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   This Lecture is About …  
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A Proposed Theory for Deep-Learning (DL) 
 

Explanation:  
 

o DL has been extremely successful in  
solving a variety of learning problems  

o DL is an empirical field, with numerous  
tricks and know-how, but almost no  
theoretical  foundations 

o A theory for DL has become the  
holy-grail of current research in  
Machine-Learning and related fields  



   Who Needs Theory ?  
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We All Do !!  
 

                           … because … A theory  
 

o … could bring the next rounds of ideas  
to this field, breaking existing barriers  
and opening new opportunities 

o … could map clearly the limitations of 
existing DL solutions, and point to key 
features that control their performance 

o … could remove the feeling with many  
of us that DL is a “dark magic”, turning  
it into a solid scientific discipline 

 Understanding is a good 
thing … but another goal is 
inventing methods. In the 
history of science and 
technology, engineering  

preceded theoretical understanding:  
 Lens & telescope  Optics 
 Steam engine  Thermodynamics 
 Airplane  Aerodynamics  
 Radio & Comm.  Info. Theory  
 Computer  Computer Science 

“Machine 
learning has 
become 
alchemy” 

Ali Rahimi: 
NIPS 2017 

Test-of-Time 
Award 

Yan LeCun 



   A Theory for DL ? 
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Architecture 

Algorithms 

Data 

Rene Vidal  (JHU): Explained the ability to optimize the typical non-
convex objective and yet get to a global minima 

Naftali Tishby  (HUJI): Introduced the Information Bottleneck (IB) 
concept and demonstrated its relevance to deep learning  

Stefano Soatto’s team (UCLA): Analyzed the Stochastic Gradient 
Descent (SGD) algorithm, connecting it to the IB objective  

Stephane Mallat (ENS) & 
Joan Bruna (NYU): Proposed 

the scattering transform 
(wavelet-based) and 

emphasized the treatment of 
invariances in the input data 

Richard Baraniuk & Ankit 
Patel (RICE): Offered a 

generative probabilistic 
model for the data,  

showing how classic 
architectures and learning 

algorithms relate to it 

Raja Giryes (TAU): Studied the architecture of DNN in the context 
of their ability to give distance-preserving embedding of signals 

Gitta Kutyniok (TU) & Helmut Bolcskei (ETH): Studied the ability of 
DNN architectures to approximate families of functions 



   So, is there a Theory for DL ? 
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The answer is tricky: 
 

There are already 
various such attempts, 
and some of them are 

truly impressive 
 

… but … 
 

none of them is 
complete 



   Interesting Observations 
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o Theory origins: Signal Proc., Control Theory, Info. Theory, Harmonic 
Analysis, Sparse Represen., Quantum Physics, PDE, Machine learning … 

 

Ron Kimmel: “DL is a dark monster covered  
with mirrors. Everyone sees his reflection in it …” 

 

David Donoho: “… these mirrors are taken  
from Cinderella's story, telling each that  
he is the most beautiful” 
 

o Today’s talk is on our proposed theory: 
 

 … and yes, our theory is the best Vardan Papyan Yaniv Romano Jeremias Sulam 

     Architecture 

Algorithms 

Data 



ML-CSC   
Multi-Layered 
Convolutional 
Sparse Coding 

Sparseland 
Sparse 

Representation 
Theory 

Another underlying idea that accompanies us 
  
Generative modeling of data sources enables  

o A systematic algorithm development, &   
o A theoretical analysis of their performance  

CSC 
Convolutional 

Sparse  
Coding 

   This Lecture: More Specifically    
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  Sparsity-Inspired Models 
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Deep-Learning 

Disclaimer: Being a 
lecture on the theory  

of DL, this lecture  
is … theoretical … and 

mathematically oriented  



Multi-Layered Convolutional  
Sparse Modeling 
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Our eventual goal in today’s talk is to present the … 
 
 
 
 
 
 

So, lets use this as our running title,  
parse it into words,  

and explain each of them 



Multi-Layered Convolutional  
Sparse Modeling 

 

9 Michael Elad 
The Computer-Science Department  
The Technion 



3D Objects 

Medical Imaging 

10 

   Our Data is Structured 

o We are surrounded by various diverse 
sources of massive information 

o Each of these sources have an internal 
structure, which can be exploited 

o This structure, when identified, is the  
engine behind the ability to process data 

o How to identify structure?  

