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Abstract

Over the last decade, the sparse representation model has led to remarkable re-
sults in numerous signal and image processing applications. To incorporate the
inherent structure of the data and account for the fact that not all support pat-
terns are equally likely, this model was enriched by enforcing various structural
sparsity patterns. One plausible such extension of classic sparse coding, insti-
gated by the emergence of graph signal processing, is graph regularized sparse
coding. This model explicitly considers the intrinsic geometrical structure of
the data domain, and has been successfully employed in various applications.
However, emphasis was given to developing algorithmic solutions, and to date,
the theoretical foundations to this problem have been lagging behind. In this
work, we fill this gap and present a novel theoretical analysis of the graph
regularized sparse coding problem, providing worst-case guarantees for the sta-
bility of the obtained solution, as well as for the success of several pursuit tech-
niques. Furthermore, we formulate the conditions for which the superiority of
the graph regularized sparse coding solution over the structure-agnostic sparse
coding counterpart is established.

Keywords: Sparse Representations, Graph Sparse Coding, Graph
Regularization, Manifold Learning, Signal Recovery, Orthogonal Matching
Pursuit, Basis Pursuit

1. Introduction

Sparse coding (SC) has become a popular paradigm for data representation
and has been proven effective in practical image processing and computer vision
tasks such as denoising [1, 2, 3], inpainting [4], deblurring [5], super-resolution
[6], object recognition or tracking [7, 8, 9, 10] and classification [11, 12, 13]. In
this framework, one assumes a signal y ∈ RN to be a sparse combination of a
few columns (or atoms) from a collection D ∈ RN×K , termed the dictionary.
Put differently, y = Dx where x ∈ RK is a sparse vector. Finding such a vector
can be formulated as the following optimization problem:

arg min
x
‖x‖0 s.t. y = Dx. (1)

This is known as the (P0) problem for obtaining exact recovery.
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When dealing with natural signals, the (P0) problem is often relaxed to
consider model deviations as well as measurement noise, leading to the (P ε0 )
problem:

arg min
x
‖x‖0 s.t. ‖y −Dx‖22 ≤ ε2. (2)

In this setup one assumes y = Dx + v where v is a nuisance vector of finite
energy ‖v‖2 ≤ ε.

Given multiple signals to be sparse coded over the same dictionary, these
problems can be solved for each signal independently using standard SC tech-
niques. However, such methods fail to consider the geometrical structure of the
data domain and disregard the locality and similarity among the signals to be
coded. Furthermore, due to the typical redundancy of the representative dic-
tionary, small variations in the data may result in very distinct representations,
compromising the coding robustness.

To mitigate these limitations, several SC methods have been proposed that
model the dependencies between dictionary elements and enforce structural
sparsity patterns, for example by adding spatial consistency constraints [14],
a hierarchical tree structure [15, 16, 17, 18], or block-sparsity [19, 20]. Other
works introduce joint- or group-sparsity for simultaneous coding of multiple sig-
nals, encouraging their representations to use identical or correlated subsets of
atoms [21, 22, 23, 24, 25, 26, 27].

Another approach, motivated by the recent progress in spectral graph the-
ory and manifold learning, is graph regularized sparse coding (GRSC), which
explicitly exploits the local geometric structure of the data to alleviate the
representation instability. The underlying assumption is that in many real ap-
plications, the data is likely to reside on or near a low-dimensional manifold
embedded in the high-dimensional ambient space [28, 29, 30]. Moreover, if two
data points are close in the intrinsic data manifold, then their representations
in any other domain are assumed to be close as well. Encoding the manifold
structure by a graph, its Laplacian matrix can thus be incorporated into the
sparse coding framework as a regularizer that preserves these similarities in the
data domain. In recent years, such regularization has become prevalent in image
processing for describing pairwise relationships between image pixels or patches
[31, 32, 33, 34, 35, 36, 37, 38].

GRSC and its extensions have been successfully employed for tasks of de-
noising [37, 39, 40], action recognition [41, 42], classification and clustering
[43, 33, 44, 45, 46, 47, 48, 49]. However, while various algorithms have been
proposed for obtaining the GRSC solution, no theoretical guarantees are cur-
rently known for the success of these methods.

In this work, we address the theoretical aspects of the GRSC problem. To
this end, we generalize mathematical quantities such as the `0 norm, ERC and
RIP to their counterparts in the graph constrained setting, capturing both local
properties for each signal and global measures for the ensemble. Doing so, we
offer the first meaningful analysis of the stability of the GRSC solution and
terms of success of pursuit algorithms, as well as formulate the conditions for
which its superiority is established over the classic, structure-agnostic sparse
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coding.

The paper is organized as follows. Section 2 revisits the graph sparse rep-
resentation model and introduces its reformulation that will serve our analysis.
In Section 3 we present the main stability result for this model, followed by a
thorough analysis in Section 4, highlighting the conditions for which it is most
beneficial. Section 5 presents stability results for common pursuit algorithms,
that are then numerically validated in Section 6. We finally conclude in Section 7
and discuss further research directions.

2. Graph Regularized Sparse Coding

Consider a set of signals {y1, ...,yM} ∈ RN , constituting the columns of
the data matrix Y ∈ RN×M . Let us construct a weighted graph M with M
nodes (vertices), each node representing a signal or data point. The weight
wij assigned to the edge connecting the i-th and j-th nodes is designed to
be inversely proportional to the distance between them. A common choice is
applying a Gaussian kernel function,

wij = exp

(
−‖yi − yj‖22

εM

)
, (3)

where εM is a properly chosen kernel scale parameter. The graph Laplacian
matrix L ∈ RM×M is then defined as L = DM−W, where the graph adjacency
matrix W consists of the edge weights wij , and the degree matrix DM is a
diagonal matrix whose entries are DMii =

∑
j wij .

The graph regularized sparse coding problem is formulated as:

arg min
X
‖Y −DX‖2F + βTr(XLXT ) s.t. ‖xi‖0 ≤ T ∀i, (4)

where D ∈ RN×K is the dictionary, and X ∈ RK×M is the sparse represen-
tations matrix corresponding to the data in Y, having the individual signal
representations xi as its columns. A slightly different formulation, representing
the equivalent of the (P ε0 ) problem for the GRSC setting, becomes

arg min
X
‖X‖0,∞ s.t. ‖Y −DX‖2F + βTr(XLXT ) ≤ ε2. (5)

Sparsity is here measured via the `0,∞ mixed norm, counting the maximal num-
ber of non-zeros in the columns of X. That is, formally, ‖X‖0,∞ = max

i
‖xi‖0.

Observe that Tr(XLXT ) = 1
2

∑
i,j wij‖xi − xj‖22. Minimizing this term

therefore encourages similar signals, having a large proximity measure wij , to
have similar sparse representations, thus satisfying the commonly known mani-
fold assumption [29]. In other words, the added regularization limits the degree
of freedom in the sparse coding task and favors solutions preserving the local
intrinsic geometry, i.e. varying smoothly along the geodesics of the underlying
data manifold.

3



From a different perspective, the GRSC can be thought of as a hybrid
model, combining two different approaches for non-linear dimensionality reduc-
tion methods: manifold learning and sparse representations. Yet unlike other
manifold embeddings (e.g. [29, 30]), the geometry preserving sparse represen-
tations have the merit of being reversible. That is, by multiplying with the
dictionary one can shift back from the embedded domain to the original signal
space, for serving signal recovery tasks.

Note that graph regularized sparse coding (GRSC) concerns an ensemble of
signals, given through the columns of a matrix Y, rather than a single signal y.
Furthermore, due to the imposed graph constraint, the signals are jointly coded,
i.e. the problems are no longer independent but are instead coupled through the
manifold Laplacian L. This calls for the development of new pursuit algorithms
suited for the graph regularized setting.

Indeed, several works have recently studied this problem. Zheng et al. [33]
proposed to solve the `1 counterpart of Equation (4),

arg min
X
‖Y −DX‖2F + βTr(XLXT ) + γ

∑
i

‖xi‖1, (6)

using a coordinate descent approach and subgradient methods. Other previ-
ously proposed methods are based on the feature sign search algorithm [43] or a
modified sequential quadratic programming [34]. A similar approach was taken
in [38] by applying the Laplacian regularization on the reconstructed data DX
rather than on the sparse representation X. In [39] we proposed a different so-
lution based on the Alternating Direction Method of Multipliers (ADMM) [50],
which enables simultaneous update of all columns of X.

Nevertheless, despite the growing interest in this problem and the various
algorithms proposed for obtaining its solution, its theoretical foundation is yet
to be established, which is the aim of this work.

2.1. GRSC Reformulated

In order to analyze the GRSC problem given in Equation (5), we modify
its formulation to use an effective dictionary that integrates both the original
dictionary D and the manifold Laplacian L. For that purpose, let us denote

the vectorized versions of X and Y by Z , vec(X) =
[
xT1 ,x

T
2 , . . . ,x

T
M

]T
and

Ỹ , vec(Y) =
[
yT1 ,y

T
2 , . . . ,y

T
M

]T
, respectively. Additionally, define the global

dictionary D̃ = IM ⊗D and the global manifold Laplacian L̃ = L⊗ IK , where
IM denotes the M ×M identity matrix and ⊗ is the Kronecker product.

With slight abuse of notation, we define the block-sparsity `0,∞ measure
as ‖Z‖0,∞ = maxi ‖Zi‖0, counting the maximal number of non-zeros in non-
overlapping segments of length K from the vector Z. This vector norm is
equivalent to the standard ‖X‖0,∞ norm applied to the matrix form of the
representations in Equation (5).
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Symmetrically, we define the `∞,0 sparsity measure ‖Z‖∞,0 = ‖XT ‖0,∞,
counting the maximal number of non-zeros in each row of the corresponding
representation matrix X.

