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This Talk Gives and Overview On ...

A decade of tremendous progress in the field of
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e | [ e | [ oters

Sparse and Redundant Representation Modeling 2
of Signals — Theory and Applications
By: Michael Elad




Agenda

— Theoretical &

— Denoising Numerical Foundations
by Sparse &
Redundant — Dictionary Learning
Representations & The K-SVD Algorithm

— Back to Denoising ... and Beyond —
handling stills and video denoising & inpainting,
demosaicing, super-res., and compression

Summary &
Conclusions

<«

d Sparsity and Redundancy are valuable and
well-founded tools for modeling data.

d When used in image processing, they lead
to state-of-the-art results.
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Denoising by
Sparse & Redundant
Representations
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Noise Removal?

Our story begins with image denoising ...

Remove
Additive
Noise

d Important: (i) Practical application; (ii) A convenient platform
(being the simplest inverse problem) for testing basic ideas in image
processing, and then generalizing to more complex problems.

d Many Considered Directions: Partial differential equations, Statistical
estimators, Adaptive filters, Inverse problems & regularization,
Wavelets, Example-based techniques, Sparse representations, ...
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Denoising By Energy Minimization

Many of the proposed image denoising algorithms are related to the
minimization of an energy function of the form

y : Given measurements Relation to

Prior or regularization
x : Unknown to be recovered measurements

A This is in-fact a Bayesian point of view, adopting the
Maximum-A-posteriori Probability (MAP) estimation.

Q Clearly, the wisdom in such an approach is within the o
choice of the prior — modeling the images of interest. Thomas Bayes

1702 - 1761
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The Evolution of G(x)

During the past several decades we have made all sort of guesses

about the prior G(x) for images:

G(x)=2[x[, G(x)=nLx]; G(X) = 1JLx,
'if:{k Energy ﬁiﬁ Smoothness } 2:1aolz::t-ll-1
G(x) =Allol
G941, G(x) =W, el
or X =Da
& Total- ?ffNWavelet f;{ Sparse &

> Variation }1\ Sparsity ?\ Redundant

g @'s
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G(x) = hp iLx!

"’?} Robust
rﬁ Statistics

¢ Hidden Markov Models,
e Compression algorithms as priors,
e Direct use of examples
e GMM




Sparse Modeling of Signals

d Every column in
D (dictionary) is
a prototype signal
(atom).

£ N O The vector o is

0 generated

- randomly with few
; ] (say L) non-zeros

A sparse X at random
& random — locations and with
vector random values.

(x  We shall refer to
D this model as

Sparseland

A fixed Dictionary




Sparseland Signals are Special

Interesting Model:

a Every generated
signal is built as a linear
combination of few atoms

M

H from our dictionary D
0 ; . d A general model: the
= |k Multipl obtained signals are a union
- ‘ b [p)y ‘ of many low-dimensional
i y Gaussians.
5 X — Dg a We have been

(g
-

using this model in other
context for a while now
(wavelet, JPEG, ...).
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Sparse & Redundant Rep. Modeling?

£/l..\ ..D

Asp > oursignal v _po where o is sparse
get a cc model is thus:

of the non-zeros ?E 0 ||9||E
in the vector B T p<l1
= [,
J—J.

-1 +1 X

X = Da where ngg <L
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Back to Our MAP Energy Function

Q We L, norm is effectively 1 )
counting the number of —H X —Y Hz

non-zeros in Q.. 2

O The vector o is the ¥
representation ( /

of the desired

)
signal x. Dg_y p—

d The core idea: while few (L out of K) atoms can be merged
to form the true signal, the noise cannot be fitted well. Thus,
we obtain an effective projection of the noise onto a very
low-dimensional space, thus getting denoising effect.
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Wait! There are Some Issues

d Numerical Problems: How should we solve or approximate the
solution of the problem

: 2 :
min Do -y st. ||gc||8 <L or min oo st. [P - XH; < g?

or min 2Ja + [Pa-y[; ?

d Theoretical Problems: Is there a unique sparse representation? If
we are to approximate the solution somehow, how close will we get?