Voice Signals 

Stock Market Biological Signals 

Videos 

Text Documents 

Radar Imaging 

Matrix Data 

     Social Networks 

Traffic info 

Seismic Data 
Still Images 

Michael Elad 
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Using models 

http://www.google.co.il/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=qP6sc5F9CF2crM&tbnid=vNTslHLOR1tk1M:&ved=0CAUQjRw&url=http://www.vizago.ch/reconstructions.php&ei=weWNUZKQJ4KXtAbP_4GoDA&bvm=bv.46340616,d.Yms&psig=AFQjCNHmhI1dTCia7cxM-GT7LAi5PuR5gQ&ust=1368340276449695
http://24.149.138.246/_media/newsletters/USA/USA_Edition6_December09_files/Volume_Imaging.jpg
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   Model? 

Effective removal of noise (and many other tasks)       
relies on an proper modeling of the signal 

Michael Elad 
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Fact 1: 
This signal 

contains AWGN 
ℕ(0,1)  

 

Fact 2:  
The clean signal 

is believed to  
be PWC 
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   Models 

o A model: a mathematical  
description of the underlying  
signal of interest, describing our 
beliefs regarding its structure 

o The following is a partial list of  
commonly used models for images 

o Good models should be simple while 
matching the signals 
 

 

o Models are almost always imperfect 

Principal-Component-Analysis 

   Gaussian-Mixture 

Markov Random Field 

   Laplacian Smoothness 

DCT concentration 

   Wavelet Sparsity 

Piece-Wise-Smoothness 

   C2-smoothness 

Besov-Spaces 

   Total-Variation 

Beltrami-Flow 

 

Simplicity 
 

 

Reliability 
 

Michael Elad 
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   What this Talk is all About?  

Data Models and Their Use 
o Almost any task in data processing requires a model –  

true for denoising, deblurring, super-resolution, inpainting, 
compression, anomaly-detection, sampling, recognition, 
separation, and more 

o Sparse and Redundant Representations offer a new and 
highly effective model – we call it  

                                        Sparseland  

o We shall describe this and descendant versions of it that 
lead all the way to … deep-learning 

Michael Elad 
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The Technion 



Multi-Layered Convolutional  
Sparse Modeling 
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Machine 
Learning 

15 

 

Mathematics 
Signal   

Processing 

   A New Emerging Model 

Sparseland 

Wavelet 
Theory 

Signal 
Transforms 

Multi-Scale 
Analysis 

Approximation 
Theory 

Linear  
Algebra 

Optimization 
Theory 

Denoising 

Interpolation 

Prediction 
Compression 

Inference (solving 
inverse problems) 

Anomaly 
detection Clustering 

Summarizing 

Sensor-Fusion Source-
Separation 

Segmentation 

Recognition 

Semi-Supervised 
Learning 

Identification 

Classification 

Synthesis 

Michael Elad 
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   The Sparseland  Model 

o Task: model image patches of                                               
size 8×8 pixels 

o We assume that a dictionary of  
such image patches is given,  

containing 256 atom images 

o The Sparseland  model assumption:                          

every image patch can be                                              
described as a linear                                    

combination of few atoms 

α1 α2 α3 

Σ 

Michael Elad 
The Computer-Science Department  
The Technion 
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   The Sparseland  Model 

o We start with a 8-by-8 pixels patch and 
represent it using 256 numbers         
   – This is a redundant representation 

o However, out of those 256 elements in the 
representation, only 3 are non-zeros  
    – This is a sparse representation 

o Bottom line in this case: 64 numbers 
representing the patch are replaced by 6  
(3 for the indices of the non-zeros, and 3  
for their entries) 

Properties of this model:                      

        Sparsity and Redundancy 
α1 α2 α3 

Σ 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Chemistry of Data 

α1 α2 α3 

Σ 

o Our dictionary stands for the Periodic Table 
containing all the elements 

o Our model follows a similar rationale:                                            
Every molecule is built of few elements 

We could refer to the Sparseland   
model as the chemistry of information: 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Sparseland : A Formal Description 

M m 

n 

A Dictionary 

o Every column in 𝐃 
(dictionary) is a  
prototype signal (atom) 

o The vector  is 
generated  
with few non-
zeros at arbitrary 
locations and  
values 

A sparse  
vector 

 n 

o This is a generative model 
that describes how (we 
believe) signals are created 

x 

α 
𝐃 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Difficulties with Sparseland 

o Problem 1: Given a signal, how                            
can we find its atom decomposition? 

o A simple example:  

 There are 2000 atoms in the dictionary 

 The signal is known to be built of 15 atoms 
 

                                                       possibilities  
 

 If each of these takes 1nano-sec to test,                                      this 
will take ~7.5e20 years to finish !!!!!!  

o So, are we stuck?  

