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Abstract—The work reported by Romano and Elad presents
the SOS boosting – a generic recursive method for improving
image denoising algorithms. Appealing properties of the SOS
scheme are its flexibility to work with any denoising method,
its simplicity, and its robustness. In this article we aim to
generalize this to the image deblurring task. The proposed SOS
procedure for deblurring is given by the following iterative steps:
[S]trengthen the signal by blurring the output of the previous
iteration and adding it to the blurred input image, [O]perate the
deblurring algorithm on the strengthened image, and [S]ubtract
the previous output from the current one. We demonstrate this
procedure for several state-of-the-art methods (BM3D, EPLL and
NCSR), showing the potential gain in output quality for each.
As in the original SOS, we manipulate the iterative algorithm
by two parameters, better controlling its steady state and rate of
convergence.

I. INTRODUCTION

Image denoising is a highly researched topic. A noisy image
y ∈ Rr×c is given, obtained from the clean image x ∈ Rr×c

by a corruption of the form

y = x+ v, (1)

where the vector v ∈ Rr×c stands for an additive i.i.d and zero
mean Gaussian noise. In our notation hereafter, x, y and v are
represented as column vectors of length rc, after lexicographic
ordering. A denoising algorithm f(·) outputs an approximation
x̂ = f(y) of the clean image x. Many sophisticated denoising
algorithms have been proposed over the years, among those
we mention K-SVD [1], EPLL [2], NCSR [3], BM3D [4] and
others [5], [6], [7], [8], [9].

The work reported in [10] presented the SOS iterative
boosting scheme for general image denoising algorithms. This
method is described by the following three steps:

1) Strengthen the signal by adding the restored result to
the noisy input image.

2) Operate the denoising algorithm on the strengthened
image.

3) Subtract the previous output from the restored strength-
ened image.

As shown in [10], due to the better signal-to-noise ratio
(SNR) of the signal-strengthened image (compared to the
original input one), an improved and more efficient denoising
is achieved. The SOS boosting for image denoising is flexible,
being able to work with any denoising method. The work
in [10] has shown its applicability to various state-of-the-art
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algorithms (e.g., K-SVD [1], BM3D [4], EPLL [2], NLM [5]).
Among the main appealing properties of the SOS scheme are
its simplicity and robustness.

In this article we aim to generalize the SOS to the image
deblurring task. Consider a blurred image obtained by a
corruption of the form

y = Hx+ v, (2)

where H ∈ Rrc×rc is a given blurring matrix. Our goal is
the recovery of x from y, assuming that H is known, and we
denote such a process by x̂ = g(y).

The SOS scheme for deblurring algorithms is more chal-
lenging, as the measurement vector y and the recovered image
x̂ are in different domains - one is blurry while the other
is sharpened. We propose a process given by the same steps
as in the original SOS, with a minor, yet critical, change in
the first step: Strengthen the signal by blurring the output
of the previous iteration and adding it to the blurred input
image. We demonstrate this procedure for several state-of-the-
art methods (BM3D [11], EPLL [2] and NCSR [3]), showing
the potential gain in output quality for each of these methods.

This paper is organized as follows: In section II we review
the SOS boosting for image denoising algorithms and general-
ize it to the image deblurring task. In section III we present our
experiments and their results. Conclusions and future research
proposals are discussed in section IV.

II. SOS BOOSTING FOR IMAGE DEBLURRING

In the following section we review the SOS boosting for
denoising algorithms, adapt it for the deblurring task and
discuss its generalization by two parameters that control its
steady-state outcome, the requirements for convergence and
its rate.

A. SOS for Image Denoising
The work done in [10] follows the idea that an emphasis

of the signal over the noise could allow the denoiser to
clean the image better. By leveraging this idea, [10] suggests
strengthening the signal of the noisy input y by adding the
clean image x̂k to it, then operating the denoising algorithm,
f(·), again and finally, subtracting the previous result from
the current outcome. This is formulated as:

x̂k+1 = f(y + x̂k)− x̂k, (3)

where x̂0 = 0. A key idea in the SOS boosting is the treatment
of the denoising algorithm as a black-box, thus making it easy
to implement on a variety of denoising methods.



The study in [10] offers both empirical evaluation of the
SOS idea, and its theoretical analysis. On the empirical side,
the SOS concept is demonstrated on a series of leading
denoising algorithms, (K-SVD [1], NLM [5], bilateral filter
[12] and LARK [13]), showing in all these cases that improved
results are within reach. On the theoretical front, this work
establishes the convergence of the proposed iterative process
by representing the denoising algorithm in a pseudo-linear
form.

