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Restoration by Compression
Yehuda Dar , Michael Elad , Fellow, IEEE, and Alfred M. Bruckstein

Abstract—In this paper, we study the topic of signal restora-
tion using complexity regularization, quantifying the compression
bit-cost of the signal estimate. While complexity-regularized
restoration is an established concept, solid practical methods were
suggested only for the Gaussian denoising task, leaving more com-
plicated restoration problems without a generally constructive
approach. Here, we present practical methods for complexity-
regularized restoration of signals, accommodating deteriorations
caused by a known linear degradation operator of an arbitrary
form. Our iterative procedure, obtained using the alternating di-
rection method of multipliers (ADMM) approach, addresses the
restoration task as a sequence of simpler problems involving �2 -
regularized estimations and rate-distortion optimizations (consid-
ering the squared-error criterion). We replace the rate-distortion
optimizations with an arbitrary standardized compression tech-
nique and thereby restore the signal by leveraging underlying
models designed for compression. Additionally, we propose a shift-
invariant complexity regularizer, measuring the bit-cost of all the
shifted forms of the estimate, extending our method to use av-
eraging of decompressed outputs gathered from compression of
shifted signals. On the theoretical side, we present an analysis of
complexity-regularized restoration of a cyclo-stationary Gaussian
signal from deterioration by a linear shift-invariant operator and
an additive white Gaussian noise. The theory shows that optimal
complexity-regularized restoration relies on an elementary restora-
tion filter and compression spreading reconstruction quality un-
evenly based on the energy distribution of the degradation filter.
These ideas are realized also in the proposed practical methods.
Finally, we present experiments showing good results for image
deblurring and inpainting using the JPEG2000 and HEVC com-
pression standards.

Index Terms—Complexity regularization, rate-distortion opti-
mization, signal restoration, image deblurring, alternating direc-
tion method of multipliers (ADMM).

I. INTRODUCTION

S IGNAL restoration methods are often posed as inverse
problems using regularization terms. While many solutions

can explain a given degraded signal, using regularization will
provide signal estimates based on prior assumptions on signals.
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One interesting regularization type measures the complexity of
the candidate solution in terms of its compression bit-cost. In-
deed, encoders (that yield the bit cost) rely on signal models and
allocate shorter representations to more likely signal instances.
This approach of complexity-regularized restoration is an at-
tractive meeting point of signal restoration and compression,
two fundamental signal-processing problems.

Numerous works [1]–[7] considered the task of denoising
a signal corrupted by an additive white Gaussian noise using
complexity regularization. In [2], [7], this idea is translated to
practically estimating the clean signal by employing a standard
lossy compression of its noisy version. However, more com-
plex restoration problems (e.g., deblurring, super resolution,
inpainting), involving non-trivial degradation operators, do not
lend themselves to a straightforward treatment by compression
techniques designed for the squared-error distortion measure.
Moulin and Liu [8] studied the complexity regularization idea
for general restoration problems, presenting a thorough theoret-
ical treatment together with a limited practical demonstration
of Poisson denoising based on a suitably designed compression
method. Indeed, a general method for complexity-regularized
restoration remained as an open question for a long while until
our recent preliminary publication [9], where we presented a
generic and practical approach flexible in both the degradation
model addressed and the compression technique utilized.

Our strategy for complexity-regularized signal restoration re-
lies on the alternating direction method of multipliers (ADMM)
approach [10], decomposing the difficult optimization problem
into a sequence of easier tasks including �2-regularized inverse
problems and standard rate-distortion optimizations (with re-
spect to a squared-error distortion metric). A main part of our
methodology is to replace the rate-distortion optimization with
standardized compression techniques enabling an indirect uti-
lization of signal models used for efficient compression designs.
Moreover, our method relates to various contemporary concepts
in signal and image processing. The recent frameworks of Plug-
and-Play Priors [11], [12] and Regularization-by-Denoising [13]
suggest leveraging a Gaussian denoiser for more complicated
restoration tasks, achieving impressive results (see, e.g., [11]–
[16]). Essentially, our approach is the compression-based coun-
terpart for denoising-based restoration concepts from [11]–[13].

Commonly, compression methods process the given signal
based on its decomposition into non-overlapping blocks, yield-
ing block-level rate-distortion optimizations based on block bit-
costs. The corresponding complexity measure sums the bit-costs
of all the non-overlapping blocks, however, note that this eval-
uation is shift sensitive. This fact motivates us to propose a
shift-invariant complexity regularizer by quantifying the bit-
costs of all the overlapping blocks of the signal estimate. This

1053-587X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3737-5458
https://orcid.org/0000-0001-8131-6928
mailto:ydar@cs.technion.ac.il
mailto:elad@cs.technion.ac.il
mailto:freddy@cs.technion.ac.il


5834 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 22, NOVEMBER 15, 2018

improved regularizer calls for our restoration procedure to use
averaging of decompressed signals obtained from compressions
of shifted signals. Our shift-invariant approach conforms with
the Expected Patch Log-Likelihood (EPLL) idea [17], where a
full-signal regularizer is formed based on a block-level prior in
a way leading to averaging MAP estimates of shifted signal ver-
sions. Our extended method also recalls the cycle spinning con-
cept, presented in [18] for wavelet-based denoising. Additional
resemblance is to the compression postprocessing techniques in
[19], [20] enhancing a given decompressed image by averaging
supplementary compression-decompression results of shifted
versions of the given image, thus, our method generalizes this
approach to any restoration problem with an appropriate con-
sideration of the degradation operator. Very recent works [21],
[22] suggested the use of compression techniques for compres-
sive sensing of signals and images, but our approach examines
other perspectives and settings referring to restoration problems
as will be explained below.

In this paper we extend our previous conference publica-
tion [9] with improved algorithms and new theoretical and
experimental results. In [9] we implemented our concepts in
procedures relying on the half quadratic splitting optimization
technique, in contrast, here we present improved algorithms de-
signed based on the ADMM approach. The new ADMM-based
methods introduce the following benefits (with respect to using
half quadratic splitting as in [9]): significant gains in the restora-
tion quality, reduction in the required amount of iterations, and
an easier parameter setting. In addition, in this paper we pro-
vide an extensive experimental section. While in [9] we exper-
imentally examined only the inpainting problem, in this paper
we present new results demonstrating the practical complexity-
regularized restoration approach for image deblurring. While
deblurring is a challenging restoration task, we present com-
pelling results obtained using the JPEG2000 method and the
image compression profile of the high efficiency video cod-
ing (HEVC) standard [23]. An objective comparison to other
deblurring techniques showed that the proposed HEVC-based
implementation provides good deblurring results. Moreover, we
also extend our evaluation given in [9] for image inpainting,
where here we use the JPEG2000 and HEVC compression stan-
dards in our ADMM-based approach to restore images from
a severe degradation of 80% missing pixels. Interestingly, our
compression-based image inpainting approach can be perceived
as the dual concept of inpainting-based compression of im-
ages and videos suggested in, e.g., [24]–[26] and discussed
also in [27].

Another prominent contribution of this paper is the new the-
oretical study of the problem of complexity-regularized restora-
tion, considering the estimation of a cyclo-stationary Gaussian
signal from a degradation procedure consisting of a linear shift-
invariant operator and additive white Gaussian noise. We grad-
ually establish few equivalent optimization forms, emphasizing
two main concepts for complexity-regularized restoration: the
degraded signal should go through a simple inverse filtering
procedure, and then should be compressed so that the decom-
pression components will have a varying quality distribution
determined by the degradation-filter energy-distribution. We ex-

plain how these ideas materialize in the practical approach we
propose, thus, establishing a theoretical reasoning for the feasi-
ble complexity-regularized restoration.

This paper is organized as follows. In Section II-C we
overview the settings of the complexity-regularized restoration
problem. In Section III we present the proposed practical meth-
ods for complexity-regularized restoration. In Section IV we
theoretically analyze particular problem settings where the sig-
nal is a cyclo-stationary Gaussian process. In Section V we pro-
vide experimental results for image deblurring and inpainting.
Section VI concludes this paper.