Note that since both L and IK are symmetric and positive semi-definite, so
is L̃. Therefore, utilizing its eigendecomposition L̃ = VΛVT , we can extract

the square root Q̃ =
√

L̃ =
√

ΛVT such that L̃ = Q̃T Q̃. Using this notion and
the above relations, the GRSC problem (i.e. (5)) becomes

arg min
Z
‖Z‖0,∞ s.t.

∥∥∥Ŷ −AZ
∥∥∥2

2
≤ ε2, (7)

where we have denoted A =

[
D̃√
βQ̃

]
and Ŷ =

[
Ỹ
0

]
.

We will hereafter refer to D̃ as the global dictionary and to A as the general-
ized effective dictionary. Equation (7) will be referred to as the (P ε0,∞) problem
in this block-sparsity context.

Before proceeding, we define the following terms that will be used throughout
the analysis: The support of a sparse vector Z, representing the set of indices
corresponding to its non-zero entries, will be denoted by Ω. The minimal and
maximal absolute values of the vector Z within its support will be denoted
Zmin = min

i∈Ω
|Zi| and Zmax = max

i∈Ω
|Zi|. The smallest and largest manifold

weights will be denoted by Lmin = min
i6=j
|Lij | and Lmax = max

i 6=j
|Lij |. The

minimal and maximal node degrees in the manifold graph will be denoted by

∆min = min
i

Lii and ∆max = max
i

Lii. Finally, we denote ΘL =
√

1+β∆max

1+β∆min
.

Having those definitions at hand, we can turn to analyze the reformulated
(P ε0,∞) problem.

3. Stability of the (P ε
0,∞) solution

Assume a block-sparse vector Z with ‖Z‖0,∞ ≤ s and ‖Z‖∞,0 ≤ η satisfies

‖Ŷ − AZ‖22 ≤ ε2. Suppose we solve the above (P ε0,∞) problem and obtain a

solution Ẑ. How close is it to the original Z?

Much like the (P ε0 ) problem defined in Equation (2), one cannot claim the
uniqueness of a solution to the (P ε0,∞) problem (7), but instead can guarantee
that it will be close enough to the true underlying block-sparse vector Z that
generated the data.

This kind of stability results have traditionally been derived by leveraging
the Restricted Isometry Property (RIP) [51, 52]. Similar stability claims can be
formulated in terms of the mutual coherence [53], by exploiting its relationship
with the RIP property [54].

5



Recall that the mutual coherence, which quantifies the similarity of the atoms
in the dictionary D, was defined in [55] as:

µ(D) = max
i6=j

∣∣dTi dj
∣∣

‖di‖2‖dj‖2
. (8)

Assuming hereafter that the atoms are normalized such that ‖di‖2 = 1 ∀i, it is
equivalently given by µ(D) = maxi 6=j

∣∣dTi dj
∣∣.

Evidently, if each original signal is coded with T or fewer non-zeros, i.e.
‖Z‖0,∞ = T , then the sparsity of the global vector Z in the `0 norm sense is as
high as ‖Z‖0 = TM , making the traditional guarantees infeasible. Instead we
shall derive alternative guarantees for the `0,∞ norm.

For better readability, the theorem proofs are deferred to Appendix A.

We first generalize the RIP definition [51] to the `0,∞ case, which we name
Block-RIP.

Definition 1. A matrix A is said to have an asymmetric1 k-BRIP (Block-RIP)
with constants δLk , δ

H
k if these are the smallest quantities such that

(1− δLk )‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δHk )‖x‖22 (9)

for every vector x satisfying ‖x‖0,∞ = k.

Similarly to the RIP, computing the BRIP is hard or practically impossible,
and so we shall bound it using the mutual coherence.

Theorem 2 (Upper bounding the BRIP via the mutual coherence). For a
support Ω with `0,∞ norm equal to k and with `∞,0 norm equal to η, the k-
BRIP of the generalized effective dictionary A can be upper bounded by

δHk ≤ (k − 1)µ(D) + β[2∆max − (M − η)Lmin],

δLk ≤ (k − 1)µ(D)− β(M − η)Lmin.
(10)

Exploiting the result of Theorem 2, we devise a stability theorem for the
graph (P ε0,∞) problem.

Theorem 3 (Stability of the solution to the (P ε0,∞) problem). Consider a sparse

vector Z such that ‖Z‖∞,0 = η and ‖Z‖0,∞ = s < 1
2

(
1 + 1+β(M−η)Lmin

µ(D)

)
, and

a generalized effective dictionary A satisfying the BRIP property for `0,∞ = 2s
with coefficients δL2s, δ

H
2s. Then, the distance between the true sparse vector Z

and the solution to the (P ε0,∞) problem, Ẑ, is bounded by

‖Z− Ẑ‖22 ≤
4ε2

1− δL2s
≤ 4ε2

1− (2s− 1)µ(D) + β(M − η)Lmin
. (11)

1By defining an asymmetric form of the RIP one can obtain tighter bounds than using the
common symmetric RIP, as shown in [56].
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Notice that since the manifold regularization constrains the rows of the
original representation matrix X, the devised stability term and correspond-
ing bound are no longer expressed solely as a function of the dictionary, but
instead describe a relation between the column sparsity s and the row sparsity
η, integrating additional properties of the dictionary and the manifold graph
Laplacian. While the column sparsity has a local (per-signal) flavor, the row
sparsity represents a global measure for the signal ensemble.

4. Better together? A deeper analysis of guaranteeable performance

The major question arising in light of the newly formed bound is whether it
offers any advantage compared with the traditional one. Put differently, given a
collection of signals sampled from some manifold and the graph Laplacian mod-
eling this manifold, is GRSC guaranteed to yield better results than individual
sparse coding of these signals, which is oblivious to the underlying structure?
And if so, under what conditions?

4.1. Comparing the stability terms

Comparing the obtained bounds in an attempt to answer the aforemen-
tioned questions, observe that adding the manifold constraint with some β > 0
improves the stability term, since by definition η ≤M and Lmin ≥ 0.

Also note that for β = 0 we obtain the standard worst-case stability bound
as devised for the (P ε0 ) problem. That is, our stability requirement in the `0,∞
sense aligns with the `0 sparsity requirement for each individual signal, and the
error bound coincides with the sum of individual errors.

Another case for which we revert to the classic stability condition is if there
exists some dictionary atom that is chosen by all ensemble signals, hence η = M .
Given the richness and redundancy of the typical dictionary, it is reasonable
to assume such case is rare. Moreover, observe that the sparser the rows of
X, the less sparse each column ought to be to guarantee better stability. A
geometric interpretation suggests that a wider distribution of the chosen atoms
is an indication of the diversity of the signal ensemble, in which case there is a
higher potential gain from capitalizing on the manifold assumption.

Finally, we should note that the above devised stability condition could be
further improved by replacing the term (M−η)Lmin with Sη(L), the sum of the
M − η smallest weights in L. Clearly, Sη(L) ≥ (M − η)Lmin. This modification
better accommodates sparse graphs, and leads to an improved stability condition
as long as the minimal number of non-zeros in each row of L is larger than η.

To conclude, except for the above mentioned cases where the terms are iden-
tical, in all other cases the GRSC stability terms necessarily improve compared
with non-regularized sparse coding. Moreover, the stronger the enforced reg-
ularity (i.e. larger β), the larger the graph weights, or the more diverse the
ensemble (i.e. smaller η) - the looser and better the sparsity requirement.
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4.2. Comparing the guaranteed error bounds

So far we have shown that GRSC requires a more relaxed sparsity condition
to yield a stable global solution compared with the classical SC. For cardinalities
satisfying the stability terms for both GRSC and standard SC, we may compare
the resulting stability bounds and study the conditions for which incorporating
graph constraints leads to lower guaranteed approximation error.

Allegedly, the larger β, the better the obtained stability bound. While this
may seem true, recall that β is the relative weight of manifold smoothness, which
implicitly effects the noise level as well.

Revisiting Equation (4), let us denote the data error by ‖Y − DX‖2F =
ε2D and the manifold smoothness error by Tr(XLXT ) = ε2G. Since for GRSC
ε2 = ε2D + βε2G, it is evident that increasing β comes along with increasing ε2.
Therefore, though improving the stability terms, the stability bound may overall
not improve. To obtain a tighter bound, we seek conditions for which

4ε2D + 4βε2G
1− (2s− 1)µ(D) + β(M − η)Lmin

<
4ε2D

1− (2s− 1)µ(D)
. (12)

This is satisfied whenever

ε2G
(M − η)Lmin

<
ε2D

1− (2s− 1)µ(D)
, (13)

which can be translated to a lower bound on the block-sparsity level s, namely

s >
1

2

(
1 +

1

µ(D)

)
− ε2D(M − η)Lmin

2µ(D)ε2G
. (14)

Combined with the known stability terms, we deduce that the GRSC stability
bound is superior to that of classic SC whenever

1

2

(
1 +

1

µ(D)

)
− ε2D(M − η)Lmin

2µ(D)ε2G
< s <

1

2

(
1 +

1

µ(D)

)
. (15)

Put differently, if the manifold Laplacian is scaled such that

(M − η)Lmin

ε2G
>

1− µ(D)

ε2D
(16)

with respect to the dictionary related properties, GRSC will lead to better sta-
bility bounds for all feasible cardinalities. Surprisingly, this relation does not
depend on the choice of β. Yet the smaller η or higher the degree of smoothness
(i.e. smaller εG), the more pronounced the theoretical advantage of GRSC.

To summarize the comparison, we have established that GRSC guarantees a
stable solution for a wider range of cardinalities. Moreover, given cardinalities
for which standard SC has guaranteed stability as well, the stability bound
provided by GRSC is tighter if the cardinality is lower bounded, which is a
reasonable assumption in non-extreme cases.
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4.3. Numerical evaluation

Following the above analysis, we now provide a numerical experiment demon-
strating the obtained bounds.

