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Unsupervised Single Image Dehazing Using Dark
Channel Prior Loss
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Abstract— Single image dehazing is a critical stage in
many modern-day autonomous vision applications. Early
prior-based methods often involved a time-consuming minimiza-
tion of a hand-crafted energy function. Recent learning-based
approaches utilize the representational power of deep neural
networks (DNNs) to learn the underlying transformation between
hazy and clear images. Due to inherent limitations in collecting
matching clear and hazy images, these methods resort to training
on synthetic data, constructed from indoor images and corre-
sponding depth information. This may result in a possible domain
shift when treating outdoor scenes. We propose a completely
unsupervised method of training via minimization of the well-
known, Dark Channel Prior (DCP) energy function. Instead of
feeding the network with synthetic data, we solely use real-world
outdoor images and tune the network’s parameters by directly
minimizing the DCP. Although our “Deep DCP” technique can
be regarded as a fast approximator of DCP, it actually improves
its results significantly. This suggests an additional regularization
obtained via the network and learning process. Experiments show
that our method performs on par with large-scale supervised
methods.

Index Terms— Energy functions, deep neural networks, unsu-
pervised learning, single image dehazing, dark channel prior.

I. INTRODUCTION

HAZE is an atmospheric phenomenon where small parti-
cles, called aerosols, obstruct the clarity of an outdoor

scene and lead to poor contrast and loss of detail. The
existence of haze affects an image in two aspects. It attenuates
the scene radiance with correspondence to an object’s distance
from the camera. Moreover, it introduces an additional ambient
light component, called the airlight, which causes a “veiling
effect” over the clear image. The formation of a hazy image is
often described as a linear per-pixel combination of the clear
scene radiance and the airlight; the effect of each component
is controlled by the transmission map. To recover the scene
radiance image, one has to solve a system of 3N linear
equations with 4N + 3 unknowns (where N is the number
of image pixels).

In order to handle the under-constrained haze creation
model, many researchers suggested hand-crafted image priors,
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shedding additional light on the behaviour of hazy versus clean
images [1]–[9]. These prior-based methods often formulate the
problem of dehazing as an energy minimization task, where
obtaining the solution of each image is called “inference”,
requiring a non-trivial optimization scheme. With the increas-
ing importance of image dehazing as an initial pre-processing
stage in many computer-vision tasks (e.g., object detection,
autonomous car navigation), large-scale learning-based tech-
niques have been deployed to solve it [10]–[14]. These meth-
ods, however, require thousands of input and output examples.

Since clean and hazy images of the exact same scene
and lighting conditions are hard to obtain, learning-based
methods commonly resort to synthetic dataset creation. Given
a clean image and a corresponding depth map, one can
calculate the transmission map and use the haze creation model
to obtain hazy images with varying amounts of haze and
airlight components. These pairs of hazy and clear images
are later fed as inputs and labels in a supervised training of
a DNN. Outdoor depth information, however, is incredibly
imprecise. For instance, the depth information of the outdoor
Make3D [15] and KITTI [16] datasets suffers from over
4 meters of average root-Mean-Square-Error (rMSE), while
the rMSE of the indoor NYU2 [17] is only 0.5. Consequently,
large-scale methods either use the more reliable indoor depth
information [10], [12]–[14], or draw the depth map at ran-
dom [6], [11]. Either of these practices creates a domain shift
when addressing real-world outdoor images.

We propose to leverage the representational power of DNNs,
but instead of feeding them with inaccurate synthetic pairs
of hazy and clean images, we train them in an unsupervised
fashion using real-world hazy images only. We optimize the
network weights by minimizing an unsupervised loss function,
essentially the Dark Channel Prior (DCP) [3] energy function.
Our network can be regarded as a fast feed-forward approx-
imator of the DCP. However, by stopping the optimization
early, we get a significant boost in results over the classic
DCP. This implies an added regularization, stemming from
the network architecture and learning process. Our network,
based on the Context Aggregation Network (CAN) architec-
ture [18], is trained end-to-end from scratch without relying
on any external data apart from raw hazy images. It provides
the predicted transmission maps as output, from which the
dehazed image can be easily reconstructed. We perform a
comprehensive quantitative evaluation1 of our method and
present state-of-the-art results on SOTS-outdoor in the recently

1Our code is available at: https://github.com/AlonaGolts/Deep_Energy
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released RESIDE dataset [19]. We show qualitative results on
real-world images, demonstrating that the additional regular-
ization provided by the network reduces common artifacts of
prior-based methods, such as over-saturation and high-contrast.

Our “Deep-DCP” method offers the following contributions:
1) It provides state-of-the-art results in outdoor single

image dehazing, outperforming both prior-based and
fully-supervised DNN methods.

