and CIFAR-
100.
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1 Introduction

Deep learning, and in particular convolutional neural net-
works (CNN), is one of the hottest topics in data sciences as it
has led to many state-of-the-art results spanning across many
domains [9,14]. Despite the evident great success of classi-
fying images, it has been recently observed that CNN are
highly sensitive to adversarial perturbations in the input sig-
nal [10,17,26]. An adversarial example is a corrupted version
of a valid input (i.e., one that is classified correctly),where the
corruption is done by adding a perturbation of a small magni-
tude to it. This barely noticed nuisance is designed to fool the
classifier by maximizing the likelihood of an incorrect class.
This phenomenon reveals that state-of-the-art classification
algorithms are highly sensitive to noise, so much so that even
a single step in the direction of the sign of the gradient of the
loss function creates a successful adversarial example [10].
Furthermore, it has been shown that adversarial examples
that are generated to attack one network are powerful enough
to fool other networks of different architecture and database
[17], being the key to the so-called ”black-box” attacks that
have been demonstrated in some real-world scenarios [13].
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Adversarial training is a popular approach to improve the
robustness of a given classifier [10]. It aims to train a robust
model by augmenting the data with adversarial examples
generated for the specificmodel and/or transferred fromother
models. Preprocessing [16] is another defense strategy, sug-
gesting to denoise the input signal first, and then feed this
purified version of the signal to the classifier. Indeed, the
above defense methods improve the stability of the network;
however, these are trained based on adversarial examples that
are generated in specific ways. It is quite likely that future
work could offer a different generation of adversarial exam-
ples that question again the reliability and robustness of such
given networks.

In this paper, we provide a principled way to analyze the
robustness of a classifier using the vast theory developed in
the field of sparse representations. We do so by analyzing the
classifier’s robustness to adversarial perturbations, providing
an upper bound on the permitted energy of the perturbation,
while still safely classifying our data. The derived bounds
are affected by the classifier’s properties and the structure of
the signal. Our analysis assumes that the signals of interest
belong to the sparse representationmodel,which is known for
its successful regression and classification performance [6,
19], and was recently shown to be tightly connected to CNN
[21]. We commence by analyzing a shallow convolutional
sparse model and then proceed to its multilayer extension.
More concretely, suppose we are given a clean signal that is
assigned to the correct class. How much noise of bounded
energy can be added to this signal and still guarantee that
it would be classified accurately? Our work shows that the
boundon the energyof the noise is a functionof the sparsity of
the signal and the characteristics of the dictionaries (weights).

We proceed by considering specific and practical pursuit
algorithms that aim to estimate the signal’s representations in
order to apply the classification. Our work investigates two
such algorithms, the nonnegative layered thresholding (L-
THR), which amounts to a conventional feed-forward CNN,
and the nonnegative layered basis pursuit (L-BP), which is
reminiscent of an RNN (residual neural network) architec-
ture. Our analysis exposes the ingredients of the data model
governing the sensitivity to adversarial attacks and clearly
shows that the later pursuit (L-BP) is more robust.

The bounds obtained carry in them practical implications.
More specifically, our study indicates that a regularization
that would take the dictionaries’ coherence into account can
potentially improve the stability to noise. Interestingly, a
regularization that aligns well with our findings was tested
empirically by Parseval networks [20] and indeed shown to
improve the classification stability. As such, one can con-
sider our work as a theoretical explanation for the empirical
success of [20]. Another approach that is tightly connected
to our analysis is the one reported in [18,27]. Rather than
relying on a simple L-THR, these papers suggested solving

a variant of the L-BP algorithm, in an attempt to promote
sparse feature maps. Interestingly, it was shown in [18] that
the ”fooling rate” in the presence of adversarial perturbation
is significantly improved, serving as another empirical evi-
dence to our theoretical conclusions. As will be shown in this
paper, promoting sparse solutions and incoherent dictionar-
ies is crucial for robust networks, as evidenced empirically
in the above two papers [18,20].

We should note that this work does not deal with the learn-
ing phase of the networks, as we assume that we have access
to the true model parameters. Put on more practical terms,
our work analyzes the sensitivity of the chosen inference
architectures to malicious noise, by imposing assumptions
on the filters/dictionaries and the incoming signals. These
architectures follow the pursuit algorithms we explore, and
their parameters are assumed to be known, obtained after
learning.

Moving to the experimental part, we start by demonstrat-
ing the derived theorems on a toy example, in order to better
clarify the message of this work. Our simulations carefully
illustrate how the L-BP is more stable to adversarial noise,
when comparedwith the regular feed-forwardneural network
(i.e., the L-THR), and this is shown both in theoretical terms
(showing the actual bounds) and in empirical performance.
In order to further support the theoretical claims made in this
paper, we numerically explore the stability of the L-THR and
the L-BP architectures on actual data and learned networks.
Note that in these experiments the theoretical assumptions do
not hold, as we do not have an access to the truemodel. In this
part, we consider three commonly tested datasets: MNIST
[15], CIFAR-10 [12] and CIFAR-100 [12]. Our experiments
show that the L-BP is indeed more robust to noise attacks,
where those are computed using the fast gradient signmethod
(FGSM) [10].

This paper is organized as follows: In Sect. 2, we start
by reviewing the basics of the convolutional sparse coding
model and then proceed to its multilayered version, which
is tightly connected to CNN. Then, using Sparseland tools
we establish a connection between the stability of the classi-
fication to adversarial noise and the underlying structure of
the signal, quantified by the sparsity of its representation.We
commence by analyzing shallow networks in Sect. 3 and then
continue to deeper settings in Sect. 4. In addition, we offer
similar stability theorems for two pursuit algorithms, which
are posed as two different deep learning architectures—the
L-THR and the L-BP. In Sect. 5, we numerically study the
stability of these architectures demonstrating the theoretical
results, starting with a toy example using simulated data,
and then continuing with tests on real data. We conclude in
Sect. 6 by delineating further research directions.
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Fig. 1 The classification scheme consists of a sparse coding block and
a linear classifier. The adversarial noise E aims to fail the classification,
ŷ �= y, while having of the smallest possible energy

2 Background and Problem Setup

Consider a set
{
s j

}
j = {(

X j , y j
)}

j of high-dimensional

signals X j ∈ X ⊆ R
N and their associated labels y j ∈ Y .

Suppose that each signalX j = DΓ j belongs to the (possibly
multilayer convolutional [21]) sparse representation model,
where D is a dictionary and Γ j is a sparse vector. Suppose
further that we are given a linear classifier that operates on
the sparse representation Γ j and successfully discriminates
between the different classes.

Ignoring the superscript j for clarity, given the input s =
(X, y) the adversary’s goal is to find an exampleY = X+E,
such that the energy of E is small, and yet the model would
misclassifyY. Figure 1 depicts this classification scheme.We
consider the class of �p bounded adversaries, in the sense
that for a given energy ε, the adversarial example satisfies
‖Y − X‖p = ‖E‖p ≤ ε.

