
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 1

Deep-Energy: Unsupervised Training of
Deep Neural Networks

Alona Golts, Daniel Freedman, and Michael Elad, Fellow

Abstract—The success of deep learning has been due, in no
small part, to the availability of large annotated datasets. Thus,
a major bottleneck in current learning pipelines is the time-
consuming human annotation of data. In scenarios where such
input-output pairs cannot be collected, simulation is often used
instead, leading to a domain-shift between synthesized and real-
world data. This work offers an unsupervised alternative that re-
lies on the availability of task-specific energy functions, replacing
the generic supervised loss. Such energy functions are assumed to
lead to the desired label as their minimizer given the input. The
proposed approach, termed Deep-Energy, trains a Deep Neural
Network (DNN) to approximate this minimization for any chosen
input. Once trained, a simple and fast feed-forward computation
provides the inferred label. This approach allows us to perform
unsupervised training of DNNs with real-world inputs only, and
without the need for manually-annotated labels, nor synthetically
created data. Deep-Energy is demonstrated in this paper on three
different tasks – seeded segmentation, image matting and single
image dehazing – exposing its generality and wide applicability.
Our experiments show that the solution provided by the network
is often much better in quality than the one obtained by a
direct minimization of the energy function, suggesting an added
regularization property in our scheme.

Index Terms—Energy functions, deep neural networks, unsu-
pervised learning, weakly-supervised learning, seeded segmenta-
tion, image matting, single image dehazing.

I. INTRODUCTION

Deep learning [1] has enjoyed a remarkable success in a wide
range of fields, including speech recognition [2], image process-
ing [3], computer vision [4] and natural language processing
[5]. The predominant way of training deep neural networks
(DNNs) is supervised, involving three major components: (1)
Composition of the data into labeled input and output pairs; (2)
Design of the architecture, and (3) Choosing the loss function
to guide the training. While the first two require advanced
domain knowledge specific to the task at hand, the choice of
the loss function is mostly generic and application-independent.
Common loss functions include L2, L1, cross-entropy and
perceptual loss, all measuring the proximity between the
network prediction and the ground truth output. For the learning
process to succeed, many (thousands to millions) of input- and
corresponding labeled output pairs are required.

While collection of large-scale annotated datasets is tolerable
in classification tasks, the picture changes drastically in
semantic segmentation, where pixel-wise labeling of each
image1 is time consuming [6], implying an impossible amount

A. Golts and M.Elad are from the Department of Computer Science, Tech-
nion Institute of Technology, Technion City, Haifa 32000, Israel, corresponding
e-mails: salonaz@cs.technion.ac.il, elad@cs.technion.ac.il. D. Freedman is
from Google Research, Haifa, Israel, email: danielfreedman@google.com.

1In Pascal VOC 2012 this task takes ∼ 4 minutes per image.

of work for gathering the training data. This bottleneck is
even worse in medical imaging, where data is often of higher
dimensions, and the annotators must be experienced radiologists
[7], [8]. In other applications, e.g., single image dehazing, the
collection of clear and hazy images of the exact same scene
is generally impossible. The common practice in such cases
is simulation of input-output pairs [9], [10], [11], [12], [13].
Apart from requiring non-trivial domain knowledge, such a
simulation can potentially inject errors into the learning process,
creating a domain-shift when treating real-world data.

All this brings us to the main question this paper addresses:
can we train DNNs while avoiding the need for labels, bypass-
ing the above-described bottleneck? In order to answer this
question positively, we recall a classic and successful strategy
in handling many computer vision and image processing tasks
– energy minimization. In this pre-deep-learning era approach, a
cost function over the unknown output is formulated, reflecting
its desired relationship with the input, along with other penalties
characterizing the desired result. The “inference”, i.e., getting
the desired output for a given input, is obtained by minimizing
this energy function. For example, in image denoising one
such a cost function could force the output to resemble the
input, while also being piece-wise smooth. Inference in this
case will result in a smoothed, cartoon-like version of the input.
The idea we promote in this work is to rely on such energy
functions in order to avoid having explicit labels. However,
where could we find appropriate energy functions? Fortunately,
the computer vision and image processing literature is replete
with examples of such functions for solving a wide variety
of problems, such as depth from stereo [14], super-resolution
[15], single-image dehazing [16], optical flow estimation [17],
and many more.