2) It achieves an impressive ∼6.5dB boost in outdoor
PSNR over classical DCP, validating an effective reg-
ularization.

3) It treats the sky successfully where DCP typically fails.
4) It is among the first2 to perform unsupervised training

in single image dehazing, reducing the need in synthetic
data.

5) It does not require an explicit optimization for each
image as DCP, but rather learns the underlying trans-
formation during training, requiring a fast forward-pass
during test.

6) It offers a generic methodology of unsupervised train-
ing with energy functions and can be applied to any
successful energy function.

The remainder of this paper is structured as follows:
Section II provides a survey of previous prior-based and
data-driven approaches for dehazing; Section III describes
the DCP, its use as a loss function and our CAN-based
architecture; Section IV provides quantitative, qualitative and
runtime experimental results; Section V includes discussions
and further analysis; finally, Section VI concludes this work.

II. RELATED WORK

A. Prior-Based Approaches

Early attempts at image dehazing have incorporated several
images of the same scene, taken at different bad weather
conditions [21], or using different polarization filters [22].
Kopf et al. [23] later performed dehazing of outdoor images
by utilizing existing geo-referenced terrain and urban models
including depth, texture and GIS data.

In [2], Tan et al. unveiled the haze from a single image by
maximizing the local contrast of each patch in the image using
a Markov Random Field (MRF) framework. In [1], Fattal et al.
suggested utilizing the lack of correlation between the trans-
mission and shading in a localized set of pixels, as a prior
to resolve the ambiguity between the scene albedo and the
airlight. Tarel and Hautiere [4] provided a fast calculation
of the “atmosperic veil” using a series of edge-preserving
linear filter operations. In [24], Nishino et al. exploited the
statistical independence between the scene albedo and depth
and factorized both quantities into an MRF-based energy
function.

In [3], He et al. proposed the now widely used DCP and
demonstrated that in clear images the darkest pixel in an image
patch is close to zero (this, however, does not hold in sky-
regions). Using this and the assumption that the transmission
map within a small image patch is constant, a coarse map can

2See later discussion on a GAN based alternative [20].

be easily derived. They further suggested a computationally
costly soft matting operation for smoothing out the transmis-
sion and reconstructing the final dehazed image. Follow-up
works have improved both the quality and efficiency of DCP.
Specifically, in [8], the authors proposed a general boundary
constraint for the transmission map for which the DCP is a
special case.

Several color-based priors have been suggested as well for
boosting dehazing performance [5], [7], [25]. In [5], Fattal
used the “color-lines” assumption, stating that pixels in small
image patches have a 1D distribution in RGB-space [26].
The offset of these straight lines from the origin in hazy
images allow to estimate the transmission map. Berman et al.
proposed a global approach, called non-local dehazing (NLD)
[7]. They observed that a haze-free image contains only several
hundreds of distinct colors, clustered as points in RGB-space.
In the presence of haze, these color clusters form a “haze-
line” where the position of a certain pixel along the line
corresponds to its initial radiance color and distance from
the camera.

While prior-based methods reveal fine image details, they
often suffer from increased saturation and contrast, unrealistic
colors and difficulty in handling sky regions. This is due in
part to assumptions not suited for all hazy image patches.
In addition, each image requires a separate non-trivial opti-
mization and solution which can be prohibitive for real-time
applications.

B. Data-Driven Approaches

In [6], a Color Attenuation Prior (CAP) is suggested, mixing
hand-crafted observations with a data-driven approach. CAP
assumes that the image depth, the amount of haze and the
difference between the brightness and saturation are linearly
correlated. To find the exact correlation, the authors opt for
supervised regression between synthesized hazy patches and
their corresponding depth maps. This results in fast inference
at test time.

One of the first works to propose single image dehazing
using CNNs is [12]. The method, called MSCNN, is trained
by feeding a two-stage network with pairs of hazy images
and corresponding transmission maps. In DehazeNet [11],
Cai et al. create a novel CNN architecture (featuring maxout
and BReLU layers), inspired by popular prior-based meth-
ods [2], [3], [6], [9]. AOD-Net [10] in turn, proposes a
joint estimation of both the transmission map and the airlight
via a unified representation. Using this representation, one
can easily reconstruct the scene radiance directly in an end-
to-end forward-pass computation. This helps reduce errors
accumulated in the separate calculation of the two quantities.

In the recent Gated Fusion Network (GFN) [13], a dehazed
image is produced as a fusion of the white balance, contrast
enhanced and gamma corrected images (all derived from the
hazy image). The network outputs three confidence maps
which determine the effect of each component. To com-
bat halo effects of a single scale encoder-decoder structure,
a multi-scale architecture is used where a coarse output is
first produced, then added as input to a finer scale network.
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This method provides impressive results on RESIDE’s SOTS-
indoor, but quadruples the size of the input during training
and test, making evaluation inefficient in terms of memory.
Finally, in a recent work reported in [14], the authors utilize the
pre-trained VGG [27] network as encoder and only train the
symmetric decoder via a combination of MSE and perceptual
loss.