A Practical Problems: What dictionary D should we use, such that all
this leads to effective denoising? Will all this work in applications?
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To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

There are some issues:
1. Theoretical

2. How to approximate?
3. What about D?

Image Denoising & Beyond Via Learned
Dictionaries and Sparse representations
By: Michael Elad
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Theoretical &
Numerical Foundations

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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Lets Start with the Noiseless Problem

Suppose we build a
signal by the relation

Do =X

We aim to find the signal’s
representation:

& = Arg MianHE st. Xx=Da

-
INEEENEN EEEEN NN
| . v

B Known

Why should we necessarily get QL = QL?
Uniqueness

It might happen that eventually HQHE < HQLHE .

Sparse and Redundant 15
Signal Representation,
and Its Role in

h R T .



Matrix “Spark”

Definition:

Donoho & E. (‘02)

Example:

o = O O
= O O O

* In tensor decomposition,
Kruskal defined something
similar already in 1989.
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Unigqueness Rule

Suppose this problem has been solved somehow

= ArgMin||a st. x = Da

Uniqueness If we found a representation that satisfy

A @)
l, <2

Then necessarily it is unique (the sparsest).

This result implies that if M generates

signhals using “sparse enough” o, the
solution of the above will find it exactly.

17



Our Goal

Here is a recipe for solving this problem:

|SetL=1]~
There are (})

such supports 1 -

Nol Yes

Done
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Lets Approximate

: 0 » 2 2
min aly st. [Pa-yf; <

PP AN

SR
Relaxation methods Greedy methods
Smooth the L, and use Build the solution
continuous optimization one non-zero
techniques element at a time
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Relaxation — The Basis Pursuit (BP)

Wl e

A This is known as the Basis-Pursuit (BP) [Chen, Donoho & Saunders ('95)].

d The newly defined problem is convex (quad. programming).

A Very efficient solvers can be deployed:

= Interior point methods [Chen, Donoho, & Saunders ('95)] [Kim, Koh, Lustig, Boyd, &
D. Gorinevsky (" 07)].

= Sequential shrinkage for union of ortho-bases [Bruce et.al. (*98)].

= Jterative shrinkage [Figuerido & Nowak (‘03)] [Daubechies, Defrise, & De-Mole ('04)]
[E. (05)] [E., Matalon, & Zibulevsky (‘06)] [Beck & Teboulle (*09)] ...
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Go Greedy: Matching Pursuit (MP)

’llllllllllllllllllllllllll 3

-l The MP is one of the greedy
algorithms that finds one atom aaaa=aaaaaaaaaaaaaa==aaaaa |
at a time [Mallat & Zhang (93)) e H N
Q Step 1: find the one atom that \EEEE:EEEEEEEEEEEEEE::EEEEE J |8
the signal.

O Next steps: given the previously
found atoms, find the next one to
the rsidual.

Q The algorithm stops when the error [Da- sz is below the destination
threshold.

d The Orthogonal MP (OMP) is an improved version that re-evaluates the
coefficients by Least-Squares after each round.
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Pursuit Algorithms

: 0 y 2 9
mO:n HQLHO s.t. HDQL XHZ <€

There are various algorithms designed for approximating the

solution of

ot Why should
(OMP), L y S Ou ng
Pursuit [:

O Relaxatio th k ctor
& numer ey WO r u

Q Hybrid Al lard-

Thresholaing [zuu/-toaay]|.
[
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The Mutual Coherence

Q Compute | ‘ b ]:

DT Assume

normalized T
columns D'D

A The Mutual Coherence p is the largest off-diagonal
entry in absolute value.

[ The Mutual Coherence is a property of the dictionary
(just like the “Spark”). In fact, the following relation

can be shown:
c>1+—
1L
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BP and MP Equivalence (No Noise)

Equivalence  Given a signal x with a representation x = Do,
assuming that || <0.5(1+1/u), BP and MP

are guaranteed to find the sparsest solution.

A . 0
d MP and Iﬂfa% dﬁecgtl\iﬂglgjlgnug unard%tséy v)«gicfis?e%r).

A The above result corresponds to the worst-case, and as such, it is
too pessimistic.

[ Average performance results are available too, showing much
better bounds [Donoho (704)] [Candes et.al. ('04)] [Tanner et.al. ('05)]
[E. (06)] [Tropp et.al. ("06)] ... [Candes et. al. ("09)].
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BP Stability for the Noisy Case

» Given a signal y =Da + v with a representation
Stability 0
satisfying ||la, <1/3p and a white Gaussian

noise v ~ N(0,°I), BP will show* stability, i.e.,
|Gz — ot < Const(2) - logK - . - ?
* With very high

probability
A For 6=0 we ge¢

DThlsresuItlstmln KHOCH —I—||DOL Y|

A Similar results
Orthogonal Mz —_

-
25

actor,



To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

The
Dictionary D
should be
found
somehow !!!