To minimize the mutual coherence, the dictionary is built as a Grassmannian
matrix of size 64× 128 [54], yielding a mutual coherence as low as µ(D) ≈ 0.1.
As a realistic estimation for the other parameter values, we use M = 50, εD =
0.1
√
M , εG = 0.1, Lmin = 0.02 and β = 1.

For these settings, stability of the standard (P ε0 ) solution is guaranteed for
cardinalities up to 5, while for the graph constrained (P ε0,∞) this maximal car-
dinality can go up to 10, depending on η.

Figure 1a illustrates the comparison between the theoretical guarantees pro-
vided for classic SC (β = 0) and GRSC (β = 1). All different combinations
of s and η are divided into 4 regions: In the blue and red regions stability is
guaranteed for both cases, where in the red region the GRSC stability bounds
are stronger than those obtained for SC, whereas for the blue region the classic
SC bounds are stronger (based on the analysis in Section 4.2). The green region
represents cases for which stability is no longer guaranteed for classic SC yet
still guaranteed for GRSC (according to Theorem 3). In the black region, sta-
bility is no longer guaranteed for either case. For η = M = 50, the two bounds
unite. As these results indicate, it is theoretically beneficial to incorporate the
manifold regularization and jointly code the ensemble of signals.

Repeating the experiment for an increased εG reveals a different picture. The
stability terms are independent of εG and thus will not change, however the su-
periority of the GRSC stability bounds over those of classic SC is compromised.
Setting εG = 1, observe that there are now cases where adding the manifold
constraint does not help improve the theoretical stability, as demonstrated in
Figure 1b. The reasoning is that large values of η indicate that some atoms are
chosen abundantly. Combined with the higher value of εG, this implies that for
this setup, the manifold assumption is weaker and thus its potential contribution
is expectedly lower.

η
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(a) εG = 0.1
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(b) εG = 1

Figure 1: Comparison of the theoretical stability guarantees for P ε0 (classic SC) and P ε0,∞
(GRSC), for different levels of manifold regularity εG.
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To further evaluate the influence of the choice of β, we set η = 10 and
εG = 1 and plot the error bounds as a function of β for 3 different values of s,
representing the different regimes illustrated in Figure 1b. As can be observed
in Figure 2, when GRSC yields better bounds compared with classic SC, the
bounds improve more as β grows. On the contrary, when GRSC degrades the
bounds, they degrade more as β grows.

β
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β
10-2 10-1 100 101 102

‖Ẑ
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(c) s = 6

Figure 2: Comparison of the theoretical stability bounds for P ε0 (classic SC) and P ε0,∞ (GRSC)
as a function of β, for εG = 1, η = 10 and different values of s.

4.4. Analyzing the noiseless case

A final remark concerns the analysis of the noiseless setup. While the (P ε0,∞)
is meaningless for ε = 0, a more realistic scenario is the semi-noiseless case,
where Y = DX yet Tr(XLXT ) > 0. Recall that if the true cardinality satisfies
the traditional (P0) condition, exact recovery is guaranteed without adding the
graph constraints. However, for larger cardinalities that do not satisfy this
requirement but do satisfy the more relaxed (P ε0,∞) condition (for ε2 = βε2G),
one could still guarantee stable recovery. Thus by using GRSC we extend the
previous recovery range.

In the numerical setup presented above, for example, classic SC guarantees
unique recovery for cardinalities up to (and including) s = 5. As for GRSC,
stable recovery can be guaranteed up to a higher maximal cardinality of s = 10,
depending on η. Specifically, for η = 10, GRSC accommodates cardinalities
of s ≤ 9. While classic SC provides no guarantee beyond s = 5, GRSC can
guarantee recovery with a bounded error, which is at worst ‖Ẑ− Z‖22 ≤ 0.4 for
the maximal cardinality s = 9.

5. Stability Guarantees for Pursuit Algorithms

Up until now we have shown that the solution to the (P ε0,∞) problem will
be close to the true sparse vector Z. However, we have not yet guaranteed
the feasibility of obtaining such a solution. It is therefore important to know
whether this solution can be approximated by pursuit algorithms.
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In this section, we address such a question for the Orthogonal Matching
Pursuit (OMP) [57], Basis Pursuit (BP) [58], and Thresholding Algorithms2.

Classic known bounds for these algorithms typically involve both the sparsity
of Z and the signal-to-noise ratio, which relates to the term ε

|Zmin| . In the context

of GRSC, such results provide weak and nearly meaningless bounds, because
they rely on the global `0 sparsity measure rather than on the block-sparsity
`0,∞, and because they are based on the global error energy ε which could be
quite high.

So, largely following [59], we harness the inherent locality of the global dic-
tionary atoms in order to replace the global error bound with a local block-error,
as well as replace the `0 norm with the block-sparsity `0,∞. For this purpose,
and due to the special structure of our problem, we need further assumptions
about the noise distribution.

Throughout the following analysis, we slightly change notation and sup-
pose a clean signal X, having a representation AZ over a generalized effective

dictionary A =

[
D̃√
βQ̃

]
, is contaminated with noise E =

[
ED

EL

]
to create the

measurement Y = X+E such that ‖Y−X‖2 ≤ ε. Let us denote the top part of
Y, corresponding to the dictionary, by YD, and its bottom part corresponding
to the Laplacian by YL.

To prove the recovery guarantees for all considered algorithms, we assume
that EL has energy

√
βεG, or ‖EL‖22 = βε2G, and that ED has energy ‖ED‖22 =

ε2D. We further denote by εl the highest energy of all N -dimensional non-
overlapping blocks extracted from the upper part of E, i.e. ED has block-energy
εl. Finally, define the effective noise εeff = εl + βεG

√
∆max.

The proofs for all theorems in this section are provided in Appendix B.

5.1. Stability of the Thresholding Algorithm
We commence by developing a stability theorem for the thresholding algo-

rithm, which is not only far simpler than OMP and BP, but is also closer in
spirit to the ADMM based graph sparse coding algorithm we proposed in [39].

Recall that the thresholding algorithm is a simplification of OMP that relies
on a single projection, choosing the support as the largest inner products of
|AT Ŷ| [54].

Theorem 4 (Thresholding algorithm performance in the presence of noise).
Suppose a clean signal X has a representation AZ over a generalized effective
dictionary A, and that it is contaminated with noise E to create the measure-
ment Y = X + E such that ‖Y −X‖2 ≤ ε.

If Z satisfies

s = ‖Z‖0,∞ <
1

1 + ΘL

(
1 +

1

µ(D)

|Zmin|
|Zmax|

)
− εl
µ(D)|Zmax|

(17)

2These algorithms are not the common approach for solving the GRSC problem, albeit in
the reformulated problem they could provide an alternative with provable guaranteed perfor-
mance.
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where |Zmin|, |Zmax| are the minimum and maximum absolute values of the vec-
tor Z within its support, then we are guaranteed that the thresholding algorithm
finds the correct support, and its solution, denoted ZTHR, satisfies

‖ZTHR − Z‖22 ≤
ε2

1− (s− 1)µ(D) + β(M − η)Lmin
. (18)

Recall that ΘL =
√

1+β∆max

1+β∆min
where ∆min,∆max are the minimal and maxi-

mal node degrees in the manifold graph. Therefore, note that for β = 0, or for
a homogeneous manifold graph (i.e. when all node degrees are the same), we
have ΘL = 1 and so the obtained stability condition almost reduces to the clas-
sic known one. A minor difference is that the values |Zmin|, |Zmax| are computed
globally over the ensemble. This results in a tighter and more strict sparsity
requirement, dictated by the signal with the most extreme entries. Further,
observe that while jointly coding the ensemble of signals, the stability condition
restricts the sparsity in the `0,∞ sense, and considers the local (per-signal) noise
level εl rather than the global one.

5.2. Stability Guarantee of OMP

Next, we provide guarantees for stable recovery of OMP, generalizing similar
claims from [60] to the GRSC setting.

Theorem 5 (Stable recovery of OMP in the presence of noise). Suppose a clean
signal X has a representation AZ over a generalized effective dictionary A, and
that it is contaminated with noise E to create the measurement Y = X+E such
that ‖Y −X‖2 ≤ ε.

If Z satisfies

s = ‖Z‖0,∞ <
1

1 + ΘL

(
1 +

1−ΘLβηLmax

µ(D)

)
− 1

µ(D)
· εeff
|Zmin|

(19)

where |Zmin| is the minimum absolute value of the vector Z within its support,
then running OMP for ‖Z‖0 iterations, we are guaranteed that OMP finds the
correct support, and its solution, denoted ZOMP, satisfies

‖ZOMP − Z‖22 ≤
ε2

1− (s− 1)µ(D) + β(M − η)Lmin
. (20)

Note again that when β = 0 we collapse to the known bounds. Yet, for β > 0,
the sparsity requirement for OMP to succeed is more strict compared with both
the corresponding requirement for the stability of (P ε0,∞) and the requirement
for the non-regularized case (β = 0). This could be explained by the fact that
the problem is indeed more challenging: ensemble coding implies satisfying the
requirements for each individual signal, while also forcing additional constraints
on the relations between them. This also reflects the fact that a greedy strategy
for the GRSC problem is more sensitive to errors due to the multitude of signals
and their cross dependences. However, given that the requirement is fulfilled,
not only is the support correctly recovered but, under mild assumptions, the
coefficient values are guaranteed to be closer to those of the true solution.
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5.3. Stability Guarantee of Basis Pursuit

Similarly to the classic (P ε0 ) problem, the solution of the (P ε0,∞) problem
can be approximated using the Basis Pursuit Denoising (BPDN) algorithm, by
relaxing the `0,∞ norm with the convex `1. The BPDN in its Lagrangian form
is defined as

min
Z

1

2
‖Y −AZ‖22 + λ‖Z‖1. (21)

The stability of BPDN was proven in [61] given that the Exact Recovery
Condition (ERC) is satisfied. Recall that as proposed in [62], the ERC is met
for a support Ω whenever

θ = ERC(Ω) = 1−max
i/∈Ω
‖D†Ωdi‖1 > 0, (22)

where we have denoted by D†Ω the Moore-Penrose pseudoinverse of the dic-
tionary restricted to support Ω. Equivalently, the ERC was shown to hold
whenever the total number of non-zeros in Ω is upper bounded. Exploiting the
unique structure of the generalized effective dictionary, we can now establish
similar claims for the GRSC model in terms of the `0,∞ norm.