II. COMPLEXITY-REGULARIZED RESTORATION:
PROBLEM SETTINGS

A. Regularized Restoration of Signals

In this paper we address the task of restoring a signalx0 ∈ RN

from a degraded version, y ∈ RM , obeying the prevalent
deterioration model:

y = Hx0 + n (1)

where H is a M ×N matrix being a linear degradation operator
(e.g., blur, pixel omission, decimation) and n ∈ RM is a white
Gaussian noise vector having zero mean and variance σ2

n .
Maximum A-Posteriori (MAP) estimation is a widely-known

statistical approach forming the restored signal, x̂, via

x̂ = argmax
x

p (x|y) (2)

where p (x|y) is the posterior probability. For the above defined
degradation model (1), incorporating additive white Gaussian
noise, the MAP estimate reduces to the form of

x̂ = argmin
x

1
2σ2

n

‖Hx− y‖22 − log p (x) (3)

where p(x) is the prior probability that, here, evaluates the
probability of the candidate solution.

Another prevalent restoration approach, embodied in many
contemporary techniques, forms the estimate via the optimiza-
tion

x̂ = argmin
x
‖Hx− y‖22 + μs(x) (4)

where s(x) is a general regularization function returning a lower
value for a more likely candidate solution, and μ ≥ 0 is a pa-
rameter weighting the regularization effect. This strategy for
restoration based on arbitrary regularizers can be interpreted as
a generalization of the MAP approach in (3). Specifically, com-
paring the formulations (4) and (3) exhibits the regularization
function s(x) and the parameter μ as extensions of (− log p (x))
and the factor 2σ2

n , respectively.
Among the various regularization functions that can be as-

sociated with the general restoration approach in (4), we ex-
plore here the class of complexity regularizers measuring the
required number of bits for the compressed representation of
the candidate solution. The practical methods presented in this
section focus on utilizing existing (independent) compression
techniques, implicitly employing their underlying signal mod-
els for the restoration task.



DAR et al.: RESTORATION BY COMPRESSION 5835

B. Operational Rate-Distortion Optimization

The practical complexity-regularized restoration methods in
this section are developed with respect to a compression tech-
nique obeying the following conceptual design. The signal is
segmented to equally-sized non-overlapping blocks (each is
consisted of Nb samples) that are independently compressed.
The block compression procedure is modeled as a general
variable-rate vector quantizer relying on the following map-
pings. The compression is done by the mapping Q : RNb →W
from the Nb -dimensional signal-block domain to a discrete set
W of binary compressed representations (that may have differ-
ent lengths). The decompression procedure is associated with
the mapping F :W → C, where C ⊂ RNb is a finite discrete
set (a codebook) of block reconstruction candidates. For exam-
ple, consider the block xblock ∈ RNb that its binary compressed
representation in W is given via b = Q (xblock ) and the cor-
responding reconstructed block in C is x̂block = F (b). Impor-
tantly, it is assumed that shorter codewords are coupled with
block reconstructions that are, in general, more likely.

The signal x is compressed based on its segmentation into a
set of blocks {xi}i∈B (where B denotes the index set of blocks
in the non-overlapping partitioning of the signal). In addition
we introduce the function r(z) that evaluates the bit-cost (i.e.,
the length of the binary codeword) for the block reconstruc-
tion z ∈ C. Then, the operational rate-distortion optimization
corresponding to the described architecture and a squared-error
distortion metric is

{x̃i}i∈B = argmin
{v i }i∈B∈C

∑

i∈B
‖xi − vi‖22 + λ

∑

i∈B
r(vi), (5)

where λ ≥ 0 is a Lagrange multiplier corresponding to some to-
tal compression bit-cost. Importantly, the independent represen-
tation of non-overlapping blocks allows solving (5) separately
for each block [28], [29].

Our mathematical developments require the following alge-
braic tools for block handling. The matrix Pi is defined to
provide the ith block from the complete signal via the standard
multiplication Pix = xi . Note that Pi can extract any block of
the signal, even one that is not in the non-overlapping grid B.
Accordingly, the matrix PT

i locates a block in the ith block-
position in a construction of a full-sized signal and, therefore,
lets to express the a complete signal as x =

∑
i∈BP

T
i xi .

Now we can use the block handling operator Pi for expressing
the block-based rate-distortion optimization in its corresponding
full-signal formulation:

x̃ = argmin
v∈CB

‖x− v‖22 + λrtot(v). (6)

where CB is the full-signal codebook, being the discrete set of
candidate reconstructions for the full signal, defined using the
block-level codebook C as

CB =

{
v
∣∣∣ v =

∑

i∈B
PT

i vi , {vi}i∈B ∈ C
}

. (7)

Moreover, the regularization function in (6) is the total
bit cost of the reconstructed signal defined for v ∈ CB as
rtot(v) �

∑
i∈Br(Piv).

C. Complexity-Regularized Restoration: Basic Optimization
Formulation

While the regularized-restoration optimization in (4) is over a
continuous domain, the operational rate-distortion optimization
in (6) is a discrete problem with solutions limited to the set
CB. Therefore, we extend the definition of the block bit-cost
evaluation function such that it is defined for any z ∈ RNb via

r̄(z) =

{
r (z) , z ∈ C
∞, z /∈ C , (8)

and the corresponding extension of the total bit-cost
r̄tot(x) �

∑
i∈B r̄(Pix) is defined for any x ∈ RN .

Now we define the complexity regularization function as

s(x) = r̄tot(x) (9)

and the corresponding restoration optimization is

x̂ = argmin
x
‖Hx− y‖22 + μr̄tot(x). (10)

Due to the definition of the extended bit-cost evaluation function,
r̄tot(x), the solution candidates of (10) are limited to the discrete
set CB as defined in (7).

Examining the complexity-regularized restoration in (10) for
the Gaussian denoising task, where H = I, shows that the op-
timization reduces to the regular rate-distortion optimization in
(6), namely, the compression of the noisy signal y. However, for
more complicated restoration problems, where H has an arbi-
trary structure, the optimization in (10) is not easy to solve and,
in particular, it does not correspond to standard compression de-
signs that are optimized for the regular squared-error distortion
metric.

III. PROPOSED METHODS

In this section we present three restoration methods leverag-
ing a given compression technique. The proposed algorithms
result from two different definitions for the complexity regular-
ization function. While the first approach regularizes the total
bit-cost of the non-overlapping blocks of the restored signal, the
other two refer to the total bit-cost of all the overlapping blocks
of the estimate.

A. Regularize Total Complexity of Non-Overlapping Blocks

Here we establish a practical method addressing the optimiza-
tion problem in (10) based on the alternating direction method
of multipliers (ADMM) approach [10] (for additional uses see,
e.g., [11], [12], [14], [16], [30]). The optimization (10) can be
expressed also as

x̂ = argmin
x
‖Hx− y‖22 + μ

∑

i∈B
r̄(Pix), (11)

where the degradation matrix H, having a general structure,
renders a block-based treatment infeasible.

Addressing this structural difficulty using the ADMM strat-
egy [10] begins with introducing the auxiliary variables {zi}i∈B,
where zi is coupled with the ith non-overlapping block.



5836 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 22, NOVEMBER 15, 2018

Specifically, we reformulate the problem (11) into
(
x̂, {ẑi}i∈B

)
= argmin

x,{zi }i∈B
‖Hx− y‖22 + μ

∑

i∈B
r̄(zi)

s.t. zi = Pix, for i ∈ B. (12)

Then, reformulating the constrained optimization (12) using the
augmented Lagrangian (in its scaled form) and the method of
multipliers (see [10, Ch. 2]) leads to the following iterative
procedure
(
x̂(t) ,

{
ẑ(t)

i

}

i∈B

)
= argmin

x,{zi }i∈B
‖Hx− y‖22 + μ

∑

i∈B
r̄(zi)

+
β

2

∑

i∈B

∥∥∥Pix− zi + u(t)
i

∥∥∥
2

2
(13)

u(t+1)
i = u(t)

i +
(
Pi x̂(t) − ẑ(t)

i

)
i ∈ B, (14)

where t is the iteration number, β is a parameter originating in
the augmented Lagrangian, and u(t)

i ∈ RNb is the scaled dual
variable corresponding to the ith block (where i ∈ B).