Howmuch perturbation E ∈ R
N of bounded energy ε can

be added to X so as the measurement Y = X + E will still
be assigned to the correct class? What is the effect of the
sparsity of the true representation? What is the influence of
the dictionary D on these conclusions? How can we design
a system that will be robust to noise based on the answers to
the above questions? These questions are the scope of this
paper. Before addressing these, in this section we provide the
necessary background on several related topics.

2.1 Convolutional Sparse Coding

The convolutional sparse coding (CSC) model assumes that
a signal X ∈ R

N can be represented as X = DΓ, where
D ∈ R

N×Nm is a given convolutional dictionary and Γ ∈
R

Nm is a sparse vector. The dictionary D is composed of m
local unique filters of length n, where each of these is shifted
at every possible location (see Fig. 2 left, here ignore the
subscript ’1’ for clarity). The special structure of this matrix
implies that the i-th patch xi ∈ R

n extracted from the global
signal X has an underlying shift-invariant local model [22].
Concretely, xi = ΩSiΓ, whereΩ is a fixed matrix shared by
all the overlapping patches, multiplied by the corresponding
stripe vector SiΓi ∈ R

(2n−1)m , where Si ∈ R
(2n−1)m×mN

extracts the stripe from the global Γ.
Building upon the local structure of this model, it was

shown in [22] that measuring the local sparsity of Γ rather
than the global one is much more informative. The notion of
local sparsity is defined by the �0,∞ pseudo-norm, expressed
by ‖Γ‖S

0,∞ = maxi ‖SiΓ‖0,which counts the maximal num-
ber of nonzeros in the stripes (and hence the superscript S) of
length (2n − 1)m extracted from Γ.

In the setting of this paper, we are given a noisy measure-
ment of X = DΓ, formulated as Y = X + E, where E is
an �p-bounded adversarial perturbation. In the �2 case, the
pursuit problem of estimating Γ given Y,D and the energy
of E (denoted by ε) is defined as

(PE0,∞) : min
Γ

‖Γ‖S
0,∞ s.t. ‖Y − DΓ‖22 ≤ ε2. (1)

The stability of the above problem and practical algorithms
(orthogonal matching pursuit—OMP, and basis pursuit—
BP) that aim to tackle it were analyzed in [22]. Under the
assumption that Γ is “locally sparse enough,” it was shown
that one can obtain an estimate Γ̂ that is close to the true
sparse vector Γ in an �2-sense. The number of nonzeros in Γ

that guarantees such a stable recovery is a function of ε and
the characteristics of the convolutional dictionary D.

Fig. 2 Left: The global convolutional system X = D1Γ1, along with the representation of the i-th patch S1,iΓ1. Right: The second layer of the
multilayer CSC model, given by Γ1 = D2Γ2
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Two measures that will serve us in our later analysis are
(i) the extension of the restricted isometry property (RIP)
[5] to the convolutional case, termed SRIP [22], and (ii) the
mutual coherence. The SRIP of a dictionary D of cardinality
k is denoted by δk . It measures how much the multiplication
of a locally sparse vector v, ‖v‖S

0,∞ = k by D changes its
energy (see definition 14 in [22]). A small value of δk(� 1)
implies thatD behaves almost like an orthogonal matrix, i.e.,
‖Dv‖2 ≈ ‖v‖2.

The second measure that we will rely on is the mutual
coherence of a dictionarywith �2 normalized columns,which
is formulated as μ(D) = maxi �= j |vTi d j |, where d j stands
for the j-th column (atom) from D. In words, μ(D) is the
maximal inner product of two distinct atoms extracted from
D.

2.2 Multilayer CSC

The multilayer convolutional sparse coding (ML-CSC)
model is a natural extension of the CSC to a hierarchi-
cal decomposition. Suppose we are given a CSC signal
X = D1Γ1, where D1 ∈ R

N×Nm1 is a convolutional dic-
tionary and Γ1 ∈ R

Nm1 is the (local) sparse representation
of X over D1 (see Fig. 2 left). The ML-CSC pushes this
structure forward by assuming that the representation itself
is structured, and can be decomposed as Γ1 = D2Γ2, where
D2 ∈ R

Nm1×Nm2 is another a convolutional dictionary, mul-
tiplied by the locally sparse vector Γ2 ∈ R

Nm2 (see Fig. 2
right). Notice that Γ1 has two roles, as it is the representation
ofX, and a signal by itself that has a CSC structure. The sec-
ond dictionary D2 is composed of m2 local filters that skip
m1 entries at a time, where each of the filters is of length
n2m1. This results in a convolution operation in the spatial
domain of Γ1 but not across channels (Γ1 has m1 channels),
as in CNN. The above construction is summarized in the
following definition (Definition 1 in [21]):

Definition 1 For a global signal X, a set of convolutional
dictionaries {Di }Ki=1, and a vector λ, define the ML-CSC
model as:

Γi−1 = DiΓi , ‖Γi‖S
0,∞ ≤ λi ∀ 1 ≤ i ≤ K

where Γ0 = X, and the scalar λi is the i-th entry in λ.

Turning to the pursuit problem in the noisy regime, an
extension of the CSC pursuit (see Eq. (1)) to the multilayer
setting (of depth K ) can be expressed as follows:

Definition 2 (Definition 2 in [21]) For a global signalY, a set
of convolutional dictionaries {Di }Ki=1, sparsity levels λ and
noise energy ε, the deep coding problem is given by

(DCPE
λ ) : find {Γi }Ki=1

Fig. 3 A deep classification scheme consisting of a chain of sparse
coding blocks and a linear classifier

s.t. ‖Y − D1Γ1‖2 ≤ ε,

Γi−1 = DiΓi ,

‖Γi‖S
0,∞ ≤ λi , ∀ 1 ≤ i ≤ K .

How can one solve this pursuit task? The work reported
in [21] has shown that the forward pass of CNN is in fact
a pursuit algorithm that is able to estimate the underlying
representations Γ1, . . . , ΓK of a signal X that belongs to the
ML-CSCmodel. Put differently, the forward pass was shown
to be nothing but a nonnegative layered thresholding pursuit,
estimating the representations Γi of the different layers. To
better see this, let us set Γ̂0 = Y and define the classic thresh-
olding pursuit [6], Γ̂i = §+

βi
(DT

i Γ̂i−1), for 1 ≤ i ≤ K . The

term DT
i Γ̂i−1 stands for convolving Γ̂i−1 (the feature map)

with the filters of Di (the weights), and the soft nonnegative
thresholding function §+

βi
(v) = max{0, v−βi } is the same as

subtracting a bias βi from v and applying a ReLU nonlinear-
ity. In a similar fashion, thework in [21] offered to replace the
thresholding algorithm in the sparse coding blocks with basis
pursuit, exposing a recurrent neural network architecture that
emerges from this approach.