While learning-based methods achieve impressive results,
they are trained in a supervised way, relying on synthetic
datasets. Some methods use more accurate indoor depth
information to create labelled inputs [10], [12]–[14]. This
practice, however, directs increasing research effort to opti-
mizing indoor performance, while the predominant need for
dehazing is actually outdoors. Other methods use real-world
outdoor images, but compromise the accuracy of the depth
information. For example, [6] draws each pixel in the depth
map at random from a (0, 1) uniform distribution and [11]
enforces an additional constraint of constant depth within
16 × 16 patches. These assumptions result in block and halo
artifacts in the reconstructed image and require additional
post-processing.

In contrast to previous data-driven methods, the work
reported in [20] proposes an unsupervised training scheme.
The conditional GAN architecture in [20] consists of three
generator networks, receiving the hazy image as input and
producing the scene radiance, transmission map and airlight
channels, and one discriminator network, deciding whether the
reconstructed dehazed image is real or fake. While [20] has
the same motivation as ours, there are several key differences
between the two works: (1) As opposed to GANs, which are
known as less stable and harder to train, our network is a
relatively simple and easy to train feed-forward model; (2) In
practice, [20] does use a synthetic indoor training set to train
their GAN. Specifically, during training they use both hazy
images, as well as the ground truth dehazed versions; however,
they do not require the hazy image and its clear version to be
paired/corresponding. Nevertheless, this setup entails the need
for a collection of pairs of images for which one has both the
hazy and dehazed versions. Our method, on the other hand,
uses only real-world hazy images to tune the weights of the
network. By doing so, we circumvent the need for a large
synthetic dataset and include more complex images that do
not necessarily abide to the simplified haze formation model.

III. OUR METHOD

In the following we will describe our method for single
image dehazing, including the driving force of our unsuper-
vised loss function, the Dark Channel Prior [3], its implemen-
tation as a loss function for training a CNN and the architecture
we choose for the task at hand.

A. Haze Model

The popular haze formation model in [28] is given as:
I(x) = t (x)J(x) + (1 − t (x))A,

t (x) = e−βd(x). (1)

According to the above, the observed hazy image, I(x) ∈
R

N×3, is a convex linear combination of the haze-free scene
radiance, J(x), and the atmospheric light component, A, called
the airlight; usually represented as a constant 3-vector in
RGB-space, A = (

Ar , Ag, Ab
)
. The transmission map coeffi-

cients, t (x) ∈ R
N control the relative force of each component,

in each pixel in the image, x ∈ R
N . The transmission is a

function of the depth, d(x), of the scene from the observer. Our
goal in single-image-dehazing is to obtain the haze-free scene
radiance, J(x). To do so, however, one needs to solve a set
of 3N equations (only I(x) is given), with 4N + 3 unknowns
(J(x), t (x), A). Thus, additional prior knowledge of the images
in question is needed.

B. Dark Channel Prior

The dark channel prior is an image statistical property,
indicating that in small patches of haze-free outdoor images,
the darkest pixel across all color channels is very dark, and
close to zero. The “dark channel” of the image is defined as

Jdark(x) = min
c∈{r,g,b}( min

y∈�(x)

(
Jc(y)

)
), (2)

where �(x) is a small patch, centered around x. This obser-
vation is contributed by three factors which appear in outdoor
images: (1) shadows – induced by cars, buildings and trees;
(2) colorful objects – where one color channel is dominant,
and the others are close to zero, e.g., red flowers, green leaves,
blue sea; and (3) naturally dark objects – such as tree trunks
and rocks.

Assuming that A is known and the transmission within a
small image patch, denoted as t̃(x), is constant, one can apply
a minimum operation across channels and pixels in the haze
formation equation in (1) (effectively zeroing Jc(y)) and get
a prediction for the transmittance [3]:

t̃(x) = 1 − ω · min
c

(
min

y∈�(x)

(
Ic(y)

Ac

))
, (3)

where ω = 0.95 leaves a small amount of haze for
natural-looking results. In sky regions, although the dark
channel does not always hold, it is assumed that I/A → 1,
thus t̃(x) → 0. The resulting coarse transmission map requires
an additional step of refinement.