Each of the optimization variables in (13) participates only in
part of the terms of the cost function and, therefore, employing
one iteration of alternating minimization (see [10, Ch. 2]) leads
to the ADMM form of the problem, where the included opti-
mizations are relatively simple. Accordingly, the tth iteration of
the proposed iterative solution is

x̂(t) = argmin
x
‖Hx− y‖22 +

β

2

∑

i∈B

∥∥∥Pix− z̃(t)
i

∥∥∥
2

2
(15)

ẑ(t)
i = argmin

zi

β

2

∥∥∥x̃(t)
i − zi

∥∥∥
2

2
+ μr̄(zi), i ∈ B (16)

u(t+1)
i = u(t)

i +
(
Pix̂(t) − ẑ(t)

i

)
, i ∈ B, (17)

where z̃(t)
i � ẑ(t−1)

i − u(t)
i and x̃(t)

i � Pix̂(t) + u(t)
i for i ∈ B.

The analytic solution of the first stage optimization in (15) is

x̂(t) =
(
HT H +

β

2
I
)−1

(
HT y +

β

2

∑

i∈B
PT

i z̃(t)
i

)
(18)

rendering this stage as a weighted averaging of the deteriorated
signal with the block estimates obtained in the second stage of
the previous iteration. While the analytic solution (18) explains
the underlying meaning of the �2-constrained deconvolution
stage (15), it includes matrix inversion that, in general, may lead
to numerical instabilities. Accordingly, in the implementation of
the proposed method we suggest to address (15) via numerical
optimization techniques (for example, we used the biconjugate
gradients method).

The optimizations in the second stage of each iteration (16)
are rate-distortion optimizations corresponding to each of the
non-overlapping blocks of the signal estimate x̂(t) obtained in
the first stage. Accordingly, the set of block-level optimizations
in (16) can be interpreted as a single full-signal rate-distortion

optimization with respect to a Lagrange multiplier value of
λ = 2μ

β . We denote the compression-decompression procedure

Algorithm 1: Proposed Method Based on Total Complexity
of Non-Overlapping Blocks.

1: Inputs: y, β, θ.
2: Initialize ẑ(0) (depending on the deterioration type).
3: t = 1 and u(1) = 0
4: repeat
5: z̃(t) = ẑ(t−1) − u(t)

6: Solve the �2-constrained deconvolution:
x̂(t) = argmin

x
‖Hx− y‖22 + β

2

∥∥x− z̃(t)
∥∥2

2

7: x̃(t) = x̂(t) + u(t)

8: ẑ(t) = CompressDecompressθ

(
x̃(t)
)

9: u(t+1) = u(t) +
(
x̂(t) − ẑ(t)

)

10: t← t + 1
11: until stopping criterion is satisfied

that replaces (16) as

ẑ(t) = CompressDecompressλ

(
x̃(t)
)

, (19)

where x̃(t) �
∑

i∈BP
T
i x̃(t)

i is the signal to compress, assem-
bled from all the non-overlapping blocks, and ẑ(t) is the cor-
responding decompressed full signal. Moreover, by defining a
full-sized scaled dual variable u(t) �

∑
i∈BP

T
i u(t)

i we get that
x̃(t) = x̂(t) + u(t) . Then, using the definitions established here
we can translate the block-level computations (15)–(17) into the
full-signal formulations described in Algorithm 1.

We further suggest using a standardized compression method
as the compression-decompression operator (19). While many
compression methods do not follow the exact rate-distortion
optimizations we have in our mathematical development, we
still encourage utilizing such techniques as an approximation
for (16). Additionally, since many compression methods do
not rely on Lagrangian optimization, their operating parame-
ters may have different definitions such as quality parameters,
compression ratios, or output bit-rates. Accordingly, we present
the suggested algorithm with respect to a general compression-
decompression procedure with output bit-cost directly or in-
directly affected by a parameter denoted as θ. These general-
izations are also implemented in the proposed Algorithm 1. In
Section V we elaborate on particular settings of θ that were em-
pirically found appropriate for utilization of the HEVC and the
JPEG2000 standard. In cases where the compression method
significantly deviates from a Lagrangian optimization form, it
can be useful to appropriately update the compression parame-
ter in each iteration (this is the case for JPEG2000 as explained
in Section V).

Importantly, Algorithm 1 does not only restore the deterio-
rated input image, but also provides the signal estimate in a
compressed form by employing the output of the compression
stage of the last iteration.

B. Regularize Total Complexity of All Overlapping Blocks

Algorithm 1 emerged from complexity regularization mea-
suring the total bit-cost of the estimate based on its decom-
position into non-overlapping blocks (see Eq. (11)), resulting
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in a restored signal available in a compressed form compatible
with the compression technique in use. Obviously, the above ap-
proach provides estimates limited to the discrete set of signals
supported by the compression architecture, thus, having a some-
what reduced restoration ability with respect to methods pro-
viding estimates from an unrestricted domain of solutions. This
observation motivates us to develop a complexity-regularized
restoration procedure that provides good estimates from the
continuous unrestricted domain of signals while still utilizing a
standardized compression technique as its main component.

As before, our developments refer to a general block-based
compression method relying on a codebook C as a discrete set
of block reconstruction candidates. We consider here the seg-
mentation of the signal-block space, RNb , given by the voronoi
cells corresponding to the compression reconstruction candi-
dates, namely, for each c ∈ C there is a region

Vc �
{
w ∈ RNb

∣∣∣ c = arg min
c̃∈C
‖w − c̃‖22

}
(20)

defining all the vectors in RNb that c is their nearest member of
C. We use the voronoi cells in (20) for defining an alternative
extension to the bit-cost evaluation of a signal block (i.e., the
new definition, r̄v (z), will replace r̄(z) given in (8) that was used
for the development of Algorithm 1). Specifically, we associate
a finite bit-cost to any z ∈ RNb based on the voronoi cell it
resides in, i.e.,

r̄v (z) = r(c) for z ∈ Vc (21)

where r(c) is the regular bit-cost evaluation defined in
Section II-B only for blocks in C.

The method proposed here emerges from a new complexity
regularization function that quantifies the total complexity of all
the overlapping blocks of the estimate. Using the extended bit-
cost measure r̄v (·), defined in (21), we introduce the full-signal
regularizer as

s∗(x) =
∑

i∈B∗
r̄v (Pix) (22)

where x ∈ RN , and B∗ is a set containing the indices of all
the overlapping blocks of the signal. The associated restoration
optimization is

x̂ = argmin
x
‖Hx− y‖22 + μ

∑

i∈B∗
r̄v (Pix). (23)

Importantly, in contrast to the previous subsection, the function
s∗(x) evaluates the complexity of any x ∈ RN with a finite
value and, thus, does not restrict the restoration to the discrete
set of codebook-based constructions, CB, defined in (7).

While the new regularizer in (23) is not separable into com-
plexity evaluation of non-overlapping blocks, the ADMM ap-
proach can accommodate it as well. This is explained next. We
define the auxiliary variables {zi}i∈B∗ , where each zi is coupled
with the ith overlapping block. Then, the optimization (23) is
expressed as

(
x̂, {ẑi}i∈B∗

)
= argmin

x,{zi }i∈B∗
‖Hx− y‖22 + μ

∑

i∈B∗
r̄v (zi)

s.t. zi = Pix for i ∈ B∗. (24)

As in Section III-A, employing the augmented Lagrangian (in its
scaled form) and the method of multipliers results in an iterative
solution provided by the following three steps in each iteration
(as before t denotes the iteration number):

x̂(t) = argmin
x
‖Hx− y‖22 +

β

2

∑

i∈B∗

∥∥∥Pix− z̃(t)
i

∥∥∥
2

2
(25)

ẑ(t)
i = argmin

zi

β

2

∥∥∥x̃(t)
i − zi

∥∥∥
2

2
+ μr̄v (zi), i ∈ B∗ (26)

u(t+1)
i = u(t)

i +
(
Pix̂(t) − ẑ(t)

i

)
, i ∈ B∗, (27)

where u(t)
i is the scaled dual variable for the ith block,

z̃(t)
i � ẑ(t−1)

i − u(t)
i and x̃(t)

i � Pi x̂(t) + u(t)
i for i ∈ B∗.