B. SOS for Deblurring

The first idea that comes to mind when trying to apply the
SOS scheme on an image deblurring algorithm, g(·), is the
following:

x̂k+1 = g(y + x̂k)− x̂k, (4)

where x̂0 = 0. This iterative equation is the same as the one
applied for the denoising case. However, note that H, the
blurring matrix, plays a critical role in the definition of the
operator g(·). Indeed, the blurring matrix for the compound
image y+ x̂k is no longer H, but rather H+ I, if we assume
that xk is nearly perfectly deblurred. Thus, the appropriate
formulation of the SOS procedure in this case is:

x̂k+1 = gĤk(y + x̂k)− x̂k, (5)

where Ĥk is the blurring matrix referring to the image y+x̂k,
which may vary from one iteration to the next, and should be
evaluated somehow. This modification of g(·) denies us the
possibility of treating the deblurring algorithm as a black-box,
a major advantage of the original SOS scheme. For this reason,
we turn to an alternative SOS iteration procedure, as described
next.

Taking into account the desire to preserve the ability of
treating the deblurring algorithms as a fixed unit, we suggest
blurring the output of the previous iteration before adding
it to the given image y. This variation of SOS algorithm is
described by the following steps:

1) Strengthen the signal by blurring the output of the
previous iteration and adding it to the blurred input
image.

2) Operate the deblurring algorithm on the strengthened
image.

3) Subtract the previous output from the restored strength-
ened image.

This small change implies that H is the blurring matrix of
y+Hx̂k (which can be also written as H(x+ x̂k)+v). This
form of the SOS algorithm can be formulated in the following
way:

x̂k+1 = g(y +Hx̂k)− x̂k, (6)

where x̂0 = 0, and g(·) remains the same ’deblurrer’ through-
out the iterative process. This keeps the simplicity of the SOS
algorithm, thus allowing us to easily apply this scheme on
various deblurring algorithms, without the need to modify
them or feed them with a different blur operator.

With the above formula, our deblurring task becomes easier
as we iterate, since we trade the original problem with an
alternative one that has the same blur but twice weaker
noise. Thus, following the same rationale of the original SOS
method, better performance can be expected.

C. Parametrization of the SOS boosting

The work in [10] offered a parametric generalization of
the SOS boosting formula in order to better control the
steady-state outcome, and the convergence requriments and
its rate. More specifically, two parameters are introduced:
ρ, that controls the signal emphasis and the steady-state
outcome, and τ , that changes the rate-of-convergence and
softens the convergence requirements on f(·). Applying the
same principals, we manipulate our SOS scheme in a similar
way, leading to the following equation:

x̂k+1 = τg(y + ρHx̂k)− (τρ+ τ − 1)x̂k. (7)

More on these parameters and a justification for their use is
found in [10].

III. EXPERIMENTAL RESULTS

We now turn to present series of experiments that demon-
strate the core ability of the SOS scheme to boost image
deblurring algorithms. Our focus will be put on three well
performing methods - the BM3D [11], the EPLL [2], and the
NCSR [3].

(a) Barbara (b) Hill

(c) House (d) Lena

Fig. 1: The test images used in the reported experiments.

A. Experiment 1

In the first experiment our goal is to study the effects of
ρ and τ on the outcome of the SOS boosting. This is done
by testing these parameters with the EPLL [2] algorithm, for
deblurring the image Barbara (see Figure 1a) with (σnoise =



(a) PSNR of the proposed SOS boosting as a function of ρ and τ .
The flat surface represents the original deblurring performance of
EPLL (25.74dB). As can be seen, varying degrees of improvements
are obtained for various values of ρ and τ . The best set (ρ = 1 and
τ = 1) give an increase of 0.3dB.

(b) PSNR of the proposed SOS algorithm for several choices of the
parameters ρ and τ (the original PSNR of the deblurring algorithm
is 25.74dB).

Fig. 2: The effect of ρ and τ on the performance and rate-of-
convergence of the proposed SOS boosting. These experiments
were made on EPLL [2] with a blurred version of Barbara
(σnoise = 0.01, σblur = 3).