C. Soft Matting

The haze formation model in (1) is very similar to the
composition model in image matting [29], where an output
image is a convex linear combination of foreground and
background images; controlled by the alpha matte, α. If one
replaces the α-matte with the coarse transmission map, t̃(x),
the following energy function suggested in [29] can be used
to acquire the refined map, t (x):

E(t, t̃) = tT Lt + λ(t − t̃)T (t − t̃), (4)

where the first term promotes successful image matting,
and the second, fidelity to the dark channel solution. The
parameter λ, controlling the force between the two, is set
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to λ = 10−4 [3]. The matrix L is a Laplacian-like matrix,
dedicated to image matting and given by [29]:

Li j =
∑

n|(i, j )∈pn

(δi j − wn
i j ), ∀i, j = 1 . . . N

wn
i j = 1

|pn|
(

1 + (Ii − μn)
T (�n + ε

|pn|U3)
−1(I j − μn)

)
,

(5)

where i, j are two pixels within a small patch pn around pixel
n; |pn| is the size of the patch and equal to 3 × 3 = 9 as
suggested in [29]; δi j is the Kronecker delta; μn ∈ R

3 and
�n ∈ R

3×3 are the mean and covariance of the patch; U3 is
the 3 × 3 identitly matrix; and ε is a smoothing parameter set
to ε = 10−6 [29]. In cases where i, j are not within the same
3 × 3 patch, Li j = 0, making the matrix L sparse.

D. Implementation as a Loss Function

We rewrite the energy function in equation (4) in a
tensor-friendly format by using a known decomposition of
Laplacian matrices via their weights, given in (5). Rephrasing
the first term in (4) in terms of weights, we have that

E1(t, t̃) = tT Lt =
∑
n∈N

∑
i, j∈pn

wn
i j (ti − t j )

2, (6)

where we sum over all overlapping 3×3 patches n ∈ N in the
transmission map t, adding the contributions of all pixels i, j
that reside within the same patch pn. Since i, j can both be
in the range [1..9] (�1� being the first pixel in the patch, and
�9� being the last), the maximum number of possible i, j ∈ pn

combinations is K = (32) · (32) = 81. We can rewrite this
sum in vector form as follows:

E1 =
∑
n∈N

∑
i, j∈pn

wn
i j (ti − t j )

2 =
N∑

n=1

K∑
k=1

W � (TI − TJ )2, (7)

where � is an element-wise multiplication, and k ∈ [1..K =
81] indexes all possible combinations of pixels i, j within
a 3 × 3 patch. The matrix W ∈ R

N×K is a vector-
ized version of the scalar weights wn

i j , and TI , TJ ∈
R

N×K are repetitions of the refined transmission map t.
Denote (1, 2, . . . , 9) as representing each pixel coordinate
in a 3 × 3 patch. Each row n ∈ N in the matrix TI

holds the following repetitions of pixel values within the
relevent patch pn: (1, .., 1, 2, . . . , 2, . . . ., 9, . . . , 9)n ∈ R

81.
Similarly, row n in the matrix TJ holds the repetitions:
(1, 2, . . . , 9, 1, 2, . . . , 9, . . . , 1, 2, . . . , 9)n ∈ R

81. The vector-
ization of the second term in Equation (4) is much simpler,
giving rise to the following:

E(tθ , I) =
N∑

n=1

K∑
k=1

W(I) � (TI
θ − TJ

θ )2 + λ

N∑
n=1

(tθ − t̃(I))2,

(8)

where we have added a subscript θ to denote the matrices
t, TI , TJ are a result of our learned network. On the other
hand, both the weight matrix, W, and the coarse transmission
map, t̃, are computed using the input hazy image, I, thus we
have adjusted the input of the energy function accordingly.

Fig. 1. Our loss module, which receives the prediction of the network, tθ ,
along with the hazy image, I, and outputs the value of the DCP [3] energy
loss.

Above is the loss function with which we train our network,
whose predicted transmission map is parametrized by tθ .
We tune the parameters, θ , by minimizing the loss function
in (8) over the training set of hazy images, {Im}M

m=1:

θ∗ = arg min
θ

[
1

M

M∑
m=1

E(tθ (Im), Im)

]
, (9)

where M is the number of images. Note that we do not use the
“labels”, i.e., the clear images, at any point, only the original
hazy ones. A schematic diagram of the inputs and outputs of
our loss module is given in Figure. 1.

E. Computing the Scene Radiance

Once the network has finished training, the transmission
map, tθ (x), of a new hazy image can be obtained by a
forward-pass operation. This is used to recover the scene
radiance via the haze formation model in (1):

J(x) = I(x) − A
max(tθ (x), t0)

+ A, (10)

where t0, which discourages division by numbers close to zero,
is set to t0 = 0.1 as suggested in [3]. In order to recover
the missing airlight component, A, we follow the method
suggested in [3]: we first pick the 0.1% brightest pixels in the
dark channel of the hazy image. Then, out of these locations
we pick the brightest pixel in the hazy image, I. That is the
final chosen atmospheric light, A.