While the procedure above resembles the one from the former
subsection, the treatment of overlapping blocks has different in-
terpretations to the optimizations in (25) and (26). Indeed, note
that the block-level rate-distortion optimizations in (26) are not
discrete due to the extended bit-cost evaluation r̄v (·) defined
in (21). Due to the definition of r̄v (·), the rate-distortion opti-
mizations (26) can be considered as continuous relaxations of
the discrete optimizations done by the practical compression
technique. Since we intend using a given compression method
without explicit knowledge of its underlying codebook, we can-
not construct the voronoi cells defining r̄v (·) and, thus, it is
impractical to accurately solve (26). Consequently, we suggest
to approximate the optimizations (26) by the discrete forms of

ẑ(t)
i = argmin

zi

β

2

∥∥∥Pix̂(t) − zi

∥∥∥
2

2
+ μr̄(zi), i ∈ B∗ (28)

where r̄(·) is the discrete evaluation of the block bit-cost, de-
fined in (8), letting to identify the problems as operational rate-
distortion optimizations of the regular discrete form.

Each block-level rate-distortion optimization in (28) is asso-
ciated with one of the overlapping blocks of the signal. Accord-
ingly, we interpret this group of optimizations as multiple appli-
cations of a full-signal compression-decompression procedure,
each associates to a shifted version of the signal (correspond-
ing to different sets of non-overlapping blocks). Specifically,
for a signal x and a compression block-size of Nb samples,
there are Nb shifted grids of non-overlapping blocks. For math-
ematical convenience, we consider here cyclic shifts such that
the jth shift (j = 1, ..., Nb ) corresponds to a signal of N sam-
ples taken cyclically starting at the jth sample of x (in practice
other definitions of shifts may be used, e.g., see Section V
for a suggested treatment of two-dimensional signals). We de-
note the jth shifted signal as shiftj {x}. Moreover, we de-
note the index set of blocks included in the jth shifted sig-
nal as Bj (noting that B1 = B), hence, B∗ = ∪Nb

j=1Bj . There-

fore, the decompressed blocks {ẑ(t)
i }i∈B∗ can be decomposed

into Nb subsets, {ẑ(t)
i }i∈Bj for j = 1, ..., Nb , each contains

non-overlapping blocks corresponding to a different shifted
grid. Moreover, the jth set of blocks, {ẑ(t)

i }i∈Bj , is associ-

ated with the full signal ẑj,(t) �
∑

i∈Bj PT
i ẑ(t)

i . Then, the set
of full signals {ẑj,(t)}Nb

j=1 can be obtained by multiple full-
signal compression-decompression applications, namely, for
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j =1, ..., Nb : ẑj,(t)
shif ted = CompressDecompressλ(x̃

j,(t)
shif ted),

where the Lagrangian multiplier value is λ = 2μ
β and

x̃j,(t)
shif ted � shiftj

{
x̂(t) + uj,(t)

}
(29)

is the compression input formed as the jth shift of x̂(t) combined
with the full-sized dual variable defined via

uj,(t) �
∑

i∈Bj

PT
i u(t)

i (30)

assembled from the block-level dual variables corresponding to
the jth grid of non-overlapping blocks. Notice that inverse shifts
are required for obtaining the desired signals, i.e.,

ẑj,(t) = shift−1
j

{
ẑj,(t)

shif ted

}
(31)

where shift−1
j {·} is the inverse shift operator that (cyclically)

shifts back the given full-size signal by j samples.
The deconvolution stage (25) of the iterative process can be

rewritten as

x̂(t) = argmin
x
‖Hx− y‖22 +

β

2

Nb∑

j=1

∥∥∥x− z̃j,(t)
∥∥∥

2

2
(32)

where the regularization part (the second term) considers the
distance of the estimate from the Nb full signals defined via

z̃j,(t) � ẑj,(t) − uj,(t) (33)

for j = 1, ..., Nb , where ẑj,(t) and uj,(t) were defined above.
The analytic solution of the optimization (32) is

x̂(t) =
(
HT H +

β

2
Nb

)−1
⎛

⎝HT y +
β

2

Nb∑

j=1

z̃j,(t)

⎞

⎠ , (34)

showing that the first stage of each iteration is a weighted aver-
aging of the given deteriorated signal with all the decompressed
signals (and the dual variables) obtained in the former iteration.
It should be noted that the analytic solution (34) is developed
here for showing the essence of the �2-constrained deconvolu-
tion part of the method. Nevertheless, the possible numerical in-
stabilities due to the matrix inversion appearing in (34) motivate
the practical direct treatment of (25) via numerical optimization
techniques.

Algorithm 2 summarizes the practical restoration method for
a compression technique operated by the general parameter θ
for determining the bit-cost (see details in Section III-A).

The computational cost of Algorithm 2 stems from its reliance
on repeated applications of compressions, decompressions, and
�2-constrained deconvolution procedures. While the actual run-
time depends on the computational complexity of the utilized
compression technique, we can generally state that the total
run-time will be of at least the run-time of compression and de-
compression processes for a total number of applications equal
to the product of the number of iterations and the number of
shifts considered.

The ADMM is known for promoting distributed optimiza-
tion structures [10]. In Algorithm 2 the distributed nature of
the ADMM is expressed in the separate optimization of each
of the shifted block-grids (see stages 8–11). In particular, the

Algorithm 2: Proposed Method Based on Total Complexity
of All the Overlapping Blocks.

1: Inputs: y, β, θ.

2: Initialize
{
ẑj,(0)

}Nb

j=1 (depending on the deterioration
type).

3: t = 1 and uj,(1) = 0 for j = 1, ..., Nb .
4: repeat
5: z̃j,(t) = ẑj,(t−1) − uj,(t) for j = 1, ..., Nb

6: Solve the �2-constrained deconvolution:

x̂(t) = argmin
x
‖Hx− y‖22 + β

2

Nb∑
j=1

∥∥x− z̃j,(t)
∥∥2

2

7: for j = 1, ..., Nb do
8: x̃j,(t)

shif ted = shiftj
{
x̂(t) + uj,(t)

}

9: ẑj,(t)
shif ted = CompressDecompressθ

(
x̃j,(t)

shif ted

)

10: ẑj,(t) = shift−1
j

{
ẑj,(t)

shif ted

}

11: uj,(t+1) = uj,(t) +
(
x̂(t) − ẑj,(t)

)

12: end for
13: t← t + 1
14: until stopping criterion is satisfied

dual variables
{
uj,(t)

}Nb

j=1 , associated with the various grids
(see stages 5, 8, and 11 in Algorithm 2), are updated indepen-
dently in stage 11 such that each considers only its respective

ẑj,(t) . However, the dual variables
{
uj,(t)

}Nb

j=1 essentially refer
to the same data based on different block-grids. Accordingly,
we suggest to merge the independent dual variables to form a
single, more robust, dual variable defined as

u(t)
total =

1
Nb

Nb∑

j=1

uj,(t) (35)

where the averaging tends to reduce particular artifacts that may
appear due to specific block-grids. We utilize the averaged dual
variable (35) to extend Algorithm 2 into Algorithm 3. Notice
stages 5, 8, and 13 of Algorithm 3, where the averaged dual
variable is used instead of the independent ones.

In Section V we further discuss practical aspects of the pro-
posed Algorithms 1–3 and evaluate their performance for de-
blurring and inpainting of images.

IV. RATE-DISTORTION THEORETIC ANALYSIS FOR THE

GAUSSIAN CASE

In this section we theoretically study the complexity-
regularized restoration problem from the perspective of rate-
distortion theory. While our analysis is focused on the particular
settings of a cyclo-stationary Gaussian signal and deterioration
caused by a linear shift-invariant operator and additive white
Gaussian noise, the results clearly explain the main principles
of complexity-regularized restoration.