Theorem 6 (ERC for the graph sparse coding problem). Given a generalized
effective dictionary A, the ERC condition (22) is met for every support Ω that
satisfies3

s = ‖Ω‖0,∞ <
1

2

(
1 +

1 + β(M − η)Lmin − βηLmax

µ(D)

)
(23)

where ‖Ω‖∞,0 = η and Lmin, Lmax are the smallest and largest manifold weights,
respectively.

To understand the above result, note that in order for the sparsity require-
ment to be meaningful, and specifically improve over the structure agnostic SC,
we must have η small enough to obey η < M

1+Lmax/Lmin
. Generally, the more

homogeneous the manifold weights, the better the ERC guarantees we could ob-
tain. In the optimal case, if Lmax/Lmin = 1, then η < M/2 guarantees the ERC
holds for sparse matrices X with a higher cardinality ‖X‖0,∞. Otherwise, the
more varied the weights, the smaller should η be to improve the ERC condition
over standard SC. In other words, varied manifold weights necessitate sampling
a more diverse ensemble or using a richer dictionary, either of which will result
in more distributed atom selection.

Having extended the ERC for the GRSC model, we follow the analysis pre-
sented in [61, 59] and propose a stability claim for the Lagrangian BPDN algo-
rithm (21), proving that it manages to approximate the solution of the (P0,∞)
problem.

3This is a slight abuse of notation. Formally, the `0,∞ norm should apply to a sparse vector
rather than the support Ω.
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Theorem 7 (Stable recovery of BP in the presence of noise). Suppose a clean
signal X has a representation AZ over a generalized effective dictionary A, and
that it is contaminated with noise E to create the measurement Y = X+E such
that ‖Y −X‖2 ≤ ε.

If Z satisfies

s = ‖Z‖0,∞ <
1

3

(
1 +

1 + β(M − η)Lmin − 2βηLmax

µ(D)

)
, (24)

we are guaranteed that ZBP, the solution to the Lagrangian BP formulation with
parameter λ = 4εeff , satisfies the following:

1. The support of ZBP is contained in Ω = supp(Z).

2. ‖ZBP − Z‖∞ < 15
2 εeff .

3. The support of ZBP contains every index i ∈ Ω for which |Zi| > 15
2 εeff .

4. The minimizer of the problem, ZBP, is unique.

A corollary of the third point is that the complete support must be recovered
whenever

εeff

|Zmin| <
2
15 .

Observe that compared with the ERC, the stability condition here implies a
stricter sparsity requirement. Explicitly, this condition is only meaningful when
η < M

1+2Lmax/Lmin
, implying that in the optimal case of homogeneous manifold

weights, no more than one third of the signal ensemble may choose to use the
same atom.

Comparing this result with the stability claims for the Thresholding and
OMP, the stability terms here are no longer sensitive to |Zmin|, |Zmax|. Further,
the difference between the entries in ZBP and Z is bounded in terms of the
effective noise level εeff . As a consequence, all atoms with coefficients above
this measure are guaranteed to be recovered.

5.4. An Iterative Thresholding Alternative

The theoretical guarantees provided for classic pursuit algorithms are formed
in terms of the `0,∞ norm, albeit the algorithms themselves are applied globally,
considering the `0 or `1 norm of the vector Z, and ignoring the problem struc-
ture. Furthermore, while the OMP and BP algorithms can be practically used
to solve the reformulated GRSC problem (7) for low dimensional data, the ten-
sor products leading to this formulation dictate a very high dimensional regime,
for which using these or similar methods may be infeasible. To accommodate
high dimensional setups, several dedicated algorithms have been proposed that
directly tackle the GRSC objective in its original form. In what follows we
aim at bridging the gap between these algorithms and the classic ones, so as to
combine the theoretical benefits with the practical aspects.

One approach for doing so is based on migrating to the `1 norm and solv-
ing Equation (6). Revisiting the ADMM-GRSC algorithm proposed in [39],
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this algorithm can be extended to solve Equation (6) by replacing the hard-
thresholding operator with a soft one. By equivalence to the reformulated prob-
lem (21) and due to the convex nature of the objective, the modified ADMM
algorithm is guaranteed to converge to the global BP solution, thus maintaining
the validity of the theoretical guarantees derived in the previous section.

Another related method for minimizing the objective in Equation (21) uses
the Iterative Soft-Thresholding Algorithm (ISTA) [63], consisting of iterative
updates of the form

Z(k) = Sλ/c
(

Z(k−1) +
1

c
AT (Ŷ −AZ(k−1))

)
, (25)

where the operator Sλ/c applies entry-wise soft-thresholding with threshold λ/c.

For an appropriate choice of the parameter c, satisfying 1
c <

2
‖A‖2

4, this algo-

rithm will again converge to the minimizer of the global BP problem [63]. Yet,
this substitute approach is far more practical in higher dimensions and does not
require explicit construction of the generalized effective dictionary A. In fact,
plugging in the definitions of Ŷ and A for the GRSC setting, Equation (25) can
be equivalently expressed in matrix form as

X(k) = Sλ/c
(

X(k−1) +
1

c
DT (Y −DX(k−1))− β

c
X(k−1)L

)
. (26)

This implies that the global dictionary and Laplacian need not be computed
in practice and the projection step relies directly on the given matrices Y,D,
and L. The difference with respect to the standard ISTA (obtained for β = 0)
boils down to the additional required multiplication XL, which is governed
by M , the size of the data ensemble. The ISTA thus offers an efficient way for
solving Equation (21) in practical scenarios, while still equipped with theoretical
guarantees. It also enjoys the potential benefit of accelerated convergence by
using the FISTA [64].

As an alternative to the above, one may revert to the `0,∞ sparsity measure
and develop a similar method, replacing ISTA with an iterative hard thresh-
olding algorithm. However, no convergence guarantees could be claimed under
such formulation.

6. Experiments

In this section we provide numerical results that validate the above pre-
sented theoretical bounds and demonstrate the performance of the OMP and
BP algorithms in practice.

The experimental procedure is as follows. First, we generate the graph
simulating a manifold of M = 100 signals. For this purpose, we draw a random

4Note that ‖A‖2, the maximal singular value of the generalized effective dictionary A, could
be easily bounded based on our previous results (see for example the proof of Theorem 2).
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sparse matrix with 20 non-zeros per signal having absolute values between 1
and 3. The graph weights are constructed by applying a Gaussian kernel to the
pairwise distances between the sparse vectors, resulting in ΘL ≈ 1.

Note that this graph construction is slightly different than the procedure
described in Section 2, which was based on pairwise distances between signals
in Y. This is due to the fact that the bounds we wish to validate are given in
terms of certain graph properties, such as Lmax and ΘL. In order to guaran-
tee that these properties remain fixed throughout the experiment and that all
realizations of Y share the same underlying manifold graph, we here construct
it using an auxiliary set of vectors. Consequently, the signal collections will be
generated so as to fit this given manifold structure.

As described in Section 4.3, the dictionary is built as a Grassmannian matrix
of size 64 × 128, having a mutual coherence of µ(D) ≈ 0.1. Using this dictio-
nary and the manifold Laplacian, the generalized effective dictionary A is then
assembled for β = 0.01.

For each evaluated sparsity level s between 1 and smax = 20, we draw a
sparse matrix X by randomly choosing the support to satisfy ‖X‖0,∞ = s,
and then draw the non-zero entries as random uniform variables in the range
[−3,−1] ∪ [1, 3].

Once X is generated, we compute Y0 = DX. Next, we contaminate each sig-
nal with a zero-mean additive white Gaussian noise, creating the measurements

Y = Y0 + Vn, where ‖Vn‖2 = εD =
√

10− βTr(XLXT ).

Given these noisy measurements, we construct the effective measurement
vector Ŷ and attempt to recover the underlying sparse matrix X (or rather, its
vectorized version Z) using both OMP and BP5, and comparing with classic
OMP applied to each signal independently.

For each realization we compute the minimal absolute entry Zmin, the `∞,0
norm η, and the effective noise εeff . We perform 100 such experiments per each
cardinality.

First, we corroborate the stability bound of OMP as posed in Theorem 5.
Figure 3a presents the empirical distance between the true sparse representa-
tions and the estimated ones as a function of the `0,∞ norm of the original
vector Z, validating that this distance is indeed below the theoretical bound.
Since both η and the ratio

εeff

|Zmin| are realization dependent, instead of delimit-

ing the cardinality range satisfying the requirement in (19), we show the more
optimistic condition

‖Z‖0,∞ <
1

1 + ΘL

(
1 +

1−ΘLβηminLmax

µ(D)

)
(27)

where ηmin is the minimal empirical value of η over the experiments. Yet, the

5For BP we use the Lagrangian formulation of the LARS algorithm as implemented in [65],
with the parameter λ = 4εeff .
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empirical results remain stable, even for much higher cardinalities than predicted
by theory.