α1 α2 α3 

Σ 

2000
2.4e 37

15

 
  

 

Michael Elad 
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   Atom Decomposition Made Formal 

Greedy methods 

Thresholding/OMP 

Relaxation methods 

Basis-Pursuit 

 L0 – counting number of 
non-zeros in the vector 

 This is a projection onto  

the Sparseland model 

 These problems are known 
to be NP-Hard problem 

Approximation Algorithms 

minα α 0  s. t.  𝐃α − y 2 ≤ ε 

minα α 0  s. t.  x = 𝐃α 

m 

n 𝐃 

x α 

Michael Elad 
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The Technion 
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   Pursuit Algorithms  

Michael Elad 
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Basis Pursuit 
 

Change the L0 into L1  
and then  the problem 
becomes convex and 
manageable  

Matching Pursuit 
 

 Find the support greedily, 

one element at a time 

Thresholding 
 

Multiply y by 𝐃𝐓  
and apply shrinkage: 

α = 𝒫𝛽 𝐃𝐓y   

minα α 0  s. t.  𝐃α − y 2 ≤ ε 

Approximation Algorithms 

minα α 1   
s. t.  

      𝐃α − y 2 ≤ ε 





α1 α2 α3 

Σ 
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   Difficulties with Sparseland 
o There are various pursuit algorithms 

o Here is an example using the Basis Pursuit (L1): 

 

 

 

 

 
 

o Surprising fact: Many of these algorithms are often  
accompanied by theoretical guarantees for their  
success, if the unknown is sparse enough 

Michael Elad 
The Computer-Science Department  
The Technion 
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   The Mutual Coherence 

o The Mutual Coherence μ 𝐃  is the largest off-diagonal  
entry in absolute value 

o We will pose all the theoretical results in this talk using  
this property, due to its simplicity 

o You may have heard of other ways to characterize the 
dictionary (Restricted Isometry Property - RIP, Exact  
Recovery Condition - ERC, Babel function, Spark, …) 

= o Compute 

Assume 
normalized 

columns 

𝐃 

𝐃T 
𝐃T𝐃 

Michael Elad 
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   Basis-Pursuit Success  

Comments:  
o If =0  α = α 
o This is a worst-case 

analysis – better 
bounds exist  

o Similar theorems 
exist for many other 
pursuit algorithms 

Theorem: Given a noisy signal y = 𝐃α + v where v 2 ≤ ε 
and α is sufficiently sparse,   

 
then Basis-Pursuit:   minα  α 1   s. t.   𝐃α − y 2 ≤ ε 

leads to a stable result:  α − α 2
2 ≤

4𝜀2

1−μ 4 α 0−1
 

Michael Elad 
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Donoho, Elad & Temlyakov (‘06) 

α  

α 0 <
1

4
1 +

1

μ
 

M 

x 

α 

𝐃 
+ 

y 

v 2 ≤ ε 

minα  α 1  
s. t.  

𝐃α − y 2 ≤  ε 

minα  α 0  
s. t.  

𝐃α − y 2 ≤  ε 
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   Difficulties with Sparseland 

α1 α2 α3 

Σ 
o Problem 2: Given a family of signals, how do                      

we find the dictionary to represent it well? 

o Solution: Learn! Gather a large set of                                
signals (many thousands), and find the                                                          
dictionary that sparsifies them 

o Such algorithms were developed in the                               
past 10 years (e.g., K-SVD), and their                          
performance is surprisingly good 

o We will not discuss this matter further  
in this talk due to lack of time 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Difficulties with Sparseland 

α1 α2 α3 

Σ 
o Problem 3: Why is this model suitable to                   

describe various sources? e.g., Is it good 
for images? Audio? Stocks? …  

o General answer: Yes, this model is                                
extremely effective in representing                                    
various sources 