0.01 , σblur = 3). The deblurring performance is evaluated

using the PSNR, defined as 20 log10(
255√
MSE

), where the

MSE is the mean square error between the original image
and the deblurred one. Figure 2a shows the dependence of the
deblurring algorithm’s performance on ρ and τ , and a visual
comparison for this is given in Figure 3. As can be seen, for
properly chosen values of ρ (1 in this case), the EPLL can be
boosted by 0.3dB. Interestingly, the parameter τ has almost no
affect on the output quality when kept in the range [0,1]. Its

Original Blurred EPLL
25.74 dB

ρ = 1 τ = 1
26.04dB

ρ = 0.43 τ = 0.2
25.97dB

ρ = 0.11 τ = 0.3
25.90dB

Fig. 3: Visual and PSNR comparisons between different values
of the SOS parameters of a 200 × 200 cropped region from
the blurry image Barbara (σnoise = 0.01, σblurr = 3).

influence is on the rate-of-convergence of the SOS procedure
can be seen in Figure 2b showing the PSNR per iteration for
[τ1, τ2, τ3] = [1, 0.7, 0.3] with a fixed value of ρ = 1 . We
note that in this test we set σ̂noise, the parameter representing
the noise-level of y + ρHx̂k, to σnoise = 0.01.

Turning to the choice of σ̂noise and its effect, it could
be estimated automatically (e.g, using [14], [15]) or used
as a fixed value chosen manually. In the all the reported
experiments in this paper we chose the second option. Figure 4
shows the effect of σ̂noise on the SOS boosting performance
while using ρ = 1 and τ = 0.7. As can be seen, the best
performing value of σ̂noise seems to be about 0.8σnoise, less
than the true noise that exists in the degraded image. This
represents a more conservative restoration step done by g(·),
which pays off in the boosted iterative process.

To summarize, we see that a change of parameters can have
a large effect on the outcome of the SOS boosting. From that,
we conclude that tuning the SOS parameters for each image
is important, and an improper tuning might weaken the SOS
performance. Indeed, in order to demonstrate this very claim,
we repeated the above test on a different image (Hill), and the
optimal set of parameters for it are ρ = 0.11, τ = 0.1, and
σ̂noise = 0.8σnoise.

B. Experiment 2

We now turn to a comprehensive experiment in which we
explore the SOS boosting results on the three well-performing
algorithms mentioned above (EPLL [2], BM3D [11] and
NCSR [3]). Our tests now cover the performance for the
images Barbara, Hill, House and Lena (see Figure 1). These
images are corrupted by a 5 × 5 Gaussian blur kernel with
a standard deviation σblur, and a zero-mean Gaussian noise
with a standard deviation σnoise. In this experiment we vary



Fig. 4: PSNR of the SOS boosting as a function of σ̂noise.
The graph is generated by operating the SOS on EPLL
[2] (note that the ”Original EPLL Performance” line is the
performance of the EPLL algorithm with σ̂noise = σnoise).
The experiments were made on the blurred image Barbara
(σnoise = 0.01, σblur = 3) with ρ = 1 and τ = 0.7.

σnoise and σblur and check the SOS performance in each such
setting.

In order to apply the SOS scheme, we need to set the
parameters ρ, τ and a modified noise-level σ̂noise. In these
experiments we set τ = 0.7, while ρ and σ̂noise are opti-
mized per each image, algorithm and degradation, in order to
understand the full potential of the SOS algorithm. Further
work should be done in order to automatically tune all these
parameters.

Table I presents the performance results of various deblur-
ring algorithms and their SOS boosting outcomes. In this
table we are able to observe improvements of up to 0.70dB
(in terms of PSNR), though most improvements are in the
range between 0.15dB and 0.45dB. This table shows that
improvement is achievable on different images and various
deblurring algorithms.

A visual comparison is given in Figure 5, showing the
potential of the SOS boosting. Compared to the original
restored results, the SOS boosting procedure offers a better
restoration at sharper parts of the picture (see Barbara’s pants
and the windows and pipe on Hill). In addition, the SOS
boosting achieves a cleaner and smoother estimation (see the
drainage pipe on House).

IV. CONCLUSIONS AND FUTURE RESEARCH

The Strengthen-Operate-Subtract (SOS) scheme is a generic
method for boosting image denoising algorithms. In this work
we have generalized it for treating the image deblurring
problem. Our proposed solution relies on a modification of
the first step, blurring the output image before strengthening
the signal, this way allowing us to treat the debluring algorithm
as a black-box. Our experiments validate the effectiveness

of this boosting method, when deployed with state-of-the-art
algorithms. Our future work on this topic includes a theoretical
analysis of the requirements for success of this method, and
an estimated performance improvement in such cases.

House - Orig NCSR 35.86dB SOS NCSR 35.99dB

Degraded NCSR Diff SOS NCSR Diff

Barbara - Orig BM3D 26.32dB SOS BM3D 26.80dB

Degraded BM3D Diff SOS BM3D Diff

Hill - Orig EPLL 29.21dB SOS EPLL 29.38dB

Degraded EPLL Diff SOS EPLL Diff

Fig. 5: Visual and PSNR comparisons between standard de-
blurring and SOS boosting outcomes, along with the difference
between the deblurred outcomes to the original image.