Note that while in data-driven methods training is usually
slow while inference is quite fast, in energy minimization the
opposite is correct. There is no training involved, but inference
requires a tedious (and possibly iterative) minimization of the
energy function for each input signal, posing a difficulty in real-
time applications. Additionally, any newly formulated energy
function must be accompanied with a tailored optimization
scheme. Indeed, in order to ease the optimization and use
standard tools, often times the energy function is over-simplified
while sacrificing output quality.

Our proposed approach, termed Deep Energy, offers an
unsupervised training of DNNs by a direct minimization of
a well-chosen energy function, suited for the task at hand.
Specifically, we enforce the output of a DNN to minimize a
task-specific energy function, when fed with the corresponding
input. We do so by optimizing the parameters of the network
using SGD (Stochastic Gradient Descent) and back-propagation,

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 2

such that, averaged over all examples in the training set, the
energy function is minimized. Since these energy functions are
unsupervised (i.e. do not assume the knowledge of the output),
this removes entirely the dependency on manually-annotated
or synthetic input-output pairs.

As this work relies on the classic energy minimization
approach and bridges it to the more recent data-driven methods,
a natural question to ask is: Why bother learning at all? What
is the benefit in the proposed scheme when compared to
a direct optimization of the energy at inference time? The
answer has several facets to it. The proposed approach replaces
the minimization of the energy function by an approximation
obtained using DNN, and as a consequence (i) we are free from
devising a tailored optimization algorithm for the minimization
task; (ii) we can handle more challenging energy functions,
which are considered as hard to solve using existing tools; (iii)
the inference itself, once the network has finished learning, is
computed by an almost instant forward-pass operation, typically
orders of magnitude faster than an explicit optimization; and
most importantly, (iv) we show that the incorporated DNN
induces an effective regularization over the analytic solver,
improving its performance. Indeed, the last point is closely
related to the main idea appearing in [18]. To summarize, this
work provides the following contributions:

1) We suggest incorporating domain-knowledge into loss
functions by a new methodology of unsupervised training
of DNNs through task-specific energy functions.

2) We demonstrate this concept by training a single network
architecture to preform three different tasks – seeded
segmentation, image matting and single image dehazing
– each relying on its appropriate task-specific energy
function.

3) We provide a clear comparison between the optimization-
based analytical solver and the network’s approximated
solution, showing that our method achieves an additional
effective regularization, which improves the eventual
solution in terms of both quality and speed.

The remainder of this paper is structured as follows: Section
II reviews previous related work; Section III introduces our
Deep-Energy approach and provides three different energy
functions for treating seeded segmentation (III-B), image
matting (III-C) and single image dehazing (III-D). Section IV
discusses our experimental environment and reports quantitative
and qualitative results. Section V concludes this paper, and
Appendix A offers additional technical details.

II. RELATED WORK

Our General Approach: Our approach is inspired by recent
work on style transfer [19], which creates a stylized image
by optimizing a two-term energy function. These two terms
ensure perceptual loss proximity between the input image and
its stylized output version, and a similar proximity of the
second order statistics between the style and output images.
Instead of repeated optimization of the energy function per each
input image, the works in [20], [21] train a feed-forward DNN
to produce the stylized image by a near-instant forward-pass
operation. They do so in an unsupervised manner by training
the network to minimize the energy function directly.