This connection of CNN to the pursuit of ML-CSC sig-
nals was leveraged [21] to analyze the stability of CNN
architectures. Their analysis concentrated only on the feature
extraction stage—the pursuit—and ignored the classification
step and the role of the labels. In this paper, we build upon
this connection of Sparseland to CNN and extend the analy-
sis to cover the stability of layered pursuit algorithms when
tackling the classification task in the presence of noise. In
Sect. 4 we shall consider a classifier consisting of a chain
of sparse coding blocks and a linear classifier at its deepest
layer, as depicted in Fig. 3. Our work aims to analyze the sta-
bility of such a scheme, suggesting that replacing the pursuit
algorithm in the sparse coding blocks from thresholding to
basis pursuit yields a more stable architecture with respect
to adversarial noise, both theoretically and practically.

More specifically, we first study the stability to adversarial
noise of the feed-forward CNN classifier. Or equivalently,
where each of the pursuit algorithms in Fig. 3 is chosen to
be the Thresholding. This architecture is depicted in Fig. 4a.
Then, we switch to the basis pursuit as the sparse coding,
serving better the sparse model, and resulting a new deep
learning architecture with the same number of parameters
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Fig. 4 The deep classifier architectures considered in this work

but with additional feedback loops as illustrated in Fig. 4b.1

We now give more formal definitions of these two schemes.

Definition 3 (L-THR) For an ML-CSC signal Y = X + E
with convolutional dictionaries {Di }Ki=1, thresholds {βi }Ki=1,
and a classifier (w, ω), define the layered thresholding (L-
THR) algorithm as: Apply

Γ̂i = §+
βi

(DT
i Γ̂i−1) for i = 1, 2, . . . , K ,

and assign y = sign
(
f (Γ̂K )

)
, where

f (Γ̂K ) = wT Γ̂K + ω.

Definition 4 (L-BP) For anML-CSC signalY = X+Ewith
convolutional dictionaries {Di }Ki=1, Lagrangian multipliers
{εi }Ki=1, and a classifier (w, ω), define the layered basis pur-
suit (L-BP) algorithm as: Apply

Γ̂i = argmin
Γi

ξi‖Γi‖1 + 1

2
‖DiΓi − Γ̂i−1‖22

for i = 1, 2, . . . , K ,

and assign y = sign
(
f (Γ̂K )

)
, where

f (Γ̂K ) = wT Γ̂K + ω.

3 First Steps: Shallow Sparsity

3.1 Two-Class (Binary) Setting

Herein, we consider a binary classification setting (i.e., Y =
{1,−1}) in which a linear classifier is given to us, being
part of the generative model. This classifier is defined by the
couple (w, ω), where w ∈ R

Nm is a weight vector and ω is

1 Note that in this scheme, the number of iterations for each BP pursuit
stage is implicit, hidden by the number of loops to apply. More on this
is given in later sections.

a bias term (a scalar). Put formally, the model we shall study
in this subsection is given by the definition below.

Definition 5 A convolutional Sparseland signal X = DΓ,

‖Γ‖S
0,∞ ≤ k is said to belong to class y = 1 when the linear

discriminant function f (X) = wT Γ +ω satisfies f (Γ) > 0,
and y = −1 otherwise.

The expression wT Γ + ω defines a linear discriminant func-
tion for which the decision surface f (Γ′) = 0 is a hyperplane
in the feature domain (but not in the signal domain), where Γ′
is a point that lies on the decision boundary. As such, one can
express the distance from the decision boundary in the fea-
ture domain as OB(X, y) = y f (Γ) = y

(
wT Γ + ω

)
, where

the subscript B stands for Binary. Notice that the larger the
value of OB(X, y), the larger the distance to the decision
boundary, as it is defined by OB(X′, y) = 0. Following this
rational, OB(X, y) is often termed the score or the output
margin. The measure OB(X, y) is X-dependent, and thus,
we have an interest in its extreme value,

O∗
B = min

{X j ,y j } j
OB(X j , y j ),

being a property of our data and the classifier’s parame-
ters, making our claims universal and not signal specific. As
will be shown hereafter, classification robustness is directly
related to this quantity.Moreover,we emphasize that there are
twomargins involved in our analysis: (i) the above-described
input data margin, which cannot be controlled by any learn-
ing scheme, and (ii) the margin that a classifier obtains when
operating on a perturbed input signal, resulting in the evalu-
ated representation Γ̂. The results in this work rely on these
two measures, as we aim to make sure that the former mar-
gin is not diminished by the practical classifier design or the
adversarial noise.

This takes us naturally to the adversarial setting. The prob-
lem we consider is defined as follows:

Definition 6 For a signal Y = X + E with a true label y,
a convolutional dictionary D, a perturbation energy ε, and
a classifier (w, ω), define the binary classification algorithm
as:
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Solve Γ̂ = argmin
Γ

‖Γ‖S
0,∞

s.t. ‖Y − DΓ‖2 ≤ ε

and assign ŷ = sign
(
f (Γ̂)

)

where f (Γ̂) = wT Γ̂ + ω.

Notice that the signal is assigned to the correct class if
sign( f (Γ̂)) = y, or, equivalently when OB(Y, y) =
y f (Γ̂) = y(wT Γ̂ + ω) > 0. In words, the pursuit/sparse
coding step projects the perturbed signal Y onto the model
by estimating the representation Γ̂, which in turn is fed to
a classifier as formulated by f (Γ̂). In the remaining of this
paper, we shall study the conditions on X,D and ε which
guarantee thatOB(Y, y) > 0, i.e., the input signal Y will be
assigned to the correct class despite of the adversarial pertur-
bation and the limitations of a specific pursuit algorithm. The
model assumptions that we are considering allow us to reveal
the underlying characteristics of the signal (e.g., the proper-
ties of the dictionary and the sparsity level) that are crucial
for a successful prediction. Put differently, we aim to reveal
the ingredients that one should consider when designing a
robust classification system. Notice that we concentrate on
the inference stage only and do not analyze the learning part.
In fact, similarly to [8], we see this as an advantage since it
keeps the generality of our findings.

Let us start our discussion by first studying the stability of
the binary classification algorithm to noise:

Theorem 7 (Stable binary classification of the CSC model)
Suppose we are given a CSC signal X = DΓ, ‖Γ‖S

0,∞ ≤ k,
contaminated with perturbation E to create the signal Y =
X+E, such that ‖E‖2 ≤ ε. Suppose further thatO∗

B > 0 and

denote by Γ̂ the solution of the PE0,∞ problem (see Eq. (1)).

Assuming that δ2k < 1 −
(
2‖w‖2ε
O∗

B

)2
, then sign( f (Γ)) =

sign( f (Γ̂)).
Considering the more conservative bound that relies on

μ(D), and assuming that

‖Γ‖S
0,∞ < k = 1

2

(

1 + 1

μ(D)

[

1 −
(
2‖w‖2ε
O∗
B

)2
])

,

then sign( f (Γ)) = sign( f (Γ̂)).