F. Architecture

Our fully-convolutional, “Dilated Residual Network”,
shown in Figure 2, is inspired by the Context Aggregation
Network (CAN) [18], which has shown impressive results
in dense-output applications. Similarly to CAN, we keep
the resolution of all layers intact and identical to that of
the input and output. In order to get an accurate prediction
we avoid pooling and upsampling, and instead increase the
receptive field via dilated convolutions with exponentially
increasing dilation factors. Contrary to [18], between each
dilated convolution we add another two regular convolution
layers to create a richer nonlinear representation.
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Fig. 2. System architecture. Our fully-convolutional network receives real-world hazy images. Apart from the input and output layers, our network is a
cascade of dilated residual blocks (dilation written above each block), which gradually increase the receptive field. The network’s predicted transmission and
the input image, are fed to the unsupervised, DCP loss.

Our network is thus built as a cascade of 6 dilated residual
blocks; each made up of two regular convolutions, followed
by a single dilated convolution. The dilation factors increase
by a power of two from one block to the next. The filter size
and width of all convolution layers (apart from the output)
is 3 × 3 × 32. All regular convolutions are followed by
batch normalization [30] and ReLU nonlinearity [31], and
all dilated ones are followed by batch-norm only. The final
layer is a linear transformation to the output dimension of
the transmission map 1 ×1 ×1. To improve gradient flow and
propagate finer details to the output, we incorporate additional
Resnet-style [32] skip connections between the input and
output of each block. The skip connection is a simple addition
of the input to the output of each block.

IV. EXPERIMENTAL RESULTS

A. Dataset

In order to train and evaluate the performance of our
network, we use the recent large-scale RESIDE (REalistic
Single Image DEhazing) dataset [19]. RESIDE’s training set,
called “ITS”, includes 13, 990 synthetic indoor images, cre-
ated from the NYU2 [17] and Middlebury stereo datasets [33].
The test set includes both indoor and outdoor sections,
called “SOTS-indoor” and “SOTS-outdoor”,3 each contain-
ing 500 synthetic images. A smaller test set of 20 outdoor
images, called “HSTS”, is also suggested. HSTS has a mix
of 10 synthetic images (where ground truth is known) and
10 real-world images. All synthetic hazy images are cre-
ated by first collecting ground-truth clean images with their
corresponding depth maps and applying the haze formation
model with different configurations of the A, β parameters
in (1). The beta version of RESIDE provides an additional
collection of 4, 322 real-world images, mined from the web,
called “RTTS”. Instead of using the synthetic indoor database
of ITS (or its variations based on NYU2 and Middlebury),
as in [10], [12]–[14], we train our network on the real-world
images of RTTS. For the evaluation of PSNR (Peak Signal to

3Although in the latest published paper of RESIDE, SOTS-outdoor is
not officially featured, the selection of 500 specific outdoor images are
still available (as well as in earlier Arxiv versions) in RESIDE’s website
in: https://www.dropbox.com/s/y6jupfvitv0dx5w/SOTS.zip?dl=0file_subpath=
%2FSOTS

Noise Ratio) and SSIM (Structural Similarity) criteria during
training, we use as validation a subset of 500 images from
RESIDE beta’s “OTS” synthetic outdoor training set. The 500
images are selected at random from Part-I of OTS, where we
make sure that no images from the SOTS-outdoor and HSTS
test sets are selected for validation.

B. Implementation Details

To enrich the RTTS training set, we perform data augmen-
tation. The first augmentation is simply resizing the original
hazy images to size 128 × 128 using bilinear interpolation.
The second, third and fourth augmentations are performed
randomly. Each image can be flipped horizontally or kept as
is; randomly cropped to 256 × 256 or 512 × 512, and rotated
at 0, 45, 90, or 135 degrees. If rotated, only the valid center of
the image is taken. All augmented images are then resized to
128 × 128. The final number of training images is therefore:
4322 × 4 = 17, 288.

The parameters of our loss function are taken exactly (no
additional tuning) as suggested in [3], [29]: λ = 10−4, ω =
0.95, t0 = 0.1, ε = 10−6, DCP patch size: 15 × 15, and soft
matting patch size: 3 × 3. We use the Adam optimizer [34]
with batch size of 24; initial learning rate of lr = 3 ·10−4, and
exponential decay with factor 0.96 every 3 epochs. The net-
work weights are initialized using random initialization with
zero mean and variance of 0.1. Our method is implemented
in TensorFlow on a GTX Titan-X Nvidia GPU. Training time
to get the optimal solution (about 30 epochs) takes 8 hours.
For outdoor results we stop the training at epoch 27, whereas
for SOTS-indoor, we keep training until we reach 30 epochs.
Our stopping criterion is explained further in section V-B.