Next, we verify the stability guarantees for BP as posed in Theorem 7.

Figure 3b depicts the ratio ‖ZBP−Z‖∞
εeff

for each realization as a function of the

`0,∞ norm of Z, validating that it is indeed below 15
2 as long as the `0,∞ norm

satisfies the requirement in Equation (24). It can be observed once more that
the empirical results are stable for cardinalities far beyond the theoretically
guaranteed range.
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Figure 3: Numerical evaluation of the coefficient stability: (a) The empirical distance
‖ZOMP − Z‖2 as a function of the `0,∞ norm; (b) The distance ‖ZBP − Z‖∞/εeff as a
function of the `0,∞ norm.

In the sequel, we would like to corroborate the assertions regarding the re-
covery of the true support. To allow a wider range of coefficient scales and noise
levels, we repeat the above described set of experiments, where instead of fixing
the total noise energy, we randomly pick the degree of manifold smoothness
εG as well as the data noise εD, so that their levels differ per realization. The
coefficient magnitudes are adjusted accordingly.

Figure 4a shows the ratio
εeff

|Zmin| for each realization as a function of the

`0,∞ norm. Each point is marked according to the success or failure of OMP in
recovering the complete support. Additionally, we plot the theoretical condition
for the success of OMP from Equation (19), reformulated as a bound on the
aforementioned ratio, namely

εeff
|Zmin|

<
1

1 + ΘL
(1 + µ(D)−ΘLβηLmax)− sµ(D). (28)

As the results indicate, the empirical results agree with the theoretical claims.
Similarly assessing the support recovery using BP, we again plot the ratio

εeff

|Zmin| as a function of the `0,∞ norm for each realization, marking it according

to the success or failure of BP in recovering the complete support. In accordance
with our theorem, the complete support is indeed recovered when

εeff

|Zmin| <
2
15

(and beyond).
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Figure 4: Support recovery: The ratio
εeff

|Zmin|
as a function of the `0,∞ norm, and the theo-

retical bound for successful support recovery using (a) OMP; and (b) BP.

As can be seen from the above presented results, the theoretical bounds
are far from being tight. Nonetheless, recall that the worst-case analysis under
an adversarial noise assumption provides rather pessimistic theoretical bounds,
and a similar loose flavor was observed in the traditional sparse representation
model as well [66]. A probabilistic study could likely result in tighter bounds
that better reflect the expected performance in practice, yet such an analysis is
beyond the scope of this work.

Last, we compare the average errors obtained using OMP (for the generalized
effective dictionary) with those obtained using classic OMP (without the man-
ifold constraint). The plots presented in Figure 5 show that while the proven
theoretical guarantees pose a more strict sparsity requirement for the general-
ized OMP, in practice it performs the same or better then classic (per-signal)
OMP.
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Figure 5: Comparing the generalized OMP with the structure-agnostic classic OMP: (a) Aver-

age approximation error ‖Ŷ−AẐ‖2/
√
NM ; (b) Average denoising error ‖Ŷ0−AẐ‖2/

√
NM ;

(c) Average support recovery error. To indicate the accuracy of support recovery, we mea-

sure the distance between the estimated support Ω̂ and the true one Ω as dist(Ω̂,Ω) =
max(|Ω̂|,|Ω|)−|Ω̂∩Ω|

max(|Ω̂|,|Ω|)
.
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7. Conclusions

In this work we have presented a formal analysis of the graph sparse coding
problem. To this end, we have generalized concepts such as the RIP and ERC to
the GRSC setting, and reformulated the GRSC objective using the `0,∞ norm
and a generalized effective dictionary, introducing the corresponding (P ε0,∞)
problem. By doing so, we were able to provide the first known results for
recovery of the geometry preserving sparse representations under adversarial
noise assumptions, as well as meaningful stability guarantees for corresponding
pursuit algorithms. In addition, we formulated the conditions for which these
devised theoretical bounds are superior to the classic ones, shedding light on the
desired properties of the data manifold that impact the guaranteed stability.

This work paves the way for several future directions. First, as previously
mentioned, it only considers worst-case analysis. Better bounds could likely
be obtained by extending this study to an average-performance analysis. This
naturally requires further assumptions on the model and noise distribution.
Nevertheless, such results would close the gap between the current bounds and
the empirical results, which were shown to obey far relaxed sparsity conditions.

By reformulating the GRSC problem we have demonstrated how, under the
devised conditions, popular pursuit algorithms such as OMP and BP succeed
in finding its solution. However, as the construction of the generalized effective
dictionary entails an inevitable dimension increase, these methods are only fea-
sible for low dimensional data. In practice, several other algorithm have been
proposed for solving the GRSC problem. Expanding on the direction presented
in Section 5.4, it should be of interest to provide theoretical guarantees for these
methods as well. We believe such claims could emerge from a similar analysis
to the one taken throughout this work. These directions and more are left for
future research.
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Appendix A. Theorem Proofs

In order to prove Theorem 2, we first state and prove the following properties.

Lemma 8. Given a global dictionary D̃ = IM⊗D, its mutual coherence satisfies
µ(D̃) = µ(D).

Proof of Lemma 8. Since we assume the atoms of the original dictionary D to
have unit norms, this property holds for the atoms of the global dictionary D̃
as well, thus ‖d̃i‖2 = ‖di‖2 = 1 ∀i.

Let Ωj denote the subset of atoms belonging to the same block in D̃ as
the j-th atom, i.e. Ωj =

{
i : d iK e = d jK e

}
. Observe that atoms from different

blocks have non-overlapping supports, thus

d̃Ti d̃j =

{
0 i /∈ Ωj

dTi∗dj∗ otherwise
(A.1)

where i∗ denotes the corresponding index of the atom in the original dictionary
D. Therefore, by definition,

µ(D̃) = max
i 6=j

∣∣∣d̃Ti d̃j

∣∣∣
‖d̃i‖2‖d̃j‖2

= max
i 6=j

∣∣∣d̃Ti d̃j

∣∣∣ = max
i 6=j

∣∣dTi dj
∣∣ = µ(D). (A.2)

�
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Lemma 9. Consider a global dictionary D̃ = IM ⊗ D and a support Ω with
`0,∞ norm equal to k. Let GΩ = D̃T

ΩD̃Ω, where D̃Ω is the matrix D̃ restricted
to the columns indicated by the support Ω. Then, the eigenvalues of this Gram
matrix, given by λi(GΩ), are bounded by

1− (k − 1)µ(D) ≤ λi(GΩ) ≤ 1 + (k − 1)µ(D). (A.3)

Proof of Lemma 9. From Gerschgorin’s disk theorem, the eigenvalues of the
gram matrix GΩ reside in the union of its Gerschgorin disks, where the disk
corresponding to the j-th row of GΩ is defined as

|λ(GΩ)−GΩ(j, j)| ≤
∑
t6=j

|GΩ(j, t)| . (A.4)

Since the atoms are normalized, GΩ(j, j) = 1 ∀j, implying that all Gerschgorin
disks are co-centered at 1, thus all eigenvalues reside inside the circle with the
largest radius. The radius of each circle equals the sum of absolute values of
the off-diagonal entries in the corresponding row of GΩ, which implies

|λi(GΩ)− 1| ≤ max
j

∑
t 6=j

|GΩ(j, t)| = max
j

∑
t6=j; t,j∈Ω

∣∣∣d̃Tj d̃t

∣∣∣ . (A.5)

By definition of the mutual coherence and using Lemma 8,
∣∣∣d̃Tj d̃t

∣∣∣ ≤ µ(D̃) =

µ(D) for atoms j, t included in the same block, while
∣∣∣d̃Tj d̃t

∣∣∣ = 0 if these atoms

are farther apart. Therefore,

|λi(GΩ)− 1| ≤ max
j

∑
t 6=j; t,j∈Ω

∣∣∣d̃Tj d̃t

∣∣∣ ≤ (k − 1)µ(D) (A.6)

where k−1 is the maximal number of non-zero elements in a block after omitting
the diagonal entry. From Equation (A.6) we obtain the desired claim:

1− (k − 1)µ(D) ≤ λi(GΩ) ≤ 1 + (k − 1)µ(D). (A.7)

�

Lemma 10. Consider the extended manifold Laplacian L̃ = L ⊗ IK and a
support Ω with `0,∞ norm equal to k and with `∞,0 norm equal to η. Let L̃Ω

denote the matrix L̃ symmetrically restricted to the rows and columns indicated
by the support Ω. Then, the eigenvalues of L̃Ω are bounded by

(M − η)Lmin ≤ λi(L̃Ω) ≤ 2∆max − (M − η)Lmin. (A.8)

Proof of Lemma 10. First, note that L̃ is symmetric and positive semi-definite,
and its eigenvalues are identical to those of L, up to multiplicity. Consequently,
these eigenvalues are bounded by 0 ≤ λi(L̃) ≤ λmax(L). However, better bounds
may be obtained by relying on the properties of the support Ω.
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Using once again Gerschgorin’s disk theorem, the eigenvalues are bounded
by the union of disks formed by the rows of L̃Ω. Consider the circle formed by
the row of L̃Ω corresponding to some i ∈ Ω. Due to the symmetric restriction
of L̃Ω, the circle center is L̃ii = Lci,ci > 0 where ci = d iK e. The Gerschgorin
circle defined by this row is thus∣∣∣λ− L̃ii

∣∣∣ ≤ ∑
j∈Ω;j 6=i

∣∣∣L̃ij∣∣∣ (A.9)

providing the lower bound

λ ≥ L̃ii −
∑

j∈Ω;j 6=i

∣∣∣L̃ij∣∣∣ =
∑
j 6=i

∣∣∣L̃ij∣∣∣− ∑
j∈Ω;j 6=i

∣∣∣L̃ij∣∣∣ =
∑
j /∈Ω

∣∣∣L̃ij∣∣∣ , (A.10)

where we have used the fact that like the original L, L̃ is also a valid Laplacian
matrix, and so L̃ii > 0 ∀i, L̃ij ≤ 0 ∀j 6= i, and L̃ii = −

∑
j 6=i L̃ij =

∑
j 6=i |L̃ij |.