The proof of this theorem and the remaining ones are given in
the Appendix. Among various implications, the above theo-
rem shows the effect ofD and its properties on the stability of
the classifier. A dictionary with δ2k � 1 tends to preserve the
distance between any pair of locally k-sparse vectors (defined
by the �0,∞ norm), which turns to be crucial for robust clas-
sification. The benefit of switching from the SRIP to μ(D) is

that the latter is trivial to compute, but with the cost of weak-
ening the result. The expected and somewhat unsurprising
conclusion of Theorem 7 is that the score of the classifier
plays a key role for a stable classification—the larger the dis-
tance to the decision boundary in the feature space the more
robust the classifier is to noise. This stands in a line with
the conclusion of [8]. Another alignment with previous work
(e.g., [3,23]) is the effect of the norm of w. Notice that in the
proposed theorem, ‖w‖2 is multiplied by the noise energy ε

and both have a negative effect on the stability. As a result,
one should promote a weight vector of low energy (this is
often controlled via a weight decay regularization) as it is
capable of increasing the robustness of the sparsity-inspired
classification model to noise.

The added value of Sparseland is that a “well behaved”
dictionary, having a small SRIP constant or lowmutual coher-
ence, is the key for stable recovery, which, in turn, would
increase the robustness of the classier. Interestingly, implied
from the proof of the obtained results is the fact that a suc-
cessful classification can be achieved without recovering the
true support (i.e., the locations of nonzeros in Γ). This might
be counter intuitive, as the support defines the subspace that
the signal belongs to. That is, even if the noise in Y leads
to an estimation Γ̂ that belongs to slightly different subspace
than the one of X, the input signal could be still classified
correctly as long as the dimension of the subspace that it
belongs to is small enough (the sparsity constraint).

Our results and perspective on the problem are very dif-
ferent from previous work that studies the robustness to
adversarial noise. Fawzi et al. [8] suggested a measure for
the difficulty of the classification task, where in the linear
setting this is defined as the distance between the means of
the two classes. Our results differ from these as we heavily
rely on a generative model, and so are capable of linking
the intrinsic properties of the signal—its sparsity and filters’
design—to the success of the classification task. This enables
us to suggest ways to increase the desired robustness.

A recent work [7] relies on a generative model (similar to
ours) that transforms normally-distributed random represen-
tation to the signal domain. Their goal was to prove that there
exists an upper bound on the robustness that no classifier can
exceed. Still, the authors of [7] did not study the effect of the
filters nor the network’s depth (or the sparsity). Their analy-
sis is very different from ours as we put an emphasis on the
stability of sparsity-inspired model and its properties.

As already mentioned, the margin of the data has an
impact on the stability as well. Denoting by X′ a point on
the boundary decision, the work reported in [23] connected
the input margin, given by ‖X′ − X‖2, to the output dis-
tance ‖ f (Γ′) − f (Γ)‖2 = ‖ f (Γ)‖2 through the Jacobian of
the classifier f (·). This connection is of importance as the
input margin is directly related to the generalization error.
In the scope of this paper, the distance between the sig-
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nal and its cleaned version in the input space is nothing
but the energy of the noise perturbation ‖X − Y‖2 = ε.
This, in turn, is linked to the score of the classifier distance
‖ f (Γ̂)− f (Γ)‖2 = ‖wT Γ̂ −wT Γ‖2 ≤ ‖w‖2‖Γ̂ −Γ‖2 (refer
to the proof of Theorem 7 for more details).

We should clarify the term stability used in this section:
This refers to any solver of the pursuit task that satisfies
the following two constraints (i) ‖DΓ − Y‖2 ≤ ε, and (ii)
‖Γ‖S

0,∞ = k. Later on, we shall refer to actual pursuit meth-
ods and extend this result further. Concretely, suppose we
run the thresholding pursuit (or the BP) to estimate the rep-
resentation Γ̂ of a givenY. Then, we feed the obtained sparse
vector to our linear classifier and hope to assign the input sig-
nal to its true label, despite the existence of the adversarial
perturbation. Can we guarantee a successful classification
in such cases? While this question can be addressed in the
CSC case, we shall study the more general multilayer model.
Before doing so, however, we expand the above to the multi-
class setting.

3.2 Multi-class Setting

In order to provide a complete picture on the factors that
affect the stability of the classification procedure, we turn
to study multi-class linear classifiers. Formally, the discrim-
inant function is described by the following definition:

Definition 8 A CSC signal X = DΓ, ‖Γ‖S
0,∞ ≤ k, is said

to belong to class y = u if the linear discriminant function
satisfies ∀v �= u fu (Γ) = wT

u Γ+ωu > wT
v Γ+ωv = fv(Γ),

where u stands for the index of the true class, and v is in the
range of [1, L]\v.

Analogously to the binary case, the decision boundary
between class u and v is given by fu(Γ

′) = fv(Γ
′). There-

fore, we formalize the distance to the decision boundary
of the class y = u in the feature space as OM(X, y) =
minv:v �=u fu (Γ) − fv (Γ) , which measures the distance
between the classification result of the u-classifier to the rest
L − 1 ones for a given point X. Similarly to the binary set-
ting, we obtain the minimal distance over all the classes and
examples by

O∗
M = min

{X j ,y j } j
OM(X j , y j ),

where we assume that OM(X j , y j ) > 0. Notice that this
assumption aligns with the practice, as the common setting
in CNN-based classification assumes that a perfect fit of the
data during training is possible. Another measure that will
be found useful for our analysis is the distance between the
weight vectors. Put formally,wedefine themulti-classweight
matrixW of sizemN×L asW = [w1;w2; · · · ;wL ] ,which

stores the weight vectors as its columns. The following mea-
sure quantifies the mutual Euclidean distance between the
classifiers, given by

φ(W) = max
u �=v

‖wu − wv‖2.

The analogous of this measure in the binary classification,
when L = 2, is the norm of the classifier being ‖w‖2, as in
this case one can define w1 = −w2 = 1

2w.

Theorem 9 (Stable Multi-Class Classification of the CSC
Model): Suppose we are given a CSC signal X = DΓ,
‖Γ‖S

0,∞ ≤ k, contaminated with perturbation E to create
the signal Y = X + E, such that ‖E‖2 ≤ ε. Suppose further
that fu(Γ) = wT

u Γ + ωu correctly assigns X to class y = u.
Suppose further thatO∗

M > 0, and denote by Γ̂ the solution

of the PE0,∞ problem. Assuming that δ2k < 1 −
(
2φ(W)ε
O∗

M

)2
,

then Y will be assigned to the correct class.
Considering the more conservative bound that relies on

μ(D) and assuming that

‖Γ‖S
0,∞ < k = 1

2

(

1 + 1

μ(D)

[

1 −
(
2φ(W)ε

O∗
M

)2
])

,

then Y will be classified correctly.

As one might predict, the same ingredients as in Theorem
7 (coherence of D or its SRIP) play a key role here as well.
Moreover, in the two-class setting φ(W) = ‖w‖2, and so
the two theorems align. The difference becomes apparent for
L > 2, when the mutual Euclidean distance between the dif-
ferent classifiers influences the robustness of the system to
noise. In the context of multi-class support vector machine, it
was shown [4] that the separationmargin between the classes
u and v is 2/‖wu − wv‖2. This observation motivated the
authors of [4] to minimize the distance ‖wu −wv‖2,∀u �= v

during the training phase. Interestingly, this quantity serves
our bound as well. Notice that our theorem also reveals the
effect of the number of classes on the robustness. Since
φ(W) measures the maximal distance between the L weight
vectors, it is a monotonically increasing function of L and
thereby stiffening our conditions for a successful classifica-
tion. This phenomenon was observed in practice, indicating
that it is easier to “fool” the classifier when the number of
classes is large, compared to a binary setting [7].