 Theoretical answer: Clear connection  
to other models 

 Empirical answer:  In a large variety of  
signal and image processing (and later  
machine learning), this model has been  
shown to lead to state-of-the-art results 

Michael Elad 
The Computer-Science Department  
The Technion 
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   Difficulties with Sparseland ? 

o Problem 1: Given an image patch, how   
can we find its atom decomposition ? 

o Problem 2: Given a family of signals,                                    
how do we find the dictionary to                                        
represent it well? 

o Problem 3: Is this model flexible                                      
enough to describe various sources?                                   
E.g., Is it good for images? audio? …  

α1 α2 α3 

Σ 

Michael Elad 
The Computer-Science Department  
The Technion 
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o Sparseland  has a great success in  

signal & image processing &  
machine learning  

o In the past 8-9 years, many books 
were published on this and closely 
related fields 

Michael Elad 
The Computer-Science Department  
The Technion 

   This Field has been rapidly GROWING …  
TOPIC: (((spars* and (represent* or 

approx* or solution)) or (compres* 

and sens* and spars*))) 
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 A New Massive Open Online Course  

Michael Elad 
The Computer-Science Department  
The Technion 
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o When handling images, Sparseland  is typically deployed on small 

overlapping patches due to the desire to train the model to fit the 
data better 

 

 
 

o The model assumption is: each patch in the image is believed to 
have a sparse representation w.r.t. a common local dictionary 

o What is the corresponding global model? This brings us to … the 
Convolutional Sparse Coding (CSC)  

Michael Elad 
The Computer-Science Department  
The Technion 

   Sparseland  for Image Processing 



Multi-Layered Convolutional  
Sparse Modeling 
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Joint work with 

Vardan Papyan Yaniv Romano Jeremias Sulam 
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Convolutional Sparse Coding (CSC)  

[𝐗] =  di

𝑚

i=1

∗ [Γi] 

𝑚 filters convolved with their sparse 
representations  

An image 
with 𝑁 
pixels 

i-th feature-map: An 
image of the same size 
as 𝐗  holding the sparse 
representation related 
to the i-filter 

The i-th filter of  
small size 𝑛 

33 

This model emerged in 2005-2010, developed and advocated by Yan LeCun and 
others. It serves as the foundation of Convolutional Neural Networks 
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oHere is an alternative global sparsity-based model formulation 

 
 

o𝐂i ∈ ℝ𝑁×𝑁 is a banded and Circulant  
matrix containing a single atom  
with all of its shifts 

 

 

o𝚪i ∈ ℝ𝑁 are the corresponding coefficients  
ordered as column vectors 

𝐗 = 𝐂i𝚪i
𝑚

i=1

 

CSC in Matrix Form 

𝑛 

𝑁 

𝐂i = 

=
𝐂1  ⋯  𝐂𝑚 𝚪1

⋮
𝚪𝑚

= 𝐃𝚪 

34 
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The CSC Dictionary 

𝐂1 𝐂2 𝐂3 = 

𝐃 = 
𝑛 

𝐃L 

𝑚 

35 
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Classical Sparse Theory for CSC ?  

Theorem: BP is guaranteed to “succeed” …. if  𝚪 𝟎 <
𝟏

𝟒
𝟏 +

𝟏

𝛍
 

min
𝚪

   𝚪 0   s. t. 𝐘 − 𝐃𝚪 2 ≤ ε 

oAssuming that 𝑚 = 2 and 𝑛 = 64 we have that [Welch, ’74] 
 

μ ≥ 0.063 
 

o Success of pursuits is guaranteed as long as 

         𝚪 0 <
1

4
1 +

1

μ(𝐃)
≤

1

2
1 +

1

0.063
≈ 4.2 

oOnly few (4) non-zeros GLOBALLY are  
allowed!!! This is a very pessimistic result! 

36 
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= 

𝐑i𝐗 = 𝛀𝛄i 

𝑛 

(2𝑛 − 1)𝑚 

𝐑i𝐗 𝑛 

(2𝑛 − 1)𝑚 

𝐑i+1𝐗 

𝛄i 𝛄i+1 

Why CSC? 