Finally, recall that there are only M non-zero entries in each row of L̃, at
most η of which are sampled in the support Ω. Summing only over j /∈ Ω, we
thus encounter at least M − η non-zero entries, implying

λ ≥ (M − η) min
i,j
|Lij | = (M − η)Lmin. (A.11)

Clearly, this same inequality holds for every row i ∈ Ω, thus providing a lower
bound for the eigenvalues of L̃Ω. Similarly, for the upper bound,

λ ≤ L̃ii +
∑

j∈Ω;j 6=i

∣∣∣L̃ij∣∣∣ = 2L̃ii −
∑
j /∈Ω

∣∣∣L̃ij∣∣∣ . (A.12)

Using the relation obtained for the lower bound, and since the inequality holds
for every i ∈ Ω,

λ ≤ 2L̃ii−
∑
j /∈Ω

∣∣∣L̃ij∣∣∣ ≤ 2 max
i

Lii−(M−η)Lmin = 2∆max−(M−η)Lmin. (A.13)

From Equations (A.11) and (A.13) we obtain the desired claim:

(M − η)Lmin ≤ λi(L̃Ω) ≤ 2∆max − (M − η)Lmin. (A.14)

�

Based on these properties, we proceed to prove Theorem 2.

Proof of Theorem 2. We shall prove the upper bounds on the BRIP via the
mutual coherence. Observe that

‖Ax‖22 = xTATAx = xT D̃T D̃x + βxT L̃x = ‖D̃x‖22 + βxT L̃x. (A.15)

Denote the support of x by Ω and let xΩ be the vector x restricted to the
support Ω, thus containing only the non-zero entries.
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For the first part, consider the sub-dictionary D̃Ω, obtained by restricting
the columns of D̃ to the support Ω. Then, ‖D̃x‖2 = ‖D̃ΩxΩ‖2. Using the
eigenvalue bound from Lemma 9, and since ‖x‖2 = ‖xΩ‖2, for every such x we
have that

(1− (k − 1)µ(D))‖x‖22 ≤ λmin(D̃T
ΩD̃Ω)‖x‖22 ≤ ‖D̃ΩxΩ‖22

≤ λmax(D̃T
ΩD̃Ω)‖x‖22 ≤ (1 + (k − 1)µ(D))‖x‖22

(A.16)

where λmax and λmin are the maximal and minimal eigenvalues, respectively.
As for the second term, xT L̃x = xTΩL̃ΩxΩ, and from Lemma 10 we obtained

(M − η)Lmin‖x‖22 ≤ λmin(L̃Ω)‖x‖22 ≤ xTΩL̃ΩxΩ

≤ λmax(L̃Ω)‖x‖22 ≤ [2∆max − (M − η)Lmin]‖x‖22.
(A.17)

Combining the above results, we have

(1− (k − 1)µ(D) + β(M − η)Lmin)‖x‖22 ≤ ‖Ax‖22
≤ (1 + (k − 1)µ(D) + β[2∆max − (M − η)Lmin]) ‖x‖22.

(A.18)

Consequently, since δLk , δ
H
k are defined as the smallest quantities that satisfy

the above inequality, we conclude that δLk ≤ (k − 1)µ(D)− β(M − η)Lmin and
δHk ≤ (k − 1)µ(D) + β[2∆max − (M − η)Lmin]. �

Finally, exploiting the above proven bound, we may prove the main stability
theorem.

Proof of Theorem 3. The solution to the (P ε0,∞) problem satisfies ‖Ŷ−AẐ‖2 ≤
ε, and it must also satisfy ‖Ẑ‖0,∞ ≤ ‖Z‖0,∞ = s (since Ẑ is the solution with
the minimal `0,∞ norm).

Define ∆ = Z− Ẑ. Using the triangle inequality,

‖A∆‖2 = ‖AZ− Ŷ + Ŷ −AẐ‖2 ≤ ‖Ŷ −AZ‖2 + ‖Ŷ −AẐ‖2 ≤ 2ε, (A.19)

therefore we have that ‖A∆‖22 ≤ 4ε2. Furthermore, since the `0,∞ norm satisfies
the triangle inequality as well,

‖∆‖0,∞ = ‖Z− Ẑ‖0,∞ ≤ ‖Z‖0,∞ + ‖Ẑ‖0,∞ ≤ 2s. (A.20)

Using the BRIP of A, we have that

(1− δL2s)‖∆‖22 ≤ ‖A∆‖22 ≤ 4ε2, (A.21)

where in the first inequality we have used the lower bound provided by the
definition of the BRIP. Finally, we obtain the following stability claim:

‖∆‖22 = ‖Z− Ẑ‖22 ≤
4ε2

1− δL2s
. (A.22)
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Using the bound of the BRIP from Theorem 2, we obtain

‖∆‖22 = ‖Z− Ẑ‖22 ≤
4ε2

1− δL2s
≤ 4ε2

1− (2s− 1)µ(D) + β(M − η)Lmin
. (A.23)

For the last inequality to hold and assure that δL2s < 1, we have assumed s =

‖Z‖0,∞ < 1
2

(
1 + 1+β(M−η)Lmin

µ(D)

)
. �

Appendix B. Stability Proofs for Pursuit Algorithms

Suppose a clean signal X, having a block-sparse representation (in the `0,∞
sense) AZ over a generalized effective dictionary A, is contaminated with noise
to create the measurement Y = X + E such that ‖Y −X‖2 ≤ ε. Denoting by
Ω the support of Z, we can write

Y = AZ + E =
∑
t∈Ω

atZt + E. (B.1)

From Equation (B.1) we can express

YD =
∑
t∈Ω

d̃tZt + ED ; ‖ED‖2 = εD =
√
Mεl

YL =
∑
t∈Ω

√
βq̃tZt + EL ; ‖EL‖2 =

√
βεG

(B.2)

Utilizing these settings and properties, we prove stability guarantees for
several pursuit algorithms.

Appendix B.1. Stability Proof for the Thresholding Algorithm

Proof of Theorem 4 - Thresholding stability guarantee. Success of the threshold-
ing algorithm is guaranteed by the requirement

min
i∈Ω

|aTi Y|
‖ai‖2

> max
j /∈Ω

|aTj Y|
‖aj‖2

. (B.3)

First, observe that due to the special dictionary structure, every effective atom
satisfies

‖ai‖2 =

√
d̃Ti d̃i + βq̃Ti q̃i =

√
1 + βL̃ii (B.4)

where we relied on the normalization assumption for the original dictionary
atoms. Further, since EL is such that the lower portion of Y (denoted YL) is
zero,

aTi Y = d̃Ti YD = d̃Ti

(
ED +

∑
t∈Ω

Ztd̃t

)
= d̃Ti ED +

∑
t∈Ω

Ztd̃
T
i d̃t. (B.5)

28



Therefore, addressing the left-hand-side term of Equation (B.3),

min
i∈Ω

∣∣aTi Y
∣∣ = min

i∈Ω

∣∣∣∣∣d̃Ti ED +
∑
t∈Ω

Ztd̃
T
i d̃t

∣∣∣∣∣ = min
i∈Ω

∣∣∣∣∣∣d̃Ti ED + Zi +
∑

t∈Ω;t 6=i

Ztd̃
T
i d̃t

∣∣∣∣∣∣
≥ min

i∈Ω
|Zi| −max

i∈Ω

∣∣∣ED
T d̃i

∣∣∣−max
i∈Ω

∣∣∣∣∣∣
∑

t∈Ω;t 6=i

Ztd̃
T
i d̃t

∣∣∣∣∣∣
(B.6)

where we have again exploited the fact that the columns of D̃ are normalized,
and used the reverse triangle inequality.

Based on the Cauchy-Schwarz inequality and the atom normalization, one
could bound the inner product of the noise and the atom d̃i by |ED

T d̃i| ≤
‖ED‖2‖d̃i‖2 = ‖ED‖2 =

√
Mεl. However, such bound would disregard the local

nature of the atoms. Due to their limited support we have that d̃i = RT
i Rid̃i

where Ri is an operator extracting an N -dimensional segment from an NM -
dimensional vector6. Based on this observation,∣∣∣ED

T d̃i

∣∣∣ =
∣∣∣ED

TRT
i Rid̃i

∣∣∣ ≤ ‖RiED‖2‖d̃i‖2 ≤ εl (B.7)

where we have used the facts that ‖RiED‖2 ≤ εl ∀i and ‖Rid̃i‖2 = ‖d̃i‖2 = 1.
By exploiting the locality of the atoms, together with the assumption regarding
the maximal local7 energy of the noise, we are able to derive a much tighter
bound.

As for the last term,∣∣∣∣∣∣
∑

t∈Ω;t 6=i

Ztd̃
T
i d̃t

∣∣∣∣∣∣ ≤
∑

t∈Ω;t 6=i

∣∣∣Ztd̃Ti d̃t

∣∣∣ =
∑

t∈Ω;t6=i

|Zt|
∣∣∣d̃Ti d̃t

∣∣∣ ≤ (s− 1)µ(D) |Zmax|

(B.8)
where we have used the fact that, by definition, the absolute inner product
between atoms is upper bounded by µ(D). Also notice that d̃Ti d̃t = 0 for every
atom too far from d̃i as the atoms do not overlap. Summing over the support
Ω, there are only s = ‖Z‖0,∞ atoms for which this inner product is non-zero.