Image Denoising & Beyond Via Learned
Dictionaries and Sparse representations
By: Michael Elad

We have seen that there are
approximation methods to
find the sparsest solution,

and there are theoretical
results that guarantee their
success.
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Dictionary Learning:
The K-SVD Algorithm

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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What Should D Be?

& = arg mianug s.t. %H Do -y Hi < &2 X =D&

a

Our Assumption: Good-behaved Images
have a sparse representation

\

D should be chosen such that it sparsifies the representations

\ 4 4

One approach to choose D is from The approach we will take for
a known set of transforms building D is training it,
(Steerable wavelet, Curvelet, based on Learning from

Contourlets, Bandlets, Shearlets ...) Image Examples
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Measure of Quality for D

[Engan et. al. ('99)]

[Field & Olshausen (*96)]
[Lewicki & Sejnowski (*00)]

[Cotter et. al. ('03)]
[Gribonval et. al. ('04)]

[Aharon, E. & Bruckstein ('04)]
[Aharon, E. & Bruckstein ('05)]

29
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K—Means For Clustering

Clustering: An extreme sparse representation

Initialize
D

]

Sparse Coding

Nearest Neighbor T

| X

Dictionary :
Update .

Column-by-Column by
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The K=SVD Algorithm — General

[Aharon, E. & Bruckstein ('04,'05)]
Initialize D
D

Sparse Coding
Use Matciig Pursuit T
Dictionary : :
Update . .

Column-by-Column by
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K=SVD: Sparse Coding Stage

Min ZHDJ —JH s.L. ), o JH <L

Min Hng—gjui st. Joff <L

Solved by T
A Pursuit Algorithm

Sparse and Redundant Representation Modeling
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K=SVD: Dictionary Update Stage

We should solve:

dMin !Lx EH
Uk /G ‘ \
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We refer only to the
examples that use the
column d,

Fixing all A and D apart
from the kt" column,
and seek both d, and
the kth column in A to

better fit the residual!
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To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

Will it all
work in
applications?

Image Denoising & Beyond Via Learned
Dictionaries and Sparse representations
By: Michael Elad

We have seen approximation
methods that find the
sparsest solution, and
theoretical results that

guarantee their success. We

also saw a way to learn D

34



Back to Denoising ...
and Beyond —
Combining it All

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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From Local to Global Treatment

d The K-SVD algorithm is reasonable for low- K
dimension signals (N in the range 10-400). ‘
As N grows, the complexity and the memory
requirements of the K-SVD become N D
prohibitive.

A

»

d So, how should large images be handled?

a Force shift-invariant sparsity - on each patch of size
N-by-N (N=8) in the image, including overlaps.

% = ArgMin [~ y[3

X% Jij 2

Our prior

Sparse and Redundant Representation Modeling 36
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What Data to Train On?

Option 1:
d Use a database of images,

d We tried that, and it works fine (~0.5-1dB
below the state-of-the-art).

Option 2:
d Use the corrupted image itself !

a Simply sweep through all patches of size
N-by-N (overlapping blocks),

A Image of size 10002 pixels == ~ 106
examples to use — more than enough.

O This works much better!

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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K-SVD Image Denoising

x=y and D known x and a;; known D and a;; known

: 4 4 : 4

Sparse and Redundant Representation Modeling 38
of Signals — Theory and Applications
By: Michael Elad



Image Denoising (Gray) (k. & anaron (06)]

L W Source

5

AR EER TR

A
S O W DR L e R

ﬂﬁ&ﬂﬂ-ﬂiﬂﬂﬂnll’ﬁﬂﬁﬂﬁﬂ

¢ AW | I I 5 A O R
ad The results of this algorlthm compete favorably with R =S

the state-of-the-art. gfﬁagﬁ
" O In a recent work that extended this algorithm to -:.w:nm

use joint sparse representation on the patches, the = sl
best published denaising performance are obtained ! E7/ZAMN