4 Robustness Bounds for CNN

We now turn to extend the above results to a multilayer set-
ting, and this way shed light on the stability of classic CNN
architectures. For simplicity, we return to the binary setting,

123



Journal of Mathematical Imaging and Vision

as we have seen that the treatment of multiple classes has
a similar analysis. We commence by defining the model we
aim to analyze in this part:

Definition 10 AnML-CSC signalX (seeDefinition 1) is said
to belong to class y = 1when the linear discriminant function
f (X) = wT ΓK + ω satisfies f (ΓK ) > 0, and y = −1
otherwise.

Notice that the classifier operates on the representation of
the last layer, and so the definition of the signal-dependent
scoreOB(X, y) and the universalO∗

B are similar to the ones
defined in Sect. 3.1. We now turn to the noisy regime, where
the adversarial perturbation kicks in:

Definition 11 For a corrupted ML-CSC signal Y = X +
E with a true label y, convolutional dictionaries {Di }Ki=1,
a perturbation energy ε, sparsity levels λ, and a classifier
(w, ω), define the multilayer binary classification algorithm
as:

find {Γ̂}Ki=1 by solving the DCPE
λ problem;

and assign y = sign
(
f (Γ̂K )

)
,

where f (Γ̂K ) = wT Γ̂K + ω.

Above, an accurate classification is achieved when sign
( f (Γ̂K )) = sign ( f (ΓK )). The stability of the multilayer
binary classification algorithm can be analyzed by extending
the results of [21] as presented in Sect. 2. Therefore, rather
than analyzing the properties of the problem, in this section
we concentrate on specific algorithms that serve the ML-
CSC model—the L-THR algorithm (i.e., the forward pass of
CNN), and its L-BP counterpart. To this end, differently from
the previous theorems that we presented, we will assume
that the noise is locally bounded (rather than globally2) as
suggested in [21]. Put formally, we use the �2,∞-norm to
measure the energy of the noise in a vector E, denoted by
‖E‖P

2,∞, which is defined to be the maximal energy of a n1-
dimensional patch extracted from it.

Theorem 12 (Stable binary classification of the L-THR)
Suppose we are given an ML-CSC signal X contaminated
with perturbation E to create the signal Y = X + E, such
that ‖E‖P

2,∞ ≤ ε0. Denote by |Γ min
i | and |Γ max

i | the lowest
and highest entries in absolute value in the vector Γi , respec-
tively. Suppose further thatO∗

B > 0 and let {Γ̂i }Ki=1 be the set
of solutions obtained by running the layered soft thresholding
algorithm with thresholds {βi }Ki=1, i.e., Γ̂i = §βi (D

T
i Γ̂i−1)

where §βi is the soft thresholding operator and Γ̂0 = Y.
Assuming that ∀ 1 ≤ i ≤ K

2 Locally bounded noise results exist for the CSC as well [22], and can
be leveraged in a similar fashion.

a. ‖Γi‖S
0,∞ < 1

2

(
1 + 1

μ(Di )

|Γ min
i |

|Γ max
i |

)
− 1

μ(Di )
εi−1

|Γ max
i | ;

b. The threshold βi is chosen according to

|Γmin
i | − Ci − εi−1 > βi

> ‖Γi‖S
0,∞μ(Di )|Γmax

i | + εi−1,

where

Ci = (‖Γi‖S
0,∞ − 1)μ(Di )|Γmax

i |,
εi =

√
‖Γi‖P

0,∞
(
εi−1 + Ci + βi

)
;

and
c. O∗

B > ‖w‖2√‖ΓK ‖0
(
εK−1 + CK + βK

)
,

then sign( f (Γ̂K )) = sign( f (ΓK )).

Some of the ingredients of the above theorem are similar to
the previous results, but there are several major differences.
First, while the discussion in Sect. 3 concentrated on the sta-
bility of the problem, here we get that the forward pass is an
algorithm that is capable of recovering the true support of the
representations Γi . Still, this perfect recovery does not guar-
antee a successful classification, as the error in the deepest
layer should be smaller thanO∗

B. Second, the forward pass is
sensitive to the contrast of the nonzero coefficients inΓi (refer
to the ratio |Γ min

i |/|Γ max
i |), which is a well-known limitation

of the thresholding algorithm [6]. Third, we see that without
a careful regularization (e.g., promoting the coherence to be
small) the noise can be easily amplified throughout the layers
(εi increases as a function of i). Practitioners refer to this as
the error amplification effect [16].

In fact, a similar regularization force is used in Parse-
val networks [20] to increase the robustness of CNN to
adversarial perturbations. These promote the convolutional
layers to be (approximately) Parseval tight frames, which are
extensions of orthogonal matrices to the non-square case.
Specifically, the authors in [20] suggested to promote the
spectral norm of the weight matrix DT

i to be close to 1, i.e.,
‖DiDT

i − I‖22, where I is the identity matrix. This regulariza-
tion encourages the average coherence of Di to be small. As
our analysis suggests, it was shown that such a regulariza-
tion significantly improves the robustness of various models
to adversarial examples.

Suppose that our data emerge from the ML-CSC model,
can we offer an alternative architecture that is inherently
better in handling adversarial perturbations? The answer is
positive and is given in the form of the L-BP that was sug-
gested and analyzed in [21]. Consider an ML-CSC model of
depth two, the L-BP algorithm suggests estimating Γ1 and Γ2

by solving a cascade of basis pursuit problems. The first stage
of this method provides an estimate for Γ1 by minimizing
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Γ̂1 = argmin
Γ1

‖Y − D1Γ1‖22 + ξ1‖Γ1‖1.

Then, an approximation for the deeper representation Γ2 is
given by

Γ̂2 = argmin
Γ2

‖Γ̂1 − D2Γ2‖22 + ξ2‖Γ2‖1.

Finally, the recovered Γ̂2 is fed into a classifier, resulting in
the predicted label.

In what follows we build upon the analysis in [21] and
show how our theory aligns with the increased stability that
was empirically observed by replacing the L-THR algorithm
with the L-BP [18]:

Theorem 13 (Stable Binary Classification of the L-BP):
Suppose we are given an ML-CSC signal X that is con-
taminated with noise E to create the signal Y = X + E,
such that ‖E‖P

2,∞ ≤ ε0. Suppose further that O∗
B > 0,

and let {Γ̂i }Ki=1 be the set of solutions obtained by running
the L-BP algorithm with parameters {ξi }Ki=1, formulated as

Γ̂i = argmin
Γi

ξi‖Γi‖1 + 1
2‖DiΓi − Γ̂i−1‖22, where Γ̂0 = Y.