TABLE I: Comparison between the deblurring results (PSNR) of EPLL [2], BM3D [11] and NCSR [3] and their SOS boosting
outcomes. The best results for each test run are highlighted.

EPLL [2]

σnoise σblur
Barbara House Hill Lena

Orig SOS Imprv. Orig SOS Imprv. Orig SOS Imprv. Orig SOS Imprv.
0.01 1 28.19 28.89 0.70 34.52 33.55 0.03 32.18 32.18 0.00 35.49 35.48 −0.01

0.01 3 25.75 26.18 0.43 30.76 30.73 −0.03 29.81 29.92 0.11 32.57 32.58 0.01

0.01 5 25.94 26.20 0.26 30.89 30.85 −0.04 29.89 30.00 0.11 32.56 32.57 0.01

0.03 1 25.18 25.85 0.67 32.99 33.03 0.04 30.29 30.42 0.13 33.36 33.38 0.02

0.03 3 24.16 24.44 0.28 29.82 29.80 −0.02 28.34 28.41 0.07 30.89 31.00 0.11

0.03 5 24.23 24.48 0.25 29.83 29.86 0.03 28.34 28.47 0.13 30.75 30.83 0.08

0.05 1 24.37 24.87 0.50 31.82 31.87 0.05 29.21 29.38 0.17 31.91 32.07 0.16

0.05 3 23.85 23.99 0.14 29.34 29.31 −0.03 27.66 27.73 0.07 29.94 30.04 0.10

0.05 5 23.82 23.95 0.13 29.22 29.25 0.03 27.57 27.71 0.14 29.82 29.93 0.11

BM3D [11]

σnoise σblur
Barbara House Hill Lena

Orig SOS Imprv. Orig SOS Imprv. Orig SOS Imprv. Orig SOS Imprv.
0.01 1 30.24 30.62 0.38 36.02 36.21 0.19 33.30 33.31 0.01 36.01 36.22 0.21

0.01 3 27.32 27.56 0.24 34.95 34.98 0.03 31.75 31.76 0.01 34.04 34.07 0.03

0.01 5 27.38 27.58 0.20 34.93 34.98 0.05 31.82 31.83 0.01 33.96 34.01 0.05

0.03 1 26.32 26.80 0.48 33.94 33.94 0.00 30.99 31.02 0.03 33.74 33.74 0.00

0.03 3 24.78 25.09 0.31 32.51 32.54 0.03 29.73 29.80 0.07 31.94 31.97 0.03

0.03 5 24.91 25.28 0.37 32.53 32.57 0.04 29.68 29.75 0.07 31.81 31.85 0.04

0.05 1 25.03 25.36 0.33 32.63 32.63 0.00 29.75 29.86 0.11 32.31 32.36 0.05

0.05 3 24.18 24.30 0.12 31.22 31.27 0.05 28.67 28.85 0.18 30.73 30.86 0.13

0.05 5 24.24 24.42 0.18 31.19 31.28 0.10 28.64 28.81 0.17 30.59 30.73 0.14

NCSR [3]

σnoise σblur
Barbara House Hill Lena

Orig SOS Imprv. Orig SOS Imprv. Orig SOS Imprv. Orig SOS Imprv.
0.01 1 31.26 31.26 0.00 35.86 36.12 0.26 33.06 33.12 0.06 35.82 35.99 0.17

0.01 3 23.89 23.90 0.01 29.68 29.61 −0.08 27.93 27.94 0.01 29.84 29.86 0.02

0.01 5 23.12 23.13 0.01 26.60 26.61 0.01 26.10 26.14 0.04 27.44 27.48 0.04

0.03 1 27.15 27.17 0.02 30.51 31.12 0.61 29.56 29.59 0.03 30.86 31.00 0.14

0.03 3 23.24 23.26 0.02 27.61 27.65 0.04 26.69 26.69 0.00 27.80 27.81 0.01

0.03 5 22.55 22.57 0.02 25.32 25.35 0.03 25.27 25.29 0.02 26.18 26.29 0.11

0.05 1 24.92 25.08 0.16 26.87 27.49 0.62 26.80 26.97 0.17 27.28 27.85 0.57

0.05 3 22.52 22.78 0.26 25.80 26.11 0.31 25.32 25.76 0.44 26.03 26.36 0.33

0.05 5 22.02 22.15 0.13 24.10 24.33 0.23 24.38 24.50 0.12 25.07 25.37 0.30
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