There is a growing body of work suggesting training DNNs
using energy functions [22], [23], [24], [25]. In [22], a DNN
is trained by minimizing the large-displacement photometric
consistency for optical flow estimation. The work reported in
[23] refines coarse 3D face models by training with an SfS
(Shape-from-Shading) energy function. In [24], a DNN is taught
to perform image smoothing using an unsupervised energy-
based loss function. Finally, the work most resembling ours,
[25], performs semantic segmentation by combining a weakly-
supervised cross-entropy term with an energy-based normalized-
cuts regularization. While these works focus on achieving SOTA
(State-Of-The-Art) in specific applications, we inspect energy-
minimization training from a broader and holistic point of
view. We formulate energy-based learning for three different
applications and show the extra regularization obtained, along
with the other benefits, arising from this approach.

Speeding-up image-processing operators, as reported in
[3], bears some similarity to our approach as well. In [3],
an analytical or numerical solver of an energy function is
invoked thousands of times to create input and output pairs for
supervised learning of a DNN. Once training of the DNN is
over, evaluation can be made via an almost instant forward-pass
operation, instead of an explicit optimization for each image. As
opposed to [3], we skip the prolonged optimization for creating
input-output pairs, and directly minimize the energy function
during training. Doing so achieves effective regularization
which actually improves the results of the analytical solver.
Past Work on Seeded Segmentation: Seeded segmentation
has enjoyed a fair amount of attention with the introduction
of the popular Graph-Cuts [26], [27] and Random-Walker
[28] algorithms. With the emergence of deep learning and
fully annotated datasets, such as Pascal VOC 2012 [29] and
Imagenet [30], the focus has shifted to automatic semantic
segmentation [31]. Recent attempts to alleviate the burden of
pixel-wise annotation have incorporated “weak-supervision” in
the form of image-level labels [32], [33], [34], bounding-boxes
[35], [36], scribbles [37] and points [6].

These approaches differ from ours in two important aspects:
(1) They perform weakly-supervised semantic segmentation,
i.e., the additional supervision is given only at training time,
whereas our energy-based seeded segmentation receives seeds
both at training and at test time; and (2) Most of these works
use an external analytical solver for either pre-processing of
input-output pairs, or post-processing to refine the result of
the network. We circumvent the use of an external analytical
solver and train end-to-end on the energy function directly,
reducing time and effort in both training and evaluation.
Past Work on Image Matting: The ill-posed problem of
image matting commonly requires additional user assistance in
the form of seeds or trimaps. A trimap is a rough segmentation,
dividing the input image to three sections: constant foreground
and background pixels, and unknown pixels whose opacity
is to be determined. The two leading approaches of tackling
image matting are prior-based and learning-based. Prior-based
methods [38], [39], [40], [41], [42], [43] mitigate the ambiguity
in image matting by formulating energy functions whose
solution entails a non-trivial optimization. Conversely, learning-
based methods [44], [45], [46] compose input-output pairs

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 3

for supervised training of DNNs. However, obtaining the
ground-truth pixel-wise opacity of a furry/semi-opaque object
in the wild is generally infeasible. A common alternative
is training on simulated images, either created with over-
simplified backgrounds [47], or as compositions of non-related
foregrounds and backgrounds [44]. This approach may create
a domain-shift in treating challenging real-world images. Our
method avoids utilizing the ground truth during training
altogether, circumventing this issue entirely.
Past Work on Single Image Dehazing: Prior to the
emergence of deep learning solutions, single image dehazing
has been handled as an energy minimization task [48], [16],
[49], [50], [51]. This implied choosing a clever prior and
incorporating it into an energy function, followed by an
execution of a carefully selected optimization scheme. However,
in addition to performing repeated optimization for each
image, the returned results were often characterized as having
non-physical colors and increased saturation and contrast. In
recent years, there has been a general shift towards supervised
data-driven and deep-learning-based solutions [9], [10], [11],
[12], [13]. Generally, it is impossible to capture clear and
hazy images sharing the exact same time, scene and lighting
conditions. Thus, supervised methods resort to simulating input
and output pairs, while relying on the haze formation model
[52]. Hazy images can be reliably synthesized using clear-
day images and their corresponding depth maps. However,
outdoor depth maps are costly and highly inaccurate [53];
hence, indoor depth images are frequently used instead. This
leads to an inherent domain shift when treating outdoor hazy
images which are the final target of dehazing algorithms. Our
proposed scheme evades this issue by training on real-world
outdoor hazy images only.