Assuming that ∀ 1 ≤ i ≤ K,

a) ‖Γi‖S
0,∞ ≤ 1

3

(
1 + 1

μ(Di )

)
;

b) ξi = 4εi−1,

where εi = ‖E‖P
2,∞ · 7.5i ∏i

j=1

√
‖Γ j‖P

0,∞; and
c) O∗

B > 7.5‖w‖2√‖ΓK ‖0 εK ,

then sign( f (Γ̂K )) = sign( f (ΓK )).

The proof can be derived by relying on the steps of Theo-
rem 12, combined with Theorem 12 from [21]. Note that
the conditions for the stable classification of the L-BP are
not influenced by the ratio |Γmin

i |/|Γmax
i |. Moreover, the con-

dition on the cardinality of the representations in the L-BP
case is less strict than the one of the L-THR. As such, while
the computational complexity of the BP algorithm is higher
than the thresholding one, the former is expected to be more
stable than the latter. This theoretical statement is supported
in practice [18]. Note that both methods suffer from a simi-
lar problem—the noise is propagated thorough the layers. A
possible future direction to alleviate this effect could be to
harness the projection (onto the ML-CSC model) algorithm
[25], whose bound is not cumulative across the layers.

5 Numerical Experiments

Our study of the stability to bounded noise, in particular
Theorems 12 and 13, introduces a better guarantee for the L-
BP, when compared to the well-known L-THR architecture

(=CNN). In this section, we aim to numerically corroborate
these findings by exploring the actual robustness to adver-
sarial noise of these two architectures. We achieve this by
introducing two sets of experiments: (i) We start with a toy
example using synthetically generated data and show the
actual behavior of the L-THR and the L-BP versus their the-
oretical bounds; and (ii) we proceed by testing these two
architectures and exploring their robustness to adversarial
noise on actual data, exposing the superiority of the L-BP.

As described in [1,21,24] and depicted in Fig. 4b, the L-
BP is implemented by unfolding the projected gradient steps
of the iterative thresholding algorithm. By setting the number
of unfolding iterations to zero, the L-BP becomes equivalent
to the L-THR architecture. Note that both pursuit methods
contain the same number of filters, and those are of the same
dimensions. Therefore, the same number of free parameters
govern both their computational paths. Nonetheless, more
unfoldings in the L-BP lead to a higher computational com-
plexity when compared to L-THR.

5.1 Synthetic Experiments

We start our experimental section with a toy example using
synthetically generated data, where we have complete access
to the generative model and its parameters. This allows us to
(i) compute the theoretical bounds on the permitted noise and
(ii) compare these predictions with an evaluation of the prac-
tical behavior. Our emphasis in this part is on the single-layer
thresholding and basis pursuit classifiers, as synthesizing sig-
nals from themultilayeredmodel is farmore challenging.Our
goal is to show the differences between the theoretical bounds
and the measured empirical stability. For completeness, we
include experimentswith both an undercomplete (having less
atoms than the signal dimension) and overcomplete (where
the dictionary is redundant) dictionaries.

As already mentioned, we consider the bounds from The-
orems 12 and 13 with K = 1, corresponding to a one hidden
layer neural network with a nonconvolutional (fully con-
nected) dictionary. The two following corollaries describe
the bounds of the L-THR and the L-BP in such simplified
case.

Corollary 1 (Stability of one hidden layer L-THR) Suppose
that Y = DΓ +E, where D is a general dictionary with nor-
malized atoms, ‖E‖2 ≤ ε, and (w, ω) is the linear classifier.
Suppose also that

‖Γ‖0 ≤ 1

2

(
1 + |Γmin|

|Γmax|
1

μ(D)

)
− ε

μ(D) |Γmax| ,

and that the threshold β set to satisfy:

‖Γ‖0 μ(D) |Γmax| + ε < β
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< |Γmin| − (‖Γ‖0 − 1)μ(D) |Γmax| − ε.

Then, the support of Γ̂
THR

is contained in the support of Γ,
and
∥∥∥Γ̂

THR − Γ
∥∥∥
2

≤ √‖Γ‖0 (ε + (‖Γ‖0 − 1)μ(D) |Γmax| + β) .

Therefore, as long as

ε <
OB√‖Γ‖0‖w‖2

− (‖Γ‖0 − 1)μ(D) |Γmax| − β, (2)

the classification is accurate, i.e., sign( f (Γ̂
THR

)) = sign
( f (Γ)).

Corollary 2 (Stability of one hidden layer L-BP) Suppose
that Y = DΓ + E, where D is a general dictionary with
normalized atoms, ‖E‖2 ≤ ε, and (w, ω) is a linear classi-

fier. Suppose also that ‖Γ‖0 ≤ 1
3

(
1 + 1

μ(D)

)
, and that the

Lagrangian multiplier is set to ξ = 4ε. Then, the support of

Γ̂
BP

is contained in the support ofΓ, and
∥∥∥Γ̂

BP − Γ
∥∥∥
2

≤ 7.5ε.

Therefore, as long as

ε <
OB

7.5 ‖Γ‖0 ‖w‖2 , (3)

the classification is accurate, i.e., sign( f (Γ̂
BP

)) = sign
( f (Γ)).

Figure 5 presents the theoretical bounds on the adversar-
ial noise amplitude ε for the Thresholding (Eq. (2)) and the
basis pursuit (Eq. (3)) classifiers in dash lines. It also shows
the empirical stability to adversarial noise under the FGSM
(fast gradient sign method) attack [10]. In these simulations,
we generate a random normalized and unbiased (ω = 0)
classifierw, and a random dictionary with normalized atoms
and with a low mutual coherence. Then, we randomly pro-
duce sparse representations with four nonzeros in the range[|Γmin|, |Γmax|] = [1, 2]. In order to create a margin OB of
1, we project Γ on the classifier w and keep only the repre-
sentations satisfying

∣∣wT Γ
∣∣ ≥ OB = 1. Figure 5a presents

the undercomplete case with D ∈ R
100×40. One can draw

three important conclusions from this result: 1) The theoret-
ical stability bound for the BP is better than the THR one;
2) the empirical performance of the BP and THR aligns with
the theoretical predictions; and 3) the bounds are not tight
due to the worst-case assumptions used in our work. Note
that in this experiment the performance of the two methods
is quite close—this is due to very low mutual coherence of
the chosen dictionary.

This motivates the next experiment, in which we examine
amore challenging setting that relies on an overcomplete dic-
tionary. Figure 5b demonstrates this case withD ∈ R

100×150

Fig. 5 Accuracy of the THR and the BP versus adversarial noise level,
computed on synthetic data. Dashed lines: theoretical bounds; solid
lines: empirical performance

and with representations having the same properties as
before. In this case, the thresholding bound collapses to zero
as the mutual coherence is too high, and as can be seen, the
practical difference between the THR and the BP classifiers
becomes apparent.