Combining the above, we obtain

min
i∈Ω

∣∣aTi Y
∣∣ ≥ |Zmin| − εl − (s− 1)µ(D) |Zmax| . (B.9)

Finally, the left-hand-side term in Equation (B.3) can be bounded by

min
i∈Ω

∣∣aTi Y
∣∣

‖ai‖2
≥

mini∈Ω

∣∣aTi Y
∣∣

maxi∈Ω ‖ai‖2
≥ |Zmin| − εl − (s− 1)µ(D) |Zmax|√

1 + β∆max
(B.10)

6Denoting by 0m×n an all-zero matrix of size m× n, and by In an identity matrix of size
n×n, then Ri =

[
0N×(bi−1)N ; IN ; 0N×(M−bi)N

]
∈ RN×NM , where bi = d i

K
e is the index

of the block to which the atom d̃i belongs.
7Locality in this context refers to the noise level per individual signal rather than the global

noise level for the entire ensemble.
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where ∆max denotes the maximal manifold degree ∆max = maxi L̃ii.
Following similar steps, we can upper-bound the right-hand-side term by

max
j /∈Ω

∣∣aTj Y
∣∣

‖aj‖2
≤

maxj /∈Ω

∣∣aTj Y
∣∣

minj /∈Ω ‖aj‖2
≤ εl + sµ(D) |Zmax|√

1 + β∆min
(B.11)

where ∆min denotes the minimal manifold degree ∆min = mini L̃ii.
Using these bounds, the requirement in Equation (B.3) is clearly satisfied if

|Zmin| − εl − (s− 1)µ(D)|Zmax|√
1 + β∆max

>
εl + sµ(D)|Zmax|√

1 + β∆min
(B.12)

or, equivalently, denoting ΘL =
√

1+β∆max

1+β∆min
,

s = ‖Z‖0,∞ <
1

1 + ΘL

(
1 +

1

µ(D)

|Zmin|
|Zmax|

)
− εl
µ(D)|Zmax|

. (B.13)

If this condition is fulfilled, the true support Ω is recovered, and thus the thresh-
olding algorithm amounts to a simple least-squares solution:

ZΩ
THR = arg min

Z
‖AΩZ−Y‖22, (B.14)

where AΩ is the generalized effective dictionary A restricted to the support Ω.
Denoting by ZΩ the (dense) portion of the true sparse vector Z corresponding
to the support Ω, the solution to the above problem is simply given by

ZΩ
THR = A†ΩY = A†Ω(AZ + E) = A†Ω(AΩZΩ + E) = ZΩ + A†ΩE (B.15)

where A†Ω denotes the Moore-Penrose pseudoinverse of the sub-dictionary AΩ.
Thus, relying on the induced norm properties,

‖ZΩ
THR − ZΩ‖22 = ‖A†ΩE‖22 ≤ ‖A

†
Ω‖

2
2‖E‖22 ≤

1

λmin(AT
ΩAΩ)

‖E‖22. (B.16)

As proven in Theorem 2 using Lemma 9 and Lemma 10,

λmin(AT
ΩAΩ) ≥ λmin(D̃T

ΩD̃Ω) + βλmin(L̃Ω) ≥ 1− (s− 1)µ(D) + β(M − η)Lmin.
(B.17)

Using this bound,

‖ZΩ
THR − ZΩ‖22 ≤

‖E‖22
λmin(AT

ΩAΩ)
≤ ε2

1− (s− 1)µ(D) + β(M − η)Lmin
. (B.18)

�
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Appendix B.2. Stability Proof for OMP

Proof of Theorem 5 - OMP stability guarantee. We shall first prove that the first
step of OMP succeeds in recovering an element from the correct support.

Suppose, without loss of generality, that Z has its largest coefficient in abso-
lute value in Zi. The greedy algorithm operates by projecting Y onto each atom
aj in turn, selecting an atom index where the projection magnitude is highest.
Therefore, for the first step of OMP to choose the atom i ∈ Ω, we require∣∣aTi Y

∣∣
‖ai‖2

> max
j /∈Ω

∣∣aTj Y
∣∣

‖aj‖2
(B.19)

where ‖ai‖2 =
√

d̃Ti d̃i + βq̃Ti q̃i =

√
1 + βL̃ii. Recall that due to the special

structure of our problem,∣∣aTi Y
∣∣ =

∣∣∣d̃Ti YD +
√
βq̃Ti YL

∣∣∣ . (B.20)

In the first step the bottom part of Y is all zeros, i.e. YL = 0. Therefore in
practice, the requirement translates to 8∣∣∣d̃Ti YD

∣∣∣ > max
j /∈Ω

∣∣∣d̃Tj YD

∣∣∣ . (B.21)

However, in order to serve the proof for the next steps of OMP, we shall ignore
this fact and consider the more general case.

For the left-hand-side term in Equation (B.19),∣∣aTi Y
∣∣ =

∣∣∣d̃Ti YD +
√
βq̃Ti YL

∣∣∣
=

∣∣∣∣∣∑
t∈Ω

Ztd̃
T
t d̃i + ED

T d̃i +
∑
t∈Ω

βZtq̃
T
t q̃i +

√
βEL

T q̃i

∣∣∣∣∣
=

∣∣∣∣∣∑
t∈Ω

Zt

(
d̃Tt d̃i + βq̃Tt q̃i

)
+ ED

T d̃i +
√
βEL

T q̃i

∣∣∣∣∣
≥

∣∣∣∣∣∑
t∈Ω

Zt

(
d̃Tt d̃i + βq̃Tt q̃i

)∣∣∣∣∣− ∣∣∣ED
T d̃i

∣∣∣−√β ∣∣∣EL
T q̃i

∣∣∣
(B.22)

where the last step stems from the reverse triangle inequality.
Our next step is to bound each term individually. Based on the Cauchy-

Schwarz inequality, ∣∣∣EL
T q̃i

∣∣∣ ≤ ‖EL‖2‖q̃i‖2 ≤
√
βεG

√
∆max (B.23)

8Note that the manifold constraint has no influence on the first chosen atom. This is
expected since the notion of internal smoothness is meaningless for a vector with a single
non-zero entry.
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where we have used the facts that ‖q̃i‖22 = q̃Ti q̃i = L̃ii and ∆max = maxi L̃ii.
Similarly to the proof for the Thresholding algorithm (Equation (B.7)),∣∣∣ED

T d̃i

∣∣∣ ≤ εl. (B.24)

For the first term, using the reverse triangle inequality, the normalization of
the atoms d̃i and the fact that |Zi| ≥ |Zt| we obtain∣∣∣∣∣∑

t∈Ω

Zt

(
d̃Tt d̃i + βq̃Tt q̃i

)∣∣∣∣∣ =

∣∣∣∣∣∣Zi
(
‖d̃i‖22 + βL̃ii

)
+

∑
t∈Ω;t 6=i

Zt

(
d̃Tt d̃i + βL̃ti

)∣∣∣∣∣∣
≥ |Zi|(1 + βL̃ii)−

∑
t∈Ω;t 6=i

|Zt|
∣∣∣d̃Tt d̃i + βL̃ti

∣∣∣
≥ |Zi|(1 + βL̃ii)− |Zi|(s− 1)µ(D)− β|Zi|L̃ii = |Zi| (1− (s− 1)µ(D))

(B.25)
where for the last inequality we have used the fact that L̃ is a valid graph

Laplacian, satisfying L̃ii =
∑
t6=i

∣∣∣L̃ti∣∣∣ ≥ ∑
t∈Ω;t 6=i

∣∣∣L̃ti∣∣∣, as well as the atom

localization, similarly to the derivation in Equation (B.8).
As a result of combining (B.23),(B.24) and (B.25), we obtain

∣∣aTi Y
∣∣ ≥ ∣∣∣∣∣∑

t∈Ω

Zt

(
d̃Tt d̃i + βq̃Tt q̃i

)∣∣∣∣∣− ∣∣∣ED
T d̃i

∣∣∣−√β ∣∣∣EL
T q̃i

∣∣∣
≥ |Zi|(1− (s− 1)µ(D))− εl − βεG

√
∆max.

(B.26)

An upper bound for the right hand side of Equation (B.19) can be con-
structed by following the same rationale, using again the triangle inequality:

j /∈ Ω
∣∣aTj Y

∣∣ =

∣∣∣∣∣∑
t∈Ω

Ztd̃
T
t d̃j + ED

T d̃j +
∑
t∈Ω

βZtq̃
T
t q̃j +

√
βEL

T q̃j

∣∣∣∣∣
≤

∣∣∣∣∣∑
t∈Ω

Zt

(
d̃Tt d̃j + βq̃Tt q̃j

)∣∣∣∣∣+
∣∣∣ED

T d̃j

∣∣∣+
√
β
∣∣∣EL

T q̃j

∣∣∣
≤
∑
t∈Ω

|Zt|
∣∣∣d̃Tt d̃j + βL̃tj

∣∣∣+ εl + βεG
√

∆max

≤ |Zi|sµ(D) + β|Zi|ηLmax + εl + βεG
√

∆max.

(B.27)

For the last inequality we have used the fact that, as shown in Lemma 10, each
row in L̃ has only M non-zero entries, at most η of which are sampled in the
support Ω, thus

∑
t∈Ω |L̃jt| ≤ ηLmax.