III. PROPOSED APPROACH

In this section we present the Deep Energy scheme, first
describing it in general terms, and then discussing three
different image processing tasks that harness it.

A. Deep Energy: General Scheme

Our interpretation of an “Energy Function” is simply a
cost function E(x,y) for the given input x and the unknown
output y, describing a desired behaviour of the output. For
example, the output should be required to be close to the input,
while being piece-wise-constant. These two conditions can be
explicitly enforced by formulating a specific energy function
of the form

E(x,y) = yTLy + (y − x)T (y − x), (1)

where L is a smoothness-enforcing Laplacian matrix. Consid-
ering a general energy function E(x,y), the optimal output
given an input x can be derived by

ŷ = arg min
y
E(x,y). (2)

The process of minimizing the energy function, called “in-
ference”, might be computationally exhaustive, depending on
the specific energy function, the dimensions involved, and the

chosen optimization method. In its core, the reliance on an
energy function poses an unsupervised approach, as it does
not require any learning, and the optimization is conducted for
each signal x individually. The above line of reasoning has
been quite popular over the past three decades, and numerous
energy functions have been proposed and leveraged for tackling
different tasks in the fields of computer vision and signal and
image processing.

Instead of repeatedly solving the energy function for each
input instance xm, we suggest training a DNN to solve
the problem posed in Equation (2). We do so by directly
minimizing an unsupervised energy loss during training. Given
an unlabelled dataset X , {xn}Mm=1, we propose representing
the output of the energy function as the prediction of a DNN
yp(x, θ) where ‘p’ stands for “prediction”, θ are the network
parameters, and the network’s input is x. To tune the network
parameters, we minimize the following energy-based equivalent
of the empirical loss over the training set:

min
θ

1

M

M∑
m=1

E(xm,yp(x
m;θ)). (3)

Thus we learn the network such that, averaged over all
examples, the energy function is minimized. This promotes
a desired behavior of the output without enforcing closeness
to ground-truth labels. We call this strategy Deep Energy –
unsupervised learning by minimization of a task-specific energy
function. The proposed scheme can serve any application, as
long as it can be posed in terms of an informative energy
function, and for which there is difficulty in collecting large-
scale data for supervised learning. Examples for such tasks
are optical flow estimation [54], single image depth estimation
[55], image retargetting [56], Retinex [57], and more. In the
remaining part of this section we describe three applications in
which we have incorporated Deep Energy: seeded segmentation,
image matting and single image dehazing.

B. Application 1: Seeded Segmentation

In seeded segmentation, the input consists of an image to
be segmented, and a sparse set of user-provided labelled seeds,
indicating the initial location of each object in the image; the
output is a pixelwise segmentation map. Seeded segmentation
has enjoyed popularity within the medical imaging community
[58], allowing the user a degree of control over the final
segmentation result. In recent years, with the emergence of deep
learning, seeded segmentation has been treated from a “weakly-
supervised” perspective. In this regime, the user-provided
seeds are only given at training, whereas the segmentation is
performed automatically at test time, without user assistance.

The majority of “weakly-supervised” methods [32], [35],
[37], [6] use external analytic solvers to extract input-output
pairs for supervised training. We, on the other hand, propose
to use the Deep Energy scheme, thereby avoiding the need for
labeling altogether. For this purpose, we use the energy function
of the well-known Random Walker algorithm by Grady et al.
[28], in which the image is represented as a weighted undirected
graph G = (V, E ,W). The vertices V are the pixels, and the
edges E correspond to their 4-neighborhoods. The weight of an

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 4

edge eij is given by wij = exp{−β‖Ii − Ij‖2}, where Ii, Ij
are the RGB values of the pixels i and j, and β is a global
scaling parameter.