5.2 Real Data Experiments

The goal of the following set of experiments is to show that
moving from the traditional feed-forward network (i.e., L-
THR) to L-BP can potentially improve stability, not only for
simulated data (where the dictionaries and the signals are
generated exactly to meet the theorem conditions), but also
for real data such as MNIST and CIFAR images. Note that
one couldwonder whether these imageswe are about towork
with belong to the (possibly multilayered) sparse represen-
tation model. Our approach for answering this question is to
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impose themodel on the data and see how the eventual pursuit
(such as the forward pass) performs. This line of reasoning
stands behind many papers that took the sparse representa-
tion model (or any of its many variants) and deployed it to
true data in order to address various applications.

The networks we are about to experiment with are
obtained as unfoldings of the L-THR (Fig. 4a) and the L-BP
(Fig. 4b) pursuit algorithms, and each is trained in a super-
vised fashion using back-propagation for best classification
performance. Our tested architectures are relatively simple
and use a small number of parameters in order to isolate the
effect of their differences [2,24].

Ideally, in order to demonstrate Theorems 12 and 13, one
should require that the same set of dictionaries is used by the
two architectures, in a way that fits our multilayered model
assumptions. However, such setup leads to various difficul-
ties. First, as obtaining these dictionaries calls for training,we
should decide on the loss to use. Trained for representation
error, these architectures would lead to inferior classification
performance that would render our conclusions irrelevant.
The alternative of training for classification accuracy would
lead to two very different sets of dictionaries, violating the
above desire. In addition, as we know from the analysis in
[11], the learned dictionaries are strongly effected by the
finite and small number of unfoldings of the pursuit. In the
experiments, we report hereafter we chose to let each archi-
tecture (e.g., pursuit) to learn the best set of dictionaries for
its classification result.

Given the two pre-trained networks, our experiments eval-
uate the stability by designing noise attacks using the fast gra-
dient signmethod (FGSM) [10]with an increasing amplitude
ε. We perform this evaluation on three popular datasets—
MNIST [15], CIFAR-10 [12] and CIFAR-100 [12]. For the
MNIST case, we construct an ML-CSC model composed of
3 convolutional layers with 64, 128 and 512 filters, respec-
tively, and kernel sizes of 6×6, 6×6 and 4×4, respectively,
with stride of 2 in the first two layers. In addition, the out-
put of the ML-CSC model is followed by a fully connected
layer producing the final estimate. Training is done with the
stochastic gradient descent (SGD), with a mini-batch size of
64 samples, learning rate of 0.005 and a momentum weight
of 0.9.We decrease the learning rate tenfold every 30 epochs.

For CIFAR-10 and CIFAR-100, we define an ML-CSC
model as having 3 convolutional layers with 32, 64 and 128
filters, respectively, and kernel sizes of 4 × 4 with stride of
2. In addition, we used a classifier function as a CNN with
4 layers where the first 3 layers are convolutional and the
last layer is fully connected. This effectively results in a 7
layers architecture, out of which the first three are unfolded
in the context of the L-BP scheme. As before, all models are
trained with SGD and with a decreasing learning rate.

Figure 6 presents the results for the two architectures and
the three datasets. It is clear that the L-BP scheme is consis-

Fig. 6 Comparison of layered thresholding (L-THR) and layered basis
pursuit (L-BP) schemes under FGSM attack on aMNIST, b CIFAR-10
and c CIFAR-100 datasets

tently more robust to adversarial interference. This evidence
is in agreementwith the theoretical results we introduced ear-
lier, suggesting that the L-THR is more sensitive to bounded
noise. We note again, however, that the theoretical guaran-
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tees presented earlier are not fully applicable here as the
dictionaries of each model are different and as some of the
assumptions are violated. For example, the minimal distance
between classesO∗

M is not guaranteed to be nontrivial in real
images scenario. However, these experiments do support our
earlier analysis about the superiority of the L-BP to handle
noise attacks.

6 Conclusions

This paper presents a general theory for the classification
robustness when handling sparsity-modeled signals. In the
context of CSC, we studied the stability of the classification
problem to adversarial perturbations both for the binary- and
multi-class settings. Then, we analyzed the stability of a clas-
sifier that operates on signals that belong to the ML-CSC
model, which was recently shown to be tightly connected to
CNN. This leads to a novel analysis of the sensitivity of the
classic forward pass algorithm to adversarial perturbations
and ways to mitigate its vulnerability (which was empiri-
cally validated in [20]). Next, we showed that by relying on
the BP algorithm, one can theoretically improve the robust-
ness to such perturbations, a phenomenon that was observed
in practice [18].

The bounds obtained are all referring to the case where
the dictionaries {Di }Ki=1 and the classification weights {(wu,

ωu)}Lu=1 are perfectly known, and thus learning is not cov-
ered by this theory. As such, the margin for making an error
in our work considers only two prime forces. First, the sepa-
rability of the data, as manifested by O∗

B (or O∗
M). Second,

the chance that our estimated Γ deviates from its true value.
This can happen due to noise in the input (gettingY instead of
X), and/or limitation of the pursuit algorithm. Further work
is required in order to bring into account distortions in Γ

caused by an imperfect estimate of D’s and w’s—this way
considering the learning phase as well.

Appendix A: Proof of Theorem 7: Stable
Binary Classification of the CSCModel

Theorem 5 (Stable binary classification of the CSC model)
Suppose we are given a CSC signalX, ‖Γ‖S

0,∞ ≤ k, contam-
inated with perturbation E to create the signal Y = X + E,
such that ‖E‖2 ≤ ε. Suppose further that O∗

B > 0 and

denote by Γ̂ the solution of the PE0,∞ problem. Assuming that

δ2k < 1 −
(
2‖w‖2ε
O∗

B

)2
, then sign( f (X)) = sign( f (Y)).

Considering the more conservative bound that relies on
μ(D), and assuming that

‖Γ‖S
0,∞ < k = 1

2

(

1 + 1

μ(D)

[

1 −
(
2‖w‖2ε
O∗
B

)2
])

,

then sign( f (X)) = sign( f (Y)).

Proof Without loss of generality, consider the case where
wT Γ + ω > 0, i.e., the original signal X is assigned to class
y = 1. Our goal is to show that wT Γ̂ + ω > 0. We start by
manipulating the latter expression as follows:

wT Γ̂ + ω = wT
(
Γ + Γ̂ − Γ

)
+ ω

=
(
wT Γ + ω

)
+ wT

(
Γ̂ − Γ

)

≥
(
wT Γ + ω

)
−

∣∣∣wT
(
Γ̂ − Γ

)∣∣∣

≥
(
wT Γ + ω

)
−

∥∥∥wT
∥∥∥
2

∥∥∥Γ̂ − Γ
∥∥∥
2
, (4)

where the first inequality relies on the relation a + b ≥ a −
|b| for a > 0, and the last derivation leans on the Cauchy-
Schwarz inequality. Using the SRIP [22] and the fact that
both ‖Y − DΓ‖2 ≤ ε and ‖Y − DΓ̂‖2 ≤ ε, we get

(1 − δ2k)‖Γ̂ − Γ‖22 ≤ ‖DΓ̂ − DΓ‖22 ≤ 4ε2.

Thus,

‖Γ̂ − Γ‖22 ≤ 4ε2

1 − δ2k
.