WX BN
[Malral Bach Ponce, Sapiro & Zisserman (‘09)]. e O N

Ol 0 BRI T R T AN KA
Result 30.829dB R T R

N Lt A N DALATANS
(] M DT TBSBNNSSI TTT I |

Noisy image The obtained dictionary after
l =20 10 iterations

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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Denoising (Color) rmvairal, e. & sapiro 08)1

d When turnlng (0 handle color |mages the

Orlglnal

Sparse and Redundant Representation Modeling 40
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Denoising (Color) rmvairal, e. & sapiro 08)1

Our experiments lead to state-of-the-art denoising results,
giving ~1dB better results compared to [Mcauley et. al. (06)]
which implements a learned MRF model (Field-of-Experts)

Original Noisy (12.77dB)  Result (29.87dB)

Sparse and Redundant Representation Modeling a1
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By: Michael Elad



Video Denoising rrrotter & E. (09)]

average compared to [Boades, ol & Morel (05)] and
comparable tO [Rusanovskyy, Dabov, & Egiazarian (‘06)]

original - avoided (uate 405 borel (og)en0'sed (PONR=23.95)
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Low-Dosage Tomography (shiok, zibulevsky & E. ¢10)3

d In Computer-Tomography (CT) reconstruction, an
image is recovered from a set of its projections.

A In medicine, CT projections are obtained by X-ray,
and it typically requires a high dosage of radiation in
order to obtain a good quality reconstruction.

A A lower-dosage projection implies a stronger noise
(Poisson distributed) in data to work with.

A Armed with sparse and redundant representation
modeling, we can denoise the data and the final
reconstruction ... enabling CT with lower dosage.

* | Image Denoising & Beyond Via Learned 43
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Image Inpainting — The Basics

d Assume: the signal x has been created
by x=Dg, with very sparse a,.

d Missing values in x imply
missing rows in this linear
system.

d By removing these rows, we get

Do = X

d Now solve

MinHQLHO s.t. X =Da

Q If a, was sparse enough, it will be the solution of the
above problem! Thus, computing Da,, recovers x perfectly.

* | Sparse and Redundant Representation Modeling
¥ of Signals — Theory and Applications
By: Michael Elad

Do, =

CITTTTITTITTTITITTT]

| <
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Side Note: Compressed-Sensing

is leaning on the very same principal, leading
to alternative sampling theorems.

Assume: the signal x has been created by x=Da, with very sparse q,.

Multiply this set of equations by the matrix Q which reduces
the number of rows.

The new, smaller, system of equations is ~
QDo = Qx == Do = X X

If o, was sparse enough, it will be the sparsest solution of the
new system, thus, computing Da,, recovers x perfectly.

Compressed sensing focuses on conditions for this to happen,
guaranteeing such recovery.
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Inpainting (mairal, E. & sapiro (08)]

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad

painting results.
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Inpainting (mairal, E. & sapiro (08)]

The same can be done for video, very much like the
denoising treatment: (i) 3D patches, (ii) no need to
compute the dictionary from scratch for each frame, and
(iii) no need for explicit motion estimation

Original 80% missing
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Image Compression (et and E. (08))

Original
JPEG
JPEG-2000
K-SVD

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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Image Compression (et and E. (08))

Original
JPEG
JPEG-2000
K-SVD

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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Image Compression (et and E. (08))

Original
JPEG
JPEG-2000
K-SVD

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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Deblocking the Results (st and e (- 09);

p. Ao'.'«, 1 TH
K-SVD (6.60) K-SVD (5.49) K-SVD (6.45) K-SVD (11.67)

. . ,0_ " %
Deblock (6.24) Deblock (5.27) Deblock (6.03) Deblock (11.32)

Image Denoising & Beyond Via Learned 51
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Su PEr- Resolution [Zeyde, Protter, & E. (*11)]

A Given a low-resolution image, we desire to enlarge it
while producing a sharp looking result. This problem is
referred to as “Single-Image Super-Resolution”.

d Image scale-up using bicubic interpolation is far from
being satisfactory for this task.

[ Recently, a sparse and redundant representation
technique was proposed [Yang, Wright, Huang, and Ma ('08)]
for solving this problem, by training a coupled-
dictionaries for the low- and high res. images.

d We extended and improved their algorithms and
results.