C. Quantitative Evaluation

We evaluate the performance of our method on the
SOTS-indoor, SOTS-outdoor and HSTS test sets. These test
sets are created synthetically, therefore featuring both the
clean images and their hazy versions. We measure the quality
of our solution in terms of the PSNR and SSIM metrics.
We obtain the original code and compare our results to the
following prior-based approaches: DCP [3],4 BCCR [8] and
NLD [7], and the following data-driven methods: CAP [6],

4Implementation in https://github.com/sjtrny/Dark-Channel-Haze-Removal
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TABLE I

QUANTITATIVE PSNR/SSIM RESULTS OF OUR APPROACH (HIGHER IS BETTER). FOR BOTH SOTS-OUTDOOR AND HSTS WE REPORT THE RESULT OF
EPOCH 27, WHEREAS IN SOTS-INDOOR WE REPORT THE RESULT OF EPOCH 30

TABLE II

QUANTITATIVE RESULTS ON THE MIDDLEBURY PART OF D-HAZY DATASET [36]

MSCNN [12], DehazeNet [11], AOD-Net [10] and GFN [13].
In case the dehazed images are out of the range [0, 1],
we normalize them to [0, 1] only if it improves PSNR and
SSIM values.

The numeric results5 are given in Table I. We get the
highest PSNR and SSIM scores among all other methods in
the larger SOTS-outdoor, and the highest SSIM in the smaller
HSTS. Our method, represented by a rich neural network
and trained to accommodate numerous images, obtains better
results compared to prior-based methods. Specifically, com-
pared to DCP, our method strives to approximate the solution
of the same energy function, but we stop it before reaching an
absolute minimum in order to get further regularization. This
is particularly noticed in outdoor images where DCP often
over-saturates the sky.

With regard to data-driven approaches, our high score is
attributed to the fact that we train on real-world outdoor
images, whereas competing methods [10], [12], [13] con-
centrate on synthetic indoor images and suffer from a cer-
tain domain shift when addressing outdoor data. In addition,
the synthetic hazy and clean pairs are created from coarse
depth data for which training creates a negative bias towards
data-driven approaches. An example of an indoor training
image in ITS is given in Figure 5. Notice the rough misplaced
edges in the transmission map which later translate to inaccu-
rate hazy images. Indeed, our closest competitor in terms of
outdoor results is DehazeNet [11]. Recall that this method is
trained on a large variety of clean image patches of outdoor
scenes, making it more robust compared to methods trained
on ITS.

We include the results of our method on SOTS-indoor in
which it performs favourably, but gets a lower score compared
to other data-driven methods and even DCP. This is expected
since we train on outdoor images, creating a tradeoff between
indoor and outdoor performance. As for DCP, it behaves more
agreeably on indoor images which coincide better with the
haze formation model and do not include sky regions.

D. Comparison to Unsupervised GAN [20]

We further compare our method with the unsupervised
GAN-based method, introduced in [20]. We provide the PSNR
and SSIM results of our method, along with those of DCP [3],
CAP [6], MSCNN [12], DehazeNet [11] and [20], which we

5Our results slightly differ from [19]. We use the original DCP [3], whereas
they use the faster version [35] with worse quality.

refer to as “GAN-Unsup”. We adopt the D-HAZY dataset [36]
as suggested in [20], and report our results on the Middlebury
set of images. The D-HAZY dataset consists of synthetic
indoor images, thus similarly to RESIDE’s SOTS-indoor,
we provide the results of our method trained for 30 epochs.
In addition, since the set of images contain relatively thicker
haze, we also add the results of our model, trained for 33
epochs. As can be seen from Table II, for 33 epochs of
training we provide the second best PSNR result and the best
SSIM result. As opposed to [20], which was both trained and
tested on indoor synthetic images, our model was fed with
only real-world outdoor images, demonstrating its impressive
generalization power.

E. Qualitative Results

We present qualitative results on HSTS in Figure 3. In the
top part of Figure 3, it can be seen that our method maintains
the true colors of the original image, whereas DCP [3],
BCCR [8] and NLD [7] tend to produce exaggerated sky
regions. Our results are similar to those produced by CAP [6],
however slightly closer to the true colors exhibited in the
ground truth image. In the bottom half of Figure 3 we
provide a comparison to deep-learning based methods. In most
images we maintain the true contrast and colors, whereas
MSCNN [12] and GFN [13] provide more contrast-enhanced
images. At times, we slightly change the color of the sky,
which is to be expected since our method is unsupervised and
does not witness the clear images at any stage. In Figure 4, one
can see a real-world image comparison of our results with both
prior-based and data-driven methods. We display the output of
our network after 27 epochs (the optimal results for the OTS
validation set we use) and after 30 epochs, where the produced
images are more similar to DCP (see discussion on sec. V-A).
One can see that after 27 epochs we do not remove all of the
haze, perhaps indicating that the outdoor images in RESIDE
are less hazy than real-world hazy images. For 30 epochs, our
result is more saturated and of higher contrast.