Combining the above with Eq. (4) leads to (recall that y = 1):

OB(Y, y) = wT Γ̂ + ω ≥ wT Γ + ω − ‖w‖2 2ε√
1 − δ2k

.

Using the definition of the score of our classifier, satisfying

0 < OB(X, y) = wT Γ + ω

we get

OB(Y, y) ≥ OB(X, y) − ‖w‖2 2ε√
1 − δ2k

.

We are now after the condition forOB(Y, y) > 0, and so we
require:

0 < OB(X, y) − ‖w‖2 2ε√
1 − δ2k

≤ O∗
B − ‖w‖2 2ε√

1 − δ2k
.
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where we relied on the fact thatOB(X, y) ≥ O∗
B. The above

inequality leads to

δ2k < 1 −
(
2‖w‖2ε
O∗
B

)2

. (5)

Next we turn to develop the condition that relies on μ(D).
We shall use the relation between the SRIP and the mutual
coherence [22], given by δ2k ≥ (2k − 1)μ(D) for all k <
1
2

(
1 + 1

μ(D)

)
. Plugging this bound into Eq. (5) results in

0 < O∗
B − 2‖w‖2ε√

1 − (2k − 1)μ(D)
,

which completes our proof. ��

AppendixB:ProofofTheorem9:StableMulti-
class Classification of the CSCModel

Theorem 7 (Stable multi-class classification of the CSC
model) Suppose we are given a CSC signal X, ‖Γ‖S

0,∞ ≤
k, contaminated with perturbation E to create the signal
Y = X + E, such that ‖E‖2 ≤ ε. Suppose further that
fu(X) = wT

u Γ + ωu correctly assigns X to class y = u.
Suppose further thatO∗

M > 0, and denote by Γ̂ the solution

of the PE0 problem. Assuming that δ2k < 1 −
(
2φ(W)ε
O∗

M

)2
,

then Y will be assigned to the correct class.
Considering the more conservative bound that relies on

μ(D) and assuming that

‖Γ‖S
0,∞ < k = 1

2

(

1 + 1

μ(D)

[

1 −
(
2φ(W)ε

O∗
M

)2
])

,

then Y will be assigned to the correct class.

Proof Given that fu(Γ) = wT
u Γ +ωu > fv(Γ) = wT

v Γ +ωv

for all v �= u, i.e., X belongs to class y = u, we shall prove
that fu(Γ̂) > fv(Γ̂) for all v �= u. Denoting Δ = Γ̂ − Γ, we
bound from below the difference fu(Γ̂) − fv(Γ̂) as follows:

[
wT
u Γ̂ + ωu

]
−

[
wT

v Γ̂ + ωv

]

=
[
wT
u (Γ + Δ) + ωu

]
−

[
wT

v (Γ + Δ) + ωv

]

=
[
wT
u Γ + ωu

]
−

[
wT

v Γ + ωv

]
+

(
wT
u − wT

v

)
Δ

≥ fu(Γ) − fv(Γ) −
∣∣∣
(
wT
u − wT

v

)
Δ

∣∣∣

≥ fu(Γ) − fv(Γ) − ‖wT
u − wT

v ‖2‖Δ‖2. (6)

Similarly to the proof of Theorem 7, the first inequality holds
since a+b ≥ a−|b| for a = fu(Γ)− fv(Γ) > 0, and the last

inequality relies on theCauchy-Schwarz formula. Relying on
φ(W) that satisfies

φ(W) ≥ ‖wu − wv‖2,

and plugging ‖Δ‖22 ≤ 4ε2
1−δ2k

into Eq. (6) we get

fu(Γ̂) − fv(Γ̂) ≥ fu(Γ) − fv(Γ) − φ(W)
2ε√

1 − δ2k

≥ OM(X, y) − φ(W)
2ε√

1 − δ2k

≥ O∗
M − φ(W)

2ε√
1 − δ2k

,

where the second to last inequality holds since fu(Γ) −
fv(Γ) ≥ OM(X, y), and the last inequality follows the def-
inition of O∗

M. As such, we shall seek for the following
inequality to hold:

0 < O∗
M − φ(W)

2ε√
1 − δ2k

→ δ2k < 1 −
(
2φ(W)ε

O∗
M

)2

.

Similarly to the binary setting, one can readilywrite the above
in terms of μ(D). ��

Appendix C: Proof of Theorem 12: Stable
Binary Classification of the L-THR

Theorem 10 (Stable binary classification of the L-THR)
Suppose we are given an ML-CSC signal X contaminated
with perturbation E to create the signal Y = X + E, such
that ‖E‖P

2,∞ ≤ ε0. Denote by |Γ min
i | and |Γ max

i | the lowest
and highest entries in absolute value in the vector Γi , respec-
tively. Suppose further thatO∗

B > 0 and let {Γ̂i }Ki=1 be the set
of solutions obtained by running the layered soft thresholding
algorithm with thresholds {βi }Ki=1, i.e., Γ̂i = §βi (D

T
i Γ̂i−1)

where §βi is the soft thresholding operator and Γ̂0 = Y.
Assuming that ∀ 1 ≤ i ≤ K

a. ‖Γi‖S
0,∞ < 1

2

(
1 + 1

μ(Di )

|Γ min
i |

|Γ max
i |

)
− 1

μ(Di )
εi−1

|Γ max
i | ;

b. The threshold βi is chosen according to

|Γmin
i | − Ci − εi−1 > βi > Ki + εi−1,
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where

Ci = (‖Γi‖S
0,∞ − 1)μ(Di )|Γmax

i |,
Ki = ‖Γi‖S

0,∞μ(Di )|Γmax
i |,

εi =
√

‖Γi‖P
0,∞

(
εi−1 + Ci + βi

)
;

and
c. O∗

B > ‖w‖2√‖ΓK ‖0
(
εK−1 + CK + βK

)
,

then sign( f (Y)) = sign( f (X)).

Proof Following Theorem 10 in [22], if assumptions (a)–(c)
above hold ∀ 1 ≤ i ≤ K then

1. The support of the solution Γ̂i is equal to that of Γi ; and
2. ‖Γi − Γ̂i‖P

2,∞ ≤ εi , where εi defined above.

In particular, the last layer satisfies

‖ΓK − Γ̂K ‖∞ ≤ εK−1 + CK + βK . (7)

Defining Δ = Γ̂K − ΓK , we get

‖Δ‖2 ≤ ‖Δ‖∞
√‖Δ‖0 = ‖Δ‖∞

√‖ΓK ‖0,

where the last equality relies on the successful recovery of
the support. Having the upper bound on ‖Δ‖2, one can follow
the transition from Eqs. (4) to (5) (see the proof of Theorem
7), leading to the following requirement for accurate classi-
fication:

O∗
B − ‖w‖2‖Δ‖∞

√‖ΓK ‖0 > 0.

Plugging Eq. (7) to the above expression results in the addi-
tional condition that ties the propagated error throughout the
layers to the output margin, given by

O∗
B > ‖w‖2

√‖ΓK ‖0
(
εK−1 + CK + βK

)
.

��
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