* | Sparse and Redundant Representation Modeling
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Super-Resolution — Results (1)

This book is about convex optimization, a special class of mathematical optimiza Id eal An amazing variety of practical probl
tion problems, which includes least-squares and linear programming problems. I{ design, 5'111-"11_\‘-“'-'-"‘- and “I"-T“[i““) can be
is well known that squs and linear programming problems have a fairl mization problem, or some variation such
> theory, arise in a variety of applications, and can be solved numerically Image Indeed, mathematical optimization has 1

C ml;\'. The lmsiq..' p¢ nint. of this book is that the same can be said for the It is widely used in engineering. in elect

s of convex optimization problems. ‘

- _ , o o trol systems, and optimal design proble
While the mathematics of convex optimization has been studied for about and aerospace engineering. Optimizatiol
century, several related recent developments have stimulated new interest in the
ic. The first is the recognition that interior-point methods, developed in the
80s to solve linear programming problems, can be used to solve convex optimiza
tion problems as well. These new methods allow us to solve certain new classe For most of these applications, mathe
of convex optimization proble such as semidefinite programs and second-orde R - human decision maker. svstem desio
cone pro 15, almost as easily as linear programs. The tralnl proscess, cheeks the I‘!'.\'lll‘(.\‘.. R
The second development is the discovery that convex optimization problems =ton noecessary. This human decision ma
(beyond _l'.';|.Ht-.~‘(111;|.rl.'-s ;uul.‘!nu*;u‘ programs) are more prevalent in practice Tll:f[ oy the optimization problem, e.g.,
was previously thought. Since 1990 many applications have been discovered i1
areas such as automatic control systems, estimation and signal processi

design and operation, finance, supply cl
other areas. The list of applications is st

Sorticiho.

mun ons and networks ronic cireuit c m, data analysis 1 modeli
statistics, and finance. Com ;
binatorial optimization and global optimization, where it is used to find bounds or
the optimal value, as well as approximate solutions. We believe that many othe
applications of convex optimization are still waiting to be discovered.
There are great advantages to rec izing or formulating a problem as a conve:
optimization problem. The most basic advantage is that the problem can then be
solved, very reliably and efficiently, using interior-point methods or other specia i
ol Is f ] optimization. Tl slution methods 2liable gh to be G Iven Imag e
embedded in a computer-aided de or analysis tool, or even a real-time reactive
or automatic control system. There are also theoretical or conceptual advantages
of formulating a problem as a convex optimization problem. The associated dua

roiNnN— 17T.U0UD
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Super-Resolution — Results (2)

7
¢

AN
\
‘.\\ N
"NS. S W8 W WSS RSSRS

AN \N

st
A

C——

" AN W% W] WO\ S

A\ IR
S\
L W W W WWN

Scaled-Up (factor 2:1) using the propoed algorithm
PSNR=29.32dB (3.32dB improvement over bicubic)

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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Super-Resolution — Results (2)

The Original Bicubic Interpolation SR result

Sparse and Redundant Representation Modeling 55
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Super-Resolution — Results (2)

The Original Bicubic Interpolation SR result
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To Summarize So Far ...

Image denoising
(and many other
problems in image
processing) requires
a model for the
desired image

We proposed a
model for
signals/images
based on sparse
and redundant
representations

Well, many more things:
» Statistical models (BM)

 The analysis model and
other improvements

 Other applications
(medical, video, ...) ...

Image Denoising & Beyond Via Learned
Dictionaries and Sparse representations
By: Michael Elad

Yes! We have seen a group of
applications where this model is
showing very good results:
denoising of bw/color stills/video,
CT improvement, inpainting,
super-resolution, and
compression
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Summary and
Conclusion

Sparse and Redundant Representation Modeling
of Signals — Theory and Applications
By: Michael Elad
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Today We Have Seen that ...

4 4

and the use of

are important ideas that

can be used in designing
better tools in

signal/image processing

In our work on we
cover theoretical,
numerical, and
applicative issues
related to this model
and its use in practice.

applications
a ..

We keep working on:

d Improving the model

O Improving the dictionaries
1 Demonstrating on other

Sparse and Redundant Representation Modeling

of Signals — Theory and Applications
By: Michael Elad
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Thank You

All this Work is Made Possible Due to

-

M. Aharon O. Bryt J. Mairal
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If you are Interested ...

More on this topic (including the
slides, the papers, and Matlab
toolboxes) can be found in my
webpage:
http://www.cs.technion.ac.il/~elad

A book on these topics was
published in August 2010.

* | Image Denoising & Beyond Via Learned
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