In general, theoretical studies of rate-distortion problems for
the Gaussian case provide to the signal processing practice op-
timistic beliefs about which design concepts perform well for
the real-world non-Gaussian instances of the problems (see the
excellent discussion in [31, Sec. 3]). Moreover, theoretical and
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Algorithm 3: Proposed Method Based on Total Complexity
of All the Overlapping Blocks with Robust Dual Variables.

1: Inputs: y, β, θ.

2: Initialize
{
ẑj,(0)

}Nb

j=1 (depending on the deterioration
type).

3: t = 1 and u(1)
total = 0.

4: repeat
5: z̃j,(t) = ẑj,(t−1) − u(t)

total for j = 1, ..., Nb

6: Solve the �2-constrained deconvolution:

x̂(t) = argmin
x
‖Hx− y‖22 + β

2

Nb∑
j=1

∥∥x− z̃j,(t)
∥∥2

2

7: for j = 1, ..., Nb do

8: x̃j,(t)
shif ted = shiftj

{
x̂(t) + u(t)

total

}

9: ẑj,(t)
shif ted = CompressDecompressθ

(
x̃j,(t)

shif ted

)

10: ẑj,(t) = shift−1
j

{
ẑj,(t)

shif ted

}

11: uj,(t+1) = uj,(t) +
(
x̂(t) − ẑj,(t)

)

12: end for

13: u(t+1)
total = 1

Nb

Nb∑
j=1

uj,(t+1)

14: t← t + 1
15: until stopping criterion is satisfied

practical solutions may embody in a different way the same
general concepts. Therefore, one should look for connections
between theory and practice in the form of high-level analogies.

The optimal solution presented in this section considers the
classical framework of rate-distortion theory and a particular,
however, important case of a Gaussian signal and a linear shift-
invariant degradation operator. Our rate-distortion analysis be-
low will show that the optimal complexity-regularized restora-
tion consists of the following two main ideas: pseudoinverse
filtering of the degraded input, and compression with respect to
a squared-error metric that is weighted based on the degradation-
filter squared-magnitude (considering a processing in the Dis-
crete Fourier Transform (DFT) domain). In SubSection IV-D we
explain how these two concepts connect to more general themes
having different realizations in the practical approach proposed
in Section III.

In this section, consider the signal x ∈ RN modeled as a zero-
mean cyclo-stationary Gaussian random vector with a circulant
autocorrelation matrix Rx , i.e., x ∼ N (0,Rx). The degrada-
tion model studied remains

y = Hx + n, (36)

where here H is a real-valued N ×N circulant matrix rep-
resenting a linear shift-invariant deteriorating operation and
n ∼ N (0, σ2

nI
)

is a length N vector of white Gaussian noise.
Clearly, the degraded observation y is also a zero-mean cyclo-
stationary Gaussian random vector with a circulant autocorre-
lation matrix Ry = HRxH∗ + σ2

nI.

A. Prevalent Restoration Strategies

We precede the analysis of the complexity-regularized
restoration with mentioning three well-known estimation meth-

ods. The restoration procedure is a function

x̂ = f (y), (37)

where f maps the degraded signal y to an estimate of x denoted
as x̂. In practice, one gets a realization of y denoted here as yr

and forms the corresponding estimate as x̂r = f (yr ).
1) Minimum Mean Squared Error (MMSE) Estimate: This

restoration minimizes the expected MSE of the estimate, i.e.,

fM M SE = argmin
f

E
{
‖x− f (y)‖22

}
, (38)

yielding that the corresponding estimate is the conditional ex-
pectation of x given y

x̂M M SE = fM M SE (y) = E {x|y} . (39)

Nicely, for the Gaussian case considered in this section, the
MMSE estimate (39) reduces to a linear operator, presented
below as the Wiener filter.

2) Wiener Filtering: The Wiener filter is also known as the
Linear Minimum Mean Squared Error (LMMSE) estimate, cor-
responding to a restoration function of the form

x̂ = fW iener (y) = Ay + b, (40)

optimized via
{
Â, b̂

}
= argmin

A ,b
E
{
‖x− (Ay + b)‖22

}
. (41)

In our case, where x and y are zero mean, b̂ = 0 and

Â = RxH∗
(
HRxH∗ + σ2

nI
)−1

. (42)

If the distributions are Gaussian, this linear operator coincides
with the optimal MMSE estimator.

3) Constrained Deconvolution Filtering: This approach
considers a given degraded signal yr = Hx0 + nr , with the
noise vector a realization of a random process while the sig-
nal x0 is considered as a deterministic vector, with perhaps
some known properties. Then, the restoration is carried out
by minimizing a carefully-designed penalty function, g, that
assumes lower values for x vectors that fit the prior knowl-
edge on x0 . Note that for a sufficiently large signal dimen-
sion we get that ‖yr −Hx0‖22 = ‖nr‖22 ≈ Nσ2

n . The last re-
sult motivates to constrain the estimate, x̂, to conform with the
known degradation model (36), by demanding the similarity
of yr −Hx̂ to the additive noise term via the equality rela-
tion ‖yr −Hx̂‖22 = Nσ2

n . The above idea is implemented in an
optimization of the form

min
x̂

g (x̂)

subject to ‖yr −Hx̂‖22 = Nσ2
n . (43)

Our practical methods presented in Section III emerge from
an instance of the constrained deconvolution optimization (43),
in its Lagrangian version, where the penalty function g is the
cost in bits measuring the complexity in describing the estimate
x̂. In the remainder of this section, we study the complexity-
regularized restoration problem from a statistical perspective.
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B. The Complexity-Regularized Restoration Problem and Its
Equivalent Forms

Based on rate-distortion theory (e.g., see [32]), we consider
the estimate of x as a random vector x̂ ∈ RN with the proba-
bility density function (PDF) px̂ (x̂). The estimate characteriza-
tion, px̂ (x̂), is determined by optimizing the conditional PDF
px̂|y (x̂|y), statistically representing the mapping between the
given data y and the decompression result x̂. Moreover, the rate
is measured as the mutual information between x̂ and y, defined
via

I (y; x̂) =
∫

py ,x̂ (y, x̂) log
py ,x̂ (y, x̂)

py (y) px̂ (x̂)
dydx̂. (44)

Then, the basic form of the complexity-regularized restoration
optimization is expressed as

Problem 1 (Basic Form):

min
p x̂ |y

I (y; x̂)

subject to E
{
‖y −Hx̂‖22

}
= Nσ2

n . (45)

Here the estimate rate is minimized while maintaining suitability
to the degradation model (36) using a distortion constraint set
to achieve an a-priori known total noise energy. In general,
Problem 1 is complicated to solve since the distortion constraint
considers x̂ through the degradation operator H, while the rate
is directly evaluated for x̂.

The shift invariant operator H is a circulant N ×N matrix,
thus, diagonalized by the N ×N Discrete Fourier Transform
(DFT) matrix F. The (k, l) component of the DFT matrix (k, l =
0, ..., N − 1) is Fk,l = Wkl

N where WN � 1√
N

e−i2π/N . Then,
the diagonalization of H is expressed as

FHF∗ = ΛH , (46)

where ΛH is a diagonal matrix formed by the components hF
k

for k = 0, ..., N − 1. Using ΛH we define the pseudoinverse of
H as

H+ = F∗Λ+
H F, (47)

where Λ+
H is the pseudoinverse of ΛH , an N ×N diagonal

matrix with the kth diagonal element:

hF,+
k =

{
1

hF
k

, for hF
k �= 0

0, for hF
k = 0.

(48)

We denote by NH the number of nonzero diagonal elements in
ΛH , the rank of H.

The first main result of our analysis states that Problem 1, be-
ing the straightforward formulation for complexity-regularized
restoration, is equivalent to the next problem.

Problem 2 (Pseudoinverse-filtered input):

min
p x̂ |ỹ

I (ỹ; x̂)

subject to E
{
‖H (ỹ − x̂)‖22

}
= NH σ2

n , (49)

where

ỹ = H+y (50)

is the pseudoinverse filtered version of the given degraded signal
y. One should note that Problem 2 has a more convenient form
than Problem 1 since the distortion is an expected weighted
squared error between the two random variables determining
the rate. The equivalence of Problems 1 and 2 is proved in
Appendix A (the appendices are provided in the supplementary
material).