F. Runtime Comparison

Apart from improving the overall PSNR and SSIM perfor-
mance of DCP, we hereby show that we are as efficient as fast
implementations of DCP. Our inference procedure consists of
two parts: a forward-pass over the trained network to obtain
the predicted transmission map (performed in TensorFlow),
and reconstruction using Equation 10 (performed in Numpy).
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Fig. 3. Qualitative results on RESIDE’s HSTS. Upper half: comparison to prior-based methods; bottom half: comparison to deep-learning-based methods.

We compare ourselves to a Matlab implementation6 of soft
matting DCP [3], denoted as “slow-DCP”, and guided image
filter DCP [35], denoted as “fast-DCP”. Note that fast-DCP
is an approximation of slow-DCP and though being very
efficient, achieves inferior results. Although Matlab is more
efficient than Numpy and TensorFlow, we do get the benefit
of using the GPU. Thus for fair comparison, we include both
GPU and Intel(R) i7-5930k 3.5GHz CPU runtimes of our
solution. In Table III, we report the average runtimes (lower
is better) over the 500 images in SOTS-outdoor which feature
varying widths of ∼500 pixels. Compared to the explicit
optimization of slow-DCP, our feed-forward inference is much
faster (×77 in GPU and ×27 in CPU). We perform slightly
faster than fast-DCP (×3.8 in GPU and ×1.3 in CPU), and
we supply results of much better visual quality which translate
to a ∼ 9.5 dB increase in PSNR. Additional speed-up of
our method can be performed by joint estimation of t, A
during training, but we leave this for future work. To conclude,

6Code given in: https://github.com/sjtrny/Dark-Channel-Haze-Removal.
We use the regular guided image filter implementation, without subsampling.

as efficient as the DCP explicit solution may be, it will lack
the additional regularization obtained by our approach.

G. Limitations of Our Method

Figure 6 shows some failure cases of our approach.
Although we train our network on a variety of real-world hazy
images, our method performs poorly on images with very high
degrees of haze. This is often the case for other data-driven
methods, such as [6], [11], [12]. In our case, the residual haze
is mainly due to the choice of stopping point that currently
optimizes PSNR performance on RESIDE’s OTS benchmark,
biased towards images with mild haze. An alternative strategy
would be choosing the stopping point so as to optimize the
performance on a multitude of benchmarks, including indoor,
outdoor, mild and heavy haze images. If the final goal of the
dehazing algorithm is enhancement and display to a human
observer, one can instead optimize a no-reference perceptual
quality score as NIQE [37] (see discussion in V-D).

Additionally, as can be seen in Figure 3, our method
sometimes distorts the overall color of the sky (see rows 4,7,8).
This shift in color may be due to inaccurate estimation
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Fig. 4. Qualitative results of single image dehazing on real-world images. The numbers in parenthesis are the number of epochs spent training our network.

Fig. 5. Example of a synthetic image and its coarse transmission map from
RESIDE’s ITS training dataset [19].

TABLE III

AVERAGE RUNTIME AND PERFORMANCE OF SOTS-OUTDOOR

of the atmospheric airlight component. Instead of using a
constant airlight vector, derived from the dark channel prior
itself as suggested in [3], we can model the contribution of
the atmosphere as a separate spatially-varying channel, and
estimate it using the DNN, exactly as performed for the
transmission map. This direction, however, is currently left
for future work.

V. DISCUSSION

A. Proximity to Dark Channel Prior

During training, our network strives to approximate the DCP
energy function. Since it optimizes the loss for the entire
corpus of images, it may output different results from DCP [3].
While DCP operates on one image at a time, our network

Fig. 6. Example failure cases of our approach.

learns a more “universal solution”, suited for multiple images.
In addition, as the epochs evolve and the loss value decreases,
we reach closer and closer to DCP, as can be seen in the three
rightmost columns in Figure 4. At earlier epochs the output
images still contain a large amount of haze, whereas further on,
most of the haze is lifted, but the colors appear more saturated,
even non-realistic. We search for a middle-ground where most
of the haze is removed and one can see the details, but
the colors and contrast remain realistic and physically valid.
The benefit of stopping before reaching a deeper optimum
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of DCP is especially noticeable in sky regions where DCP
would output an exaggerated and amped-up version of the
sky, whereas we produce a more natural color. In our case
this “sweet-spot” is reached after 27 epochs over the training
data. Nonetheless, we can keep training for a few more epochs
to get more vivid results which may be more pleasant to the
human eye.