Requiring an inequality between the obtained bounds for both sides of Equa-
tion (B.19), and plugging in εeff = εl + βεG

√
∆max, we conclude that OMP

succeeds if

|Zi| (1− (s− 1)µ(D))− εeff√
1 + βL̃ii

> max
j /∈Ω

|Zi|(sµ(D) + βηLmax) + εeff√
1 + βL̃jj

(B.28)
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or

|Zi| (1− (s− 1)µ(D))− εeff√
1 + β∆max

>
|Zi|(sµ(D) + βηLmax) + εeff√

1 + β∆min
. (B.29)

From this, it follows that

s = ‖Z‖0,∞ <
1

1 + ΘL

(
1 +

1−ΘLβηLmax

µ(D)

)
− 1

µ(D)
· εeff
|Zi|

. (B.30)

In order for this condition to hold for every i, the theorem assumption in Equa-
tion (19) is that the above holds for |Zmin| instead of |Zi|, as |Zi| ≥ |Zmin|.
Therefore, the first step of OMP will succeed in finding an atom i from within
the support Ω.

To address the success of subsequent iterations of OMP, define the sparse
vector obtained after k < ‖Z‖0 iterations as Γk, and denote its support by
Ωk. Assuming that the algorithm has so far succeeded in identifying the correct
atoms, Ωk = supp{Γk} ⊂ supp{Z}. The next step of the algorithm is updating
the residual, which is performed by

Yk = Y −
∑
i∈Ωk

aiΓ
k
i . (B.31)

Since the clean signal X = AZ is also a linear combination of atoms from the
correct support, we could express

Xk = X−
∑
i∈Ωk

aiΓ
k
i = A(Z− Γk) = AZk, (B.32)

and so the objective is to recover the support of the sparse vector Zk, corre-
sponding to Xk. This sparse vector is defined as

Zki =

{
Zi − Γki if i ∈ Ωk

Zi if i /∈ Ωk
(B.33)

Note that supp{Zk} ⊆ supp{Z} and so

‖Zk‖0,∞ ≤ ‖Z‖0,∞. (B.34)

That is, the `0,∞ norm of the underlying solution of Xk does not increase as
the iterations proceed.

From the above definitions, we have that

Yk −Xk = Y −
∑
i∈Ωk

aiΓ
k
i −X +

∑
i∈Ωk

aiΓ
k
i = Y −X = E, (B.35)

hence the noise level is preserved, both locally and globally, i.e. all ε, εl, εD and
εG remain the same.
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From Equation (B.33) and the fact that |Ωk| = k, it follows that Zk differs
from Z in at most k places. As such, ‖Zk‖∞ is greater than the (k + 1)-th
largest element in absolute value in Z, implying ‖Zk‖∞ ≥ |Zmin|. Combining
this with Equation (B.34) and the theorem assumption, we obtain

‖Zk‖0,∞ <
1

1 + ΘL

(
1 +

1−ΘLβηLmax

µ(D)

)
− 1

µ(D)
· εeff
‖Zk‖∞

. (B.36)

Similar to the first iteration, the above inequality together with the fact that
the noise level is preserved, guarantees the success of the next iteration of OMP.
Consequently, OMP is guaranteed to recover the true support after ‖Z‖0 itera-
tions.

Finally, having recovered the true support, the coefficients are estimated by
solving

ZΩ
OMP = arg min

Z
‖AΩZ−Y‖22. (B.37)

Thus, similarly to the proof for the Thresholding algorithm, the solution satisfies

‖ZOMP − Z‖22 ≤
ε2

1− (s− 1)µ(D) + β(M − η)Lmin
. (B.38)

�

Appendix B.3. Stability Proof for BP

We commence by proving the `0,∞ condition for satisfying the ERC in the
GRSC model.

Proof of Theorem 6. For the ERC to be satisfied, we must require that ‖A†Ωai‖1 <
1 ∀i /∈ Ω. Using properties of induced norms,

‖A†Ωai‖1 = ‖(AT
ΩAΩ)−1AT

Ωai‖1 ≤ ‖(AT
ΩAΩ)−1‖1‖AT

Ωai‖1. (B.39)

Addressing the second term, observe that

AT
Ωai = D̃T

Ωd̃i + βQ̃T
Ωq̃i. (B.40)

As derived in Equation (B.8), ‖D̃T
Ωd̃i‖1 ≤ sµ(D). As for Q̃T

Ωq̃i, this is essentially
a subset of the i-th row (or column) in L̃, hence

‖Q̃T
Ωq̃i‖1 =

∑
j∈Ω

|L̃ij | ≤ ηmax
i6=j
|L̃ij | = ηLmax. (B.41)

We have used the fact that, as shown in Lemma 10, each row in L̃ has only M
non-zero entries, at most η of which are sampled in the support Ω. Combining
the two bounds and using the triangle inequality, we get

‖AT
Ωai‖1 ≤ ‖D̃T

Ωd̃i‖1 + β‖Q̃T
Ωq̃i‖1 ≤ sµ(D) + βηLmax. (B.42)
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Next, we address the term ‖(AT
ΩAΩ)−1‖1, which, from symmetry of the

matrix, equals ‖(AT
ΩAΩ)−1‖∞. Using the Ahlberg-Nilson-Varah bound [67]

and similar steps to those presented in Lemma 9 and Lemma 10, we have that

‖(AT
ΩAΩ)−1‖∞ ≤

1

1− (s− 1)µ(D) + β(M − η)Lmin
. (B.43)

This holds if the gram matrix AT
ΩAΩ is strictly diagonally dominant, i.e. if

1− (s−1)µ(D)+β(M−η)Lmin > 0, which is indeed the case given the theorem
assumption.

Plugging the above into Equation (B.39), we obtain the condition

‖A†Ωai‖1 ≤
sµ(D) + βηLmax

1− (s− 1)µ(D) + β(M − η)Lmin
< 1, (B.44)

leading to the claimed relationship

s = ‖Ω‖0,∞ <
1

2

(
1 +

1 + β(M − η)Lmin − βηLmax

µ(D)

)
. (B.45)

As this condition is the same for all columns ai, we conclude that if it is met
then the ERC is satisfied. �

Next, we prove the main stability theorem for BP.

Proof of Theorem 7 - BP stability guarantee. Denote by XLS the best `2 ap-
proximation of Y over the support Ω, i.e. XLS = AΩA†ΩY, and denote by

ZLS = A†ΩY the optimal coefficient vector, satisfying XLS = AΩZLS.
In [61, Theorem 8], Tropp proved that if the ERC is met with constant

θ = 1−max
i/∈Ω
‖A†Ωai‖1 for the support Ω, and ‖AT (Y −XLS)‖∞ ≤ λθ, then:

1. The support of ZBP is contained in Ω.

2. ‖ZBP − ZLS‖∞ < λ‖(AT
ΩAΩ)−1‖∞.

3. The support of ZBP contains every index i for which |ZLSi | > λ‖(AT
ΩAΩ)−1‖∞.

4. The minimizer of the problem, ZBP, is unique.

In Theorem 6 we have shown that the ERC is met if the `0,∞ norm of the

support is less than 1
2

(
1 + 1+β(M−η)Lmin−βηLmax

µ(D)

)
. The stricter assumption on

s in the current theorem clearly satisfies this requirement, and so the ERC is
met.

Using Equations (B.42) and (B.43), one can easily show that under the
same condition from Equation (23), we have

‖AT (Y −XLS)‖∞ ≤ 2εeff . (B.46)
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Considering the theorem assumption on s and employing the inequality in Equa-
tion (B.44), we can lower bound the ERC constant by

θ = 1−max
i/∈Ω
‖A†Ωai‖1 ≥ 1− sµ(D) + βηLmax

1− (s− 1)µ(D) + β(M − η)Lmin
>

1

2
. (B.47)

Combining this with Equation (B.46), we have that for λ = 4εeff ,

‖AT (Y −XLS)‖∞ ≤ 2εeff < θλ. (B.48)

Therefore we conclude that both conditions of [61, Theorem 8] are fulfilled
in the GRSC setup, leading immediately to most of our theorem’s results.

Concerning the second point, from Tropp’s theorem we have ‖ZBP−ZLS‖∞ <
λ‖(AT

ΩAΩ)−1‖∞. Using Equation (B.43) we can upper bound

‖(AT
ΩAΩ)−1‖∞ ≤

1

1− (s− 1)µ(D) + β(M − η)Lmin

≤ 1

1− (s− 1)µ(D) + β(M − η)Lmin − 2βηLmax
.

(B.49)

Since we assumed

s = ‖Z‖0,∞ <
1

3

(
1 +

1 + β(M − η)Lmin − 2βηLmax

µ(D)

)
≤ 1

3

(
3 +

1 + 3β(M − η)Lmin − 6βηLmax

µ(D)

)
,

(B.50)

it stems that (s − 1)µ(D) − β(M − η)Lmin + 2βηLmax >
1
3 , thus from Equa-

tion (B.49)

‖(AT
ΩAΩ)−1‖∞ <

3

2
. (B.51)

Consequently, using once more the assumption that λ = 4εeff ,

‖ZBP − ZLS‖∞ < λ‖(AT
ΩAΩ)−1‖∞ < 6εeff . (B.52)

Moreover, the distance from the real Z satisfies

‖ZLS − Z‖∞ = ‖(AT
ΩAΩ)−1AT

Ω(Y −X)‖∞

≤ ‖(AT
ΩAΩ)−1‖∞‖AT

ΩE‖∞ <
3

2
εeff

(B.53)

where we have used Equation (B.51) and the fact that

‖AT
ΩE‖∞ = max

i∈Ω

∣∣aTi E
∣∣ = max

i∈Ω

∣∣∣d̃Ti ED +
√
βq̃Ti EL

∣∣∣
≤ max

i∈Ω

∣∣∣d̃Ti ED

∣∣∣+ max
i∈Ω

∣∣∣√βq̃Ti EL

∣∣∣ ≤ εl + βεG
√

∆max = εeff .

(B.54)
Finally, using the triangle inequality we obtain

‖ZBP − Z‖∞ ≤ ‖ZBP − ZLS‖∞ + ‖ZLS − Z‖∞ <
15

2
εeff . (B.55)

�
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