In this section, x is a cyclo-stationary Gaussian signal, hence,
having a circulant autocorrelation matrix Rx . Consequently,
and also because H is circulant, the deteriorated signal y is
also a cyclo-stationary Gaussian signal. Moreover, H+ is also a
circulant matrix, thus, by (50) the pseudoinverse filtering result,
ỹ, is also cyclo-stationary and zero-mean Gaussian. Specifically,
the autocorrelation matrix of ỹ is

Rỹ = H+RyH+ ∗ (51)

= H+HRxH∗H+ ∗ + σ2
nH+H+ ∗, (52)

and, as a circulant matrix, it is diagonalized by the DFT matrix
yielding the eigenvalues

λ
(ỹ)
k =

{
λ

(x)
k + σ 2

n

|hF
k |2 , for hF

k �= 0

0, for hF
k = 0.

(53)

The DFT-domain representation of ỹ is

ỹF = Fỹ, (54)

consisted of the coefficients
{
ỹF

k

}N−1
k=0 , being independent zero-

mean Gaussian variables with variances corresponding to the
eigenvalues in (53).

Transforming Problem 2 to the DFT domain, where ỹ be-
comes a set of independent Gaussian variables to be coded
under a joint distortion constraint, simplifies the optimization
structure to the following separable form (see proof sketch in
Appendix B).

Problem 3 (Separable form in DFT domain):

min{
p

x̂ F
k
|ỹ F

k

}N −1

k = 0

N−1∑

k=0

I
(
ỹF

k ; x̂F
k

)

subject to
N−1∑

k=0

∣∣hF
k

∣∣2E
{∣∣ỹF

k − x̂F
k

∣∣2
}

= NH σ2
n , (55)

where
{
x̂F

k

}N−1
k=0 are the elements of x̂F = Fx̂. Nicely, the

separable distortion in Problem 3 considers each variable using
a squared error that is weighted by the squared magnitude of the
corresponding degradation-filter coefficient.

The rate-distortion function of a single Gaussian variable with
variance σ2 has the known formulation [32]:

R (D) =
[
1
2

log
(

σ2

D

)]

+
(56)

evaluating the minimal rate for a squared-error allowed reach-
ing up to D ≥ 0. In addition, the operator [·]+ is defined for
real scalars as [α]+ � max {α, 0}, hence, R (D) = 0 for D ≥
σ2 . Accordingly, the rate-distortion function of the Gaussian
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Fig. 1. The autocorrelation of the cyclo-stationary Gaussian signal used in the
demonstration. (a) The circulant autocorrelation matrix in the signal domain,
and (b) the corresponding eigenvalues obtained using the DFT decomposition.

variable ỹF
k is

Rk (Dk ) =

[
1
2

log

(
λ

(ỹ)
k

Dk

)]

+

(57)

where Dk denotes the maximal squared-error allowed for this
component. Now, similar to the famous case of jointly coding
independent Gaussian variables with respect to a regular (non-
weighted) squared-error distortion [32], we explicitly express
Problem 3 as the following distortion-allocation optimization.

Problem 4 (Explicit distortion allocation):

min
D0 ,...,DN −1

N−1∑

k=0

[
1
2

log

(
λ

(ỹ)
k

Dk

)]

+

subject to
N−1∑

k=0

∣∣hF
k

∣∣2 Dk = NH σ2
n

Dk ≥ 0, k = 0, ..., N − 1. (58)

The optimal distortion-allocation satisfying the last optimiza-
tion is

Dopt
k =

{
σ 2

n

|hF
k |2 , for hF

k �= 0

0, for hF
k = 0

(59)

and the associated optimal rates are

Ropt
k =

⎧
⎨

⎩
1
2 log

(∣∣hF
k

∣∣2 λ
(x )
k

σ 2
n

+ 1
)

, for hF
k �= 0

0, for hF
k = 0.

(60)

Results (59) and (60) are proved in Appendix C.

C. Demonstration of the Explicit Results

Let us exemplify the optimal rate-distortion results (59)–(60)
for a cyclo-stationary Gaussian signal, x, having the circulant
autocorrelation matrix presented in Fig. 1(a), corresponding to
the eigenvalues {λ(x)

k }N−1
k=0 (Fig. 1(b)) obtained by a DFT-based

decomposition. We first examine the denoising problem, where
the signal-domain degradation matrix isH = I (Fig. 2(a)) and its
respective DFT-domain spectral representation consists of hF

k =
1 for any k (see Fig. 2(b)). The additive white Gaussian noise
has a sample variance of σ2

n = 5. Fig. 2(c) exhibits the optimal
distortion allocation using a reverse-waterfilling diagram, where
the signal-energy distribution {λ(x)

k }N−1
k=0 (black solid line) and

the additive noise energy (the light-red region) defining together

the noisy-signal energy level (purple solid line) corresponding
to λ

(ỹ)
k = λ

(x)
k + σ2

n . The blue dashed line in Fig. 2(c) shows
the water level associated with the uniform distortion alloca-
tion. The optimal rate-allocation, corresponding to Fig. 2(c) and
Eq. (60), is presented in Fig. 2(d) showing that more bits are
spent on components with higher signal-to-noise ratios.

Another example considers the same Gaussian signal de-
scribed in Fig. 1 and the noise level of σ2

n = 5, but here the
degradation operator is the circulant matrix shown in Fig. 3(a)
having a DFT-domain representation given in magnitude-levels
in Fig. 3(b) exhibiting its frequency attenuation and amplifi-
cation effects. The waterfilling diagram in Fig. 3(c) includes
the same level of signal energy (black solid line) as in the
denoising experiment, but the effective additive noise levels
and the allocated distortions are clearly modulated in an in-
versely proportional manner by the squared magnitude of the
degradation operator. For instance, frequencies corresponding
to degradation-filter magnitudes lower than 1 lead to increase
in the effective noise-energy addition and in the allocated dis-
tortion. The optimal rate allocation (Fig. 3(d)) is affected by
the signal-to-noise ratio and by the squared-magnitude of the
degradation filter (see also Eq. (60)), e.g., components that are
attenuated by the degradation operator get less bits in the rate
allocation.

D. Conceptual Relation to the Proposed Approach

As explained at the beginning of this section, theoretical and
practical solutions may include different implementations of
the same general ideas. Accordingly, connections between the-
ory and practice should be established by pointing on high-
level analogies. Our rate-distortion analysis (for a Gaussian
signal and a LSI degradation operator) showed that the opti-
mal complexity-regularized restoration relies on two prominent
ideas: pseudoinverse filtering of the degraded input, and com-
pression with respect to a squared-error metric that is weighted
based on the degradation-filter squared-magnitude (consider-
ing the DFT-domain procedure). We will now turn to explain
how these two concepts connect to more general themes hav-
ing different realizations in the practical approach proposed
in Section III.1

• Design Concept #1. Apply simple restoration filtering: The
general idea of using an elementary restoration filter is imple-
mented in the Gaussian case as pseudoinverse filtering. Cor-
respondingly, our practical approach relies on a simple filter-
ing mechanism, extending the pseudoinverse filter as explained
next. Stage 6 of Algorithm 1 is an �2-constrained deconvolu-
tion filtering that its analytic solution can be rewritten, using the
relation H∗ (I−HH∗) = 0, as (see proof in Appendix D)

x̂(t) =
(
H∗H +

β

2
I
)−1 (

H∗Hỹ +
β

2
z̃(t)
)

. (61)

As before, ỹ = H+y, i.e., the pseudoinverse-filtered version of
y. The expression (61) can be interpreted as an initial pseu-
doinverse filtering of the degraded input, followed by a simple

1Since the differences between Algorithm 1 and Algorithms 2 and 3 are for
a shift-invariance purpose, an issue that we do not concern in this section, we
compare our theoretic results only to Algorithm 1.
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Fig. 2. Demonstrating the theoretic results for a denoising problem with a noise level of σ2
n = 5. (a) The degenerated degradation operator in the signal domain

H = I. (b) DFT-domain magnitude of the degradation filter. (c) Optimal waterfilling solution in DFT domain. (d) Optimal rate allocation in DFT domain.