B. Unsupervised Training Regime

Although our training is completely unsupervised, we do
need a stopping criterion since reaching the minimum of
the loss function is not always beneficial in terms of the
visual and quantitative results. To do so, we evaluate the
average loss value, PSNR and SSIM of a small supervised
set of 500 images from OTS (not part of SOTS-outdoor
or HSTS). A typical behaviour of the results is a decrease
of the average loss; an increase in performance in PSNR
and SSIM; reaching a maximum, and then, a decrease of
these criteria. We choose the epoch/model that gave the best
performance on the validation set from OTS. The learning
parameters are chosen using a similar technique. We do note
that choosing the training stopping point using the PSNR and
SSIM metrics, does require a certain degree of supervision.
This supervision, however, determines a single scalar (the
number of training epochs) – a small measure as compared to
the hundreds of thousands of learned parameters of our DNN.
A completely unsupervised alternative may be suggested, opti-
mizing a no-reference perceptual quality score as NIQE [37],
requiring no supervision whatsoever, but naturally leading to
higher distortion. A future direction of our work includes
experimenting with a combination of both distortion-based and
no-reference perceptual metrics.

C. Treatment of Sky Areas

The original DCP in [3] has been shown to produce artifacts
such as noise amplification and exaggerated contrast in sky
areas. The weighted Guided Image Filter (WGIF), proposed
in [38], models the dehazing application as an image enhance-
ment problem, and shows the amplification of DCP in sky
areas is ×9. The authors of [38], [39] suggest tackling this
issue by adding a constant sky compensation term to the initial
transmission map, provided by DCP. They target the sky areas
exclusively by observing the histogram of the hazy image and
adding the constant term according to the amount of haze.

Although our method is based on the DCP energy function,
we perform early stopping mid-training, before reaching the
absolute minimum of the loss function. As a result, we do
not suffer as much from noise amplification in sky areas,
as can be seen in rows 1, 2 in Figure 3 and rows 2, 5, 6
in Figure 4. This contributes greatly to our high PSNR values
in outdoor images, compared to DCP. This benefit, however,
is a side-effect and we do not address the sky regions directly.
An interesting modification of our scheme is adding the sky
compensation term straight into the energy module, but we
leave this important direction for future work.

D. Perception Versus Distortion

An important issue that often arises in image restora-
tion problems, such as single image dehazing, is the
perception-distortion tradeoff, as introduced in [40]. On the
one hand, one requires a dehazing algorithm to provide low
distortion – the reconstructed image should be faithful to the
ground truth clear day image. This is enforced by minimizing
distortion-based metrics, such as PSNR or SSIM. On the
other hand, one wishes the obtained image to be vivid, sharp
and full of contrast and detail – perceptually pleasant to a
human observer. This can be performed either by maximizing
no-reference quality scores, for example NIQE [37], or dis-
playing the reconstructions to a GAN or a human, and deciding
whether the image is realistic or fake. The work reported
in [40] postulates that perception and distortion are always
at the expense of the other.

Indeed, we observe the same phenomenon in single image
dehazing. Methods which provide better distortion – higher
PSNR values, such as CAP [6], DehazeNet [11] and ourselves,
produce reconstructions with less contrast, and even some
residual haze. Other methods, such as DCP [3], NLD [7]
and BCCR [8], provide more vivid and sharp results. This,
however, at the expense of amplified noise, heightened contrast
and non-realistic colors, leading to lower PSNR values. This
difference in behaviour between data-driven and prior-based
methods, may stem from the fact that the former are optimized
to provide high PSNR values on a select benchmark.

We provide two possible solutions, one for 27 epochs of
training, providing better distortion, though with residual haze,
and the other, for 30 epochs of training, producing more vivid
and colorful results, closer to DCP. We can easily control this
tradeoff by choosing a different stopping point of the network,
based on the metric and the dataset we wish to optimize. The
final choice of the model depends on the end-user, whether it
be a human, requiring better perception, or part of a computer
vision pipeline, perhaps requiring lower distortion.

VI. CONCLUSION

We have presented a method of unsupervised training of
deep neural networks for the purpose of single image dehazing.
Our method relies on the well-known Dark Channel Prior
(DCP) [3] and manages to improve it considerably. In addition
to providing state-of-the-art performance in outdoor scenarios,
our method also eliminates the need for synthetic training sets.
While our focus here is DCP, we could have incorporated any
other successful energy function, using it as our unsupervised
loss. Our future research is focused on finding an even
better combination of energy functions, or incorporating some
amount of supervision to benefit from both worlds.
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