𝐗 = 𝐃𝚪 
stripe-dictionary 

Every patch has a sparse 
representation w.r.t. to the 

same local dictionary (𝛀) just 
as assumed for images 

stripe vector 

37 

𝐑i+1𝐗 = 𝛀𝛄i+1 

Ω 
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The main question we aim to address is this:  
 

Can we generalize the vast theory of Sparseland to this  
new notion of local sparsity? For example, could we  
provide guarantees for success for pursuit algorithms? 

𝑚 = 2 

Moving to Local Sparsity: Stripes  

min
𝚪

  𝚪 0,∞
s   s. t.  𝐘 − 𝐃𝚪 2 ≤ ε 

ℓ0,∞ Norm:   𝚪 0,∞
s = max

i
  𝛄i 0 

  𝚪 0,∞
s  is low  all  𝛄i are sparse  every 

patch has a sparse representation over 𝛀 

38 

𝛄i 𝛄i+1 

𝚪 
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Success of the Basis Pursuit  

39 

Theorem: For Y = 𝐃Γ + E, if λ = 4 E 2,∞
p

 , if  

𝚪 𝟎,∞
𝐬 <

𝟏

𝟑
𝟏 +

𝟏

𝛍 𝐃
 

then Basis Pursuit performs very-well: 

1.  The support of ΓBP is contained in that of Γ 

2.  ΓBP − Γ ∞ ≤ 7.5 E 2,∞
p

 

3.  Every entry greater than 7.5 E 2,∞
p

 is found 

4.  ΓBP is unique 

ΓBP = min
Γ

   
1

2
Y − 𝐃Γ 2

2 + λ Γ 1 

Papyan, Sulam 
& Elad (‘17) 

This is a much better 
result – it allows few 

non-zeros locally in 
each stripe, implying 

a permitted O 𝑁  
non-zeros globally  



Multi-Layered Convolutional  
Sparse Modeling 
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From CSC to Multi-Layered CSC 
𝐗 ∈ ℝ𝑁 

𝑚1 

𝑛0 

𝐃1 ∈ ℝ𝑁×𝑁𝑚1 

𝑛1𝑚1 
𝑚2 

𝐃2 ∈ ℝ𝑁𝑚1×𝑁𝑚2 

𝑚1 

𝚪1 ∈ ℝ𝑁𝑚1 

𝚪1 ∈ ℝ𝑁𝑚1 

𝚪2 ∈ ℝ𝑁𝑚2 

Convolutional sparsity 
(CSC) assumes an 

inherent structure is 
present in natural 

signals 

We propose to impose the 
same structure on the 

representations themselves 

Multi-Layer CSC (ML-CSC) 

41 
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Intuition: From Atoms to Molecules 

42 

& 

𝐗 𝐃1 𝚪1 𝐃2 𝚪2 𝐗 𝐃1 

o The atoms of 𝐃1𝐃2 are 
combinations of atoms from 𝐃1 
- these are now molecules 

o Thus, this model offers 
different levels of abstraction  
in describing X   

atoms  

molecules  

cells 

 tissue 

body-parts  … 
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Intuition: From Atoms to Molecules 

43 

𝐃2 𝐗 𝐃1 𝐃K 𝚪K 

  𝐃eff = 𝐃1𝐃2𝐃3 ∙∙∙ 𝐃K           𝐱 = 𝐃eff 𝚪K   

 

o This is a special Sparseland  (indeed, a CSC) model 

o However: A key property in our model: the intermediate 
representations are required to be sparse as well 
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A Small Taste: Model Training (MNIST) 

𝐃1𝐃2𝐃3  (28×28) 
  

MNIST Dictionary: 
•D1:  32 filters of size 7×7, with stride of 2 (dense) 
•D2: 128 filters of size 5×5×32 with stride of 1 -  99.09 % sparse 
•D3: 1024 filters of size 7×7×128 – 99.89 % sparse 

𝐃1𝐃2 (15×15) 
 

𝐃1 (7×7) 

44 
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ML-CSC: Pursuit 

o Deep–Coding Problem 𝐃𝐂𝐏λ  (dictionaries are known): 

 Find   𝚪j j=1

K
    𝑠. 𝑡.   

𝐗 = 𝐃1𝚪1 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

   

 
o Or, more realistically for noisy signals,  

        Find   𝚪j j=1

K
    𝑠. 𝑡.   