Fig. 3. Demonstrating the theoretic results for a restoration problem with a noise level of σ2
n = 5. (a) The degradation operator in the signal domain H. (b)

DFT-domain magnitude of the degradation filter. (c) Optimal waterfilling solution in DFT domain. (d) Optimal rate allocation in DFT domain.

weighted averaging with z̃(t) (that includes the decompressed
signal obtained in the last iteration). Evidently, the filtering in
(61) is determined by the β value, specifically, for β = 0 the
estimate coincides with the pseudoinverse filtering solution and
for a larger β it is closer to z̃(t) .
• Design Concept #2: Compress by promoting higher qual-

ity for signal-components matching to higher h-operator mag-
nitudes: This principle is realized in the theoretic Gaus-
sian case as weights attached to the squared-errors of DFT-
domain components (see Problems 3 and 4). Since the weights,
(
∣∣hF

0

∣∣2 , ...,
∣∣hF

N−1

∣∣2), are the squared magnitudes of the corre-
sponding degradation-filter coefficients, in the compression of
the pseudoinverse-filtered input the distortion is spread unevenly
being larger where the degradation filter-magnitude is lower.
Remarkably, this concept is implemented differently in the pro-
posed procedure (Algorithm 1) where regular compression tech-
niques, optimized for the squared-error distortion measure, are
applied on the filtering result of the preceding stage. We will
consider the essence of the effective compression corresponding
to these two stages together. Let us revisit (61), expressing stage
6 of Algorithm 1. Assuming H is a circulant matrix, we can
transform (61) into its Fourier domain representation

x̂F,(t) =
(
Λ∗H ΛH +

β

2
I
)−1 (

Λ∗H ΛH ỹF +
β

2
z̃F,(t)

)
(62)

where x̂F,(t) and z̃F,(t) are the Fourier representations of x̂(t)

and z̃(t) , respectively. Furthermore, (62) reduces to the compo-
nentwise formulation

x̂
F,(t)
k =

∣∣hF
k

∣∣2 ỹF
k + β

2 z̃
F,(t)
k∣∣hF

k

∣∣2 + β
2

(63)

where x̂
F,(t)
k and z̃

F,(t)
k are the kth Fourier coefficients of

x̂F,(t) and z̃F,(t) , respectively. Equation (63) shows that signal

elements (of the pseudoinverse-filtered input) corresponding to
degradation-filter components of weaker energies will be re-
tracted more closely to the respective components of z̃

F,(t)
k

–thus, will be farther from ỹF
k , yielding that the correspond-

ing components in the standard compression applied in the next
stage of this iteration will be of a relatively lower quality with
respect their matching components of ỹF

k (as they were already
retracted relatively far from them in the preceding deconvolution
stage).

To conclude this section, we showed that the main architec-
tural ideas expressed in theory (for the Gaussian case) appear
also in our practical procedure. The iterative nature of our meth-
ods (Algorithms 1–3) as well as the desired shift-invariance
property provided by Algorithms 2–3 are outcomes of treating
real-world scenarios such as non-Gaussian signals, general lin-
ear degradation operators, and computational limitations leading
to block-based treatments–these all relate to practical aspects,
hence, do not affect the fundamental treatment given in this
section.

V. EXPERIMENTAL RESULTS

In this section we present experimental results for image
restoration. Our main study cases include deblurring and in-
painting using the image-compression profile of the HEVC
standard (in its BPG implementation [33]). We also provide
evaluation of our method in conjunction with the JPEG2000
technique for the task of image deblurring.

We empirically found it sufficient to consider only a part
of all the shifts, i.e., a portion of B∗. When using HEVC, the
limited amount of shifts is compensated by the compression
architecture that employs inter-block spatial predictions, thus,
improves upon methods relying on independent block treat-
ment. The shifts are defined by the rectangular images having
their upper-left corner pixel relatively close to the upper-left
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Fig. 4. Empirical analysis for deblurring the Cameraman image using
Algorithm 1 (i.e., without overlapping blocks and shifted grids). The parameter
settings here are: μ = (6.67 × 10−6 ) and β = 0.01.

Fig. 5. Empirical analysis for deblurring the Cameraman image using
Algorithm 2 considering 9 shifted block grids. The parameter settings here

are: μ = (6 .67×10−6 )
number of shifts and β = 0.01.

corner of the full image, and their bottom-right corner pixel
coincides with that of the full image. This extends the math-
ematical developments in Section III as practical compression
handles arbitrarily sized rectangular images.

Many image regularizers have a visual interpretation, for ex-
ample, the classical image-smoothness evaluation. In our frame-
work, the regularization part in (10) measures the complexity in
terms of the compression bit-cost with respect to a specific com-
pression architecture, designed based on some image model.
Our complexity regularization also has a general visual mean-
ing since, commonly, low bit-cost compressed images tend to
be overly smooth or piecewise-smooth.

A. Image Deblurring

Here we consider two deterioration settings taken from [34].
The first setting, denoted here also as ‘Set. 1’, considers a
noise variance σ2

n = 2 coupled with a blur operator defined by
the two-dimensional point-spread-function (PSF) h(x1 , x2) =
1/(1 + x2

1 + x2
2) for x1 , x2 = −7, ..., 7, and zero-valued other-

wise. The second setting, denoted here also as ‘Set. 2’ (named in
[34] as ‘Scenario 3’), considers a noise variance σ2

n ≈ 0.3 joint
with a blur operator defined by the two-dimensional uniform
blur PSF of size 9× 9.

We precede the deblurring experiments with empirical eval-
uations of four important aspects of the proposed method.

1) Iterative Reduction of the Fundamental Restoration Cost:
In Section III we established the basic optimization problems for
restoration by regularizing the bit-costs of the non-overlapping
and the overlapping blocks of the estimate (see (11) and (23),
respectively). As explained above, these two fundamental op-
timization tasks cannot be directly addressed and, therefore,
we developed the ADMM-based Algorithms 1–3, that itera-
tively employ simpler optimization problems. Figs. 4(a) and 5(a)
demonstrate that, for appropriate parameter settings, the funda-
mental optimization cost reduces in each iteration. The provided
figures also show the fidelity term, ‖Hx− y‖22 , and the regu-
larizing bit-cost (multiplied by μ) of each iteration.

Fig. 6. Empirical analysis for deblurring the Cameraman image using
Algorithm 2 with JPEG2000 considering 9 shifted block grids. The compression
parameter is the compression ratio given to the JPEG2000 compression. The

parameter settings here are: 9 shifts, μ = (1 .33×10−4 )
number of shifts , β = 25 × 10−4 .

TABLE I
PARAMETER SETTINGS USED FOR THE DEBLURRING AND INPAINTING RESULTS

IN TABLES II AND III

2) Iterative Improvement of the Restored Image: The funda-
mental optimization costs in (11) and (23) include the fidelity
term ‖Hx− y‖22 that considers the candidate estimate x and
the given degraded signal y. However, the ultimate goal of the
restoration process is to produce an estimate x that will be close
to the original (unknown!) signal x0 . It is common to evaluate
proposed methods in experiment settings where x0 is known
and used only for the evaluation of the squared error ‖x− x0‖22
or its corresponding PSNR. Accordingly, it is a desired property
that our iterative methods will provide increment in the PSNR
along the iterations and, indeed, Figs. 4(b) and 5(b) show that
this is achievable for appropriate parameter settings (the use
of improper parameters may lead to unwanted decrease of the
PSNR starting at some unknown iteration that, however, can be
detected in many cases by heuristic divergence rules based on
the dual variables used in the ADMM process). Interestingly,
for some parameter settings, the PSNR may increase with the
iterations, whereas the fundamental restoration cost will not nec-
essarily consistently decrease. The last behavior may result from
the fact the our optimization problem (with respect to a stan-
dard compression technique) is discrete, non-linear, and usually
not convex and, therefore, the convergence guarantees of the
ADMM [10] do not hold here for the fundamental restoration
cost.