𝐘 − 𝐃1𝚪1 2 ≤ ℰ 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

 

 

45 
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A Small Taste: Pursuit 

Γ1 

Γ2 

Γ3 

Γ0 

Y 

99.51% sparse 
(5 nnz) 

99.52% sparse 
(30 nnz) 

94.51 % sparse 
(213 nnz) 

46 

x=𝐃1Γ1 
 

x=𝐃1𝐃2Γ2 
 

x=𝐃1𝐃2𝐃3Γ3 

x 
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The simplest pursuit algorithm (single-layer case)  is  
the THR algorithm, which operates on a given input signal 𝐘 by: 

 

 

 

 

𝚪 = 𝒫𝛽 𝐃T𝐘  

ML-CSC: The Simplest Pursuit 

𝐘 = 𝐃𝚪 + 𝐄  
              and 𝚪 is sparse 

47 
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The layered (soft nonnegative) 
thresholding and the CNN forward pass 

algorithm are the very same thing !!! 

o Layered Thresholding (LT): 

 

 

 
 

oNow let’s take a look at how Conv. Neural Network operates: 

 

 

𝚪 2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐘  𝚪 2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐘  𝚪 2 = 𝒫β2 𝐃2
T 𝒫β1 𝐃1

T𝐘  

Consider this for Solving the DCP 

Estimate 𝚪1 via the THR algorithm 

Estimate 𝚪2 via the THR algorithm 

𝐃𝐂𝐏λ
ℰ :  Find   𝚪j j=1

K
    𝑠. 𝑡.   

𝐘 − 𝐃1𝚪1 2 ≤ ℰ 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

 

𝑓 𝐘 = ReLU 𝐛2 +𝐖2
T ReLU 𝐛1 +𝐖1

T𝐘  
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𝐘 

Theoretical Path 

M A 
𝚪 i i=1

K
 𝐗 = 𝐃1𝚪1 

𝚪1 = 𝐃2𝚪2 
⋮ 

𝚪K−1 = 𝐃K𝚪K 
 

𝚪i is 𝐋0,∞ sparse 

𝐃𝐂𝐏λ
ℰ  

  

Layered THR 
(Forward Pass) 

 

Maybe other? 

𝐗 

Armed with this view of a generative source model, we 
may ask new and daring theoretical questions 
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Success of the Layered-THR 

Theorem: If 𝚪i 0,∞
s <

1

2
1 +

1

μ 𝐃i
⋅
𝚪 i
min

𝚪 i
max −

1

μ 𝐃i
⋅

εL
i−1

𝚪 i
max  

then the Layered Hard THR (with the proper thresholds)     

finds the correct supports  and  𝚪 i
LT − 𝚪i 2,∞

p
≤ εL

i ,  where 

we have defined εL
0 = 𝐄 2,∞

p
 and 

εL
i = 𝚪i 0,∞

p
⋅ εL

i−1 + μ 𝐃i 𝚪i 0,∞
s − 1 𝚪 i

max  

The stability of the forward pass is guaranteed 
if the underlying representations are locally 

sparse and the noise is locally bounded 

Problems:  
1. Contrast 
2. Error growth 
3. Error even if no noise 
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Layered Basis Pursuit (BP) 

𝚪1
LBP = min

𝚪1
 
1

2
𝐘 − 𝐃1𝚪1 2

2 + λ1 𝚪1 1 

𝚪2
LBP = min

𝚪2
 
1

2
 𝚪1

LBP −𝐃2𝚪2 2

2
+ λ2 𝚪2 1 

𝐃𝐂𝐏λ
ℰ :  Find   𝚪j j=1

K
    𝑠. 𝑡.   

𝐘 − 𝐃1𝚪1 2 ≤ ℰ 𝚪1 0,∞
s ≤ λ1

𝚪1 = 𝐃2𝚪2 𝚪2 0,∞
s ≤ λ2

⋮ ⋮
𝚪K−1 = 𝐃K𝚪K 𝚪K 0,∞

s ≤ λK

 

oWe chose the Thresholding algorithm 
due to its simplicity, but we do know 
that there are better pursuit methods 
– how about using them? 

o Lets use the Basis Pursuit instead … 

Deconvolutional networks 
[Zeiler, Krishnan, Taylor & Fergus ‘10] 
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Success of the Layered BP 

Theorem: Assuming that  𝚪𝐢 𝟎,∞
𝐬 <

𝟏

𝟑
𝟏 +

𝟏

𝛍 𝐃𝐢
 

then the Layered Basis Pursuit performs very well:  
 

1.  The support of 𝚪 i
LBP is contained in that of 𝚪i 

2.  The error is bounded:  𝚪 i
LBP − 𝚪i 2,∞

p
≤ εL

i , where  

    εL
i = 7.5i 𝐄 2,∞

p  𝚪j 0,∞

pi
j=1  

3. Every entry in 𝚪i greater than  

εL
i / 𝚪i 0,∞

p
will be found 
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Layered Iterative Soft-Thresholding Algorithm (ISTA): 

 

𝚪j
t = 𝒮ξj/cj 𝚪j

t−1 + 𝐃j
T 𝚪 j−1 − 𝐃j𝚪j

t−1  

Layered Iterative Thresholding 

Layered BP:    𝚪j
LBP = min

𝚪j
 
1

2
 𝚪j−1

LBP −𝐃j𝚪j 2

2
+ ξj 𝚪j 1

 

Can be seen as a very deep 
recurrent neural network 

[Gregor & LeCun ‘10] 

t 

j 

j 

Note that our suggestion 
implies that groups of layers 
share the same dictionaries 
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Where are the Labels?  

M 
𝐗 = 𝐃1𝚪1 
𝚪1 = 𝐃2𝚪2 

⋮ 
𝚪K−1 = 𝐃K𝚪K 

 

𝚪i is 𝐋0,∞ sparse 

𝐗 
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Answer 1:  

o We do not need labels because everything we 
show refer to the unsupervised case, in which 
we operate on signals, not necessarily in the 
context of recognition 

We presented the ML-CSC as a 
machine that produces signals X 
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Where are the Labels?  

M 
𝐗 = 𝐃1𝚪1 
𝚪1 = 𝐃2𝚪2 

⋮ 
𝚪K−1 = 𝐃K𝚪K 

 

𝚪i is 𝐋0,∞ sparse 

𝐗 

Answer 2:  

o This model could be augmented by a synthesis 
of the corresponding label by:  

  L 𝐗 = 𝑠𝑖𝑔𝑛 c +  wj
TΓj

K
j=1  

o This assumes that knowing the  
representations suffice for identifying the label  

o A successful pursuit algorithm can lead  
to an accurate recognition if the network is 
augmented by a FC classification layer 

o See our recent paper (on ArXiv), analyzing 
bounds on adversarial noise permitted and the 
influence of the pursuit algorithm 
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What About Learning?   

All these models rely on  proper  
Dictionary Learning Algorithms to fulfil their mission:  

 Sparseland: We have unsupervised and supervised such algorithms,  
and a beginning of theory to explain how these work 

 CSC: We have few and only unsupervised methods, and even  
these are not fully stable/clear 

 ML-CSC: We proposed two such algorithms – see ArXiv (handling both 
unsupervised and supervised learning) 
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ML-CSC   
Multi-Layered 
Convolutional 
Sparse Coding 

Sparseland 
Sparse 

Representation 
Theory 

CSC 
Convolutional 

Sparse  
Coding 
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Time to Conclude 
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This Talk 

A novel interpretation 
and theoretical 

understanding of CNN 

Multi-Layer 
Convolutional  
Sparse Coding 

 

Sparseland The desire to 
model data 

Novel View of 
Convolutional  
Sparse Coding 

Take Home Message 1: 
Generative modeling of data 

sources enables algorithm 
development along with 
theoretically analyzing 

algorithms’ performance  

We spoke about the importance of models in signal/image 

processing and described Sparseland in details 
We presented a theoretical study of the CSC  model and  
how to operate locally while getting global optimality  

We propose a multi-layer extension of  
CSC, shown to be tightly connected to CNN 

The ML-CSC was shown to enable a theoretical  
study of CNN, along with new insights  
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Take Home Message 2: 
The Multi-Layer 

Convolutional Sparse 
Coding model could be 

a new platform for 
understanding and 
developing deep-
learning solutions  
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More on these (including these slides and the relevant papers) can be 
found in http://www.cs.technion.ac.il/~elad  

Questions? 