3) The Optimal Compression Parameter: Another question
of practical importance is the value of the parameter θ, de-
termining the compression level of the standard technique uti-
lized in the proposed Algorithms 1–3. Recall that the ADMM-
based developments in Section III led to an iterative procedure
including a stage of Lagrangian rate-distortion optimization
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TABLE II
DEBLURRING: PSNR COMPARISON (THE THREE BEST RESULTS IN EACH COLUMN APPEAR IN BOLD TEXT)

Fig. 7. The deblurring experiment (settings #2) for the Cameraman image (256 × 256). (a) The underlying image. (b) Degraded image (20.76 dB). (c) Restored
image using Algorithm 3 with JPEG2000 compression (28.10 dB). (d) Restored image using Algorithm 3 with HEVC compression (30.14 dB).

operated for a Lagrange multiplier λ � 2μ
β and, then, we

replaced this optimization with application of a standard
compression-decompression technique operated based on a pa-
rameter θ. It is clear that θ is a function of λ. In the particular case
where the standard compression has the Lagrangian form from
our developments, then θ = λ, however, this is not the general
case. For an arbitrary compression technique, we assume that
its parameter θ has K possible values θ1 , ..., θK (for example,
the HEVC standard supports 52 values for its quantization pa-
rameter), then, for a given λ � 2μ

β the required θ value in stage
8 of Algorithm 1 can be determined via

θ
(t)
λ,opt = argmin

θ∈{θ1 ,...,θK }

∥∥∥x̃(t) − ẑ(t)
θ

∥∥∥
2

2
+ λrtot,θ . (64)

where ẑ(t)
θ = CompressDecompressθ

(
x̃(t)
)

is the decom-
pressed signal and rtot,θ is the associated compression bit-cost.
We present here experiments (see Figs. 4 and 5) for Algorithm 1

and 2 that in each iteration optimize the θ value corresponding to
λ � 2μ

β based on procedures similar to (64). Nicely, it is shown
in Figs. 4(c) and 5(c) that, for the HEVC compression used here,
the best θ values along the iterations are nearly the same (for
a specific restoration task). This important property may be a
result of the fact that HEVC extensively relies on Lagrangian
rate-distortion optimizations (although in much more complex
forms than those presented in Section III). Accordingly, in order
to reduce the computational load, in the experiments shown be-
low we will use a constant compression parameter given as an
input to our methods. Interestingly, when examining the optimal
compression parameters (compression ratios in this case) for the
JPEG2000 method that applies wavelet-based transform coding,
there is a decrease in the optimal compression ratio along the
iterations (see Fig. 6(a)). Accordingly, in order to reduce the
computational load in the experiments below, we employed a
predefined rule for reducing the JPEG2000 compression ratio
along the iterations. Importantly, when we use the sub-optimal
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Fig. 8. The deblurring experiment (settings #2) for the Barbara image (512 × 512). (a) The underlying image. (b) Degraded image (22.49 dB). (c) Restored
image using Algorithm 3 with JPEG2000 compression (25.18 dB). (d) Restored image using Algorithm 3 with HEVC compression (27.72 dB).

Fig. 9. The inpainting experiment (80% missing pixels) for the Barbara image (512 × 512). (a) The original image. (b) Deteriorated image. (c) Restored image
using Algorithm 3 with JPEG2000 compression (24.83 dB). (d) Restored image using Algorithm 3 with HEVC compression (28.80 dB).

predefined rules for setting the compression parameter θ values
(see Table I for the settings used in our evaluation comparisons
in Table II) we do not longer need to set a value for μ (since, in
these cases, μ is practically unused).

4) Restoration Improvement for Increased Number of Image
Shifts: In our experiments we noticed that the restoration qual-
ity improves as more shifts are used, however, at some point the
added gain due to the added shifts becomes marginal. As an ex-
ample to the benefits due to shifts see Figs. 4(b) and 5(b), where
the PSNR obtained for deblurring the Cameraman image using
Algorithm 2 and 9 shifts is about 2dB higher than the PSNR
obtained using Algorithm 1 (i.e., without additional shifts).

In our main evaluation, we examined the proposed
Algorithms 2 and 3 for image deblurring in conjunction with the
JPEG2000 and HEVC compression techniques (see the param-
eter settings in Table I). Table II shows a comparison between
various deblurring methods tested in the above two settings for
four grayscale images.2 In 7 out of the 8 cases, the proposed
Algorithms 2 or 3 utilizing the HEVC standard provided one
of the best three results. Visual results are presented in Figs. 7
and 8.

2The results in Table II for the methods from [34]–[39] were taken as is from
[34].

B. Image Inpainting

We presented in [9] experimental results for the inpainting
problem, in its noisy and noiseless settings. Here we focus on
the noiseless inpainting problem, where only pixel erasure oc-
curs without an additive noise. The degradation is represented
by a diagonal matrix H of N ×N size with main diagonal
values of zeros and ones, indicating positions of missing and
available pixels, respectively. Then, the product Hx equals to
an N -length vector where its kth sample is determined by H:
if H[k, k] = 0 then it is zero, and for H[k, k] = 1 it equals to
the corresponding sample of x. The structure of the pixel era-
sure operator let us to simplify the optimization in step 6 of
Algorithm 2. We note that H is a square diagonal matrix and,
therefore, HT = H and HT y is equivalent to a vector y with
zeroed components according to H’s structure. Additional use-
ful relation is HT H = H. Consequently, step 6 of Algorithm 2
facilitates a componentwise computation that is interpreted to
form the kth sample of x̂(t) as

x̂(t) [k] =

⎧
⎨

⎩

y [k ]+ β
2

∑N b
j = 1 z̃j , ( t ) [k ]

1+ β
2 Nb

for H[k, k] = 1

1
Nb

∑Nb

j=1 z̃
j,(t) [k] for H[k, k] = 0

(65)

We initialize the shifted images
{
ẑj,(0)

}Nb

j=1 as the given image
with the missing pixels set as the corresponding local averages
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Fig. 10. The inpainting experiment (80% missing pixels) for the House image (256 × 256). (a) The original image. (b) Deteriorated image. (c) Restored image
using Algorithm 3 with JPEG2000 compression (30.50 dB). (d) Restored image using Algorithm 3 with HEVC compression (33.10 dB).

TABLE III
IMAGE INPAINTING FROM 80% MISSING PIXELS: PSNR RESULTS

of the available pixels in the respective 7× 7 neighborhoods.
When the iterative processing ends, we use the fact that the
available pixels are noiseless and set them in the reconstructed
image. The rest of the procedure remains as before.

We present here implementations of Algorithms 2 and 3 utiliz-
ing the JPEG2000 and HEVC image compression (the parameter
settings are described in Table I). We consider the experimental
settings from [40], where 80% of the pixels are missing (see
Fig. 9(b) and 10(b)). Five competing inpainting methods are
considered: cubic interpolation of missing pixels via Delaunay
triangulation (using Matlab’s ’griddata’ function); inpainting us-
ing sparse representations of patches of 16× 16 pixels based on
an overcomplete DCT (ODCT) dictionary (see method descrip-
tion in [41, Ch. 15]); using patch-group transformation [42];
based on patch clustering [43]; and via patch reordering [40].
The PSNR values of images restored using the above meth-
ods (taken from [40]) are provided in Table III together with
our results. For two images our HEVC-based implementation
of Algorithm 3 provides the highest PSNR values. Visually,
Figs. 9(d) and 10(d) exhibit the effectiveness of our method in
repairing the vast amount of absent pixels.

VI. CONCLUSION

In this paper we explored the topic of complexity-regularized
restoration, where the likelihood of candidate estimates are de-
termined by their compression bit-costs. Using the alternating
direction method of multipliers (ADMM) approach we devel-
oped three practical methods for restoration using standard com-
pression techniques. Two of the proposed methods rely on a

new shift-invariant complexity regularizer, evaluating the total
bit-cost of the signal shifted versions. We explained the main
ideas of our approach using an insightful theoretical analysis of
complexity-regularized restoration of a cyclo-stationary Gaus-
sian signal from deterioration of a linear shift-invariant operator
and additive white Gaussian noise. Experiments for deblurring
and inpainting of images using the JPEG2000 and HEVC tech-
nique showed good results.
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