Random walker models each pixel as conducting a random
walk over the above described graph. The probability of a
given pixel reaching each and every seed/class in the image
is also the final score of that class. Formally, let yl ∈ RN
be the pixelwise probability of belonging to class l, where N
denotes the number of pixels in the image. Denote xl ∈ RN
as the “seed image” of class l whose elements are 0 or 1,
indicating absence or presence of a seed respectively. The
vectorized versions of the initial seed and the final probabilities
over L classes are denoted by Y,X ∈ RN×L, where each
column corresponds to a separate class. The random walker
probabilities, yl, l ∈ [1, L], can be computed by minimizing
the following energy function2 [28]:

E(X,Y) =
∑
l

(yl)TLyl + λ
∑
l

(yl − xl)TQ(yl − xl)

= tr
{
YTLY + λ(Y −X)TQ(Y −X)

}
, (4)

where Q = diag(
∑
l x

l) ∈ RN×N is a matrix whose diagonal
elements indicate the presence of a seed of any class at a given
pixel, and L is the Laplacian of the graph given as

Lij =

di =

∑
j wij if i = j,

−wij if vi and vj are adjacent nodes,
0 otherwise.

(5)

The first term in Equation (4) is a “smoothness term”, ensuring
that adjacent pixels with similar colors have similar output
probabilities. Conversely, the weights of adjacent pixels in
discontinuous regions should be close to zero, allowing for
different probabilities in the output. The second is a “data
term”, encouraging fidelity to the input seeds. The final loss
function for training our DNN is a tensor-friendly version of
Equation (4), explained in details in Appendix A.

Returning to our Deep Energy paradigm, our aim is to use
it in order to put forward an alternative and faster way for
handling this segmentation task. Given a set of input images
and their seeds, {Im,Xm}Mm=1, our loss module computes
the corresponding matrices {Lm,Qm}Mm=1, and optimizes for
the parameters θ of the network Yp(I

m,Xm; θ), such that its
prediction over all training examples {Ym}Mm=1 minimizes the
expected energy function described above. After training has
finalized, the network has learned to approximate the output
probability Ytest, corresponding to a new set of image and
seeds {Itest,Xtest}, done via a simple forward-pass operation.

C. Application 2: Image Matting

In image matting, an object is extracted from its background
by determining the opacity and color of each pixel in the
foreground. The input is an image, assumed to be a composite
of foreground and background images, and the output is an
alpha matte, indicating the opacity of the foreground versus

2We use a soft version of random walker [28], instead of the original
formulation, which uses a hard constraint on the seed locations.

the background in each pixel. The following is known as the
“matting equation”,

Ii = αiFi + (1− αi)Bi, ∀i ∈ I, (6)

where I ∈ RN×3 is the input RGB image, F,B ∈ RN×3 are
the unknown foreground and background images, and α ∈
RN ∈ [0...1] is the alpha matte. Note that recovering the alpha
matte from a single input image is extremely ill-posed, since
seven quantities per each pixel must be deduced (the RGB
values of Fi,Bi and the alpha matte αi).

The energy function we use for this task is the closed-
form matting by Levin et al. [38]. By incorporating minimal
user interaction in the form of seeds and assuming that the
background and foreground are locally smooth, [38] manages
to eliminate the dependency on B,F and obtain a closed-form
solution for α. Computing the solution of α is obtained by
minimizing

E(x,α) = αTLα + λ(α− x)TQ(α− x), (7)

where Q ∈ RN×N is a diagonal matrix whose nonzero
elements indicate the presence of a foreground or background
seed. The vector x ∈ RN is the seed image with ′1′s in
respective foreground seed locations and ′0′s elsewhere. The
matrix L is a special Laplacian-like matrix [38] given by

Lij =
∑

n|(i,j)∈pn

(δij − wnij), (8)

where

wnij =
1

|pn|
(1 + (Ii − µn)

T
(Σn +

ε

|pn|
I)−1 (Ij − µn)).

In the above, i, j are pixels within the patch pn, centered at the
pixel n; µn ∈ R3×1,Σn ∈ R3×3 are the mean and covariance
of the patch of size |pn|; I ∈ R3×3 is the identity matrix,
and ε provides an additional control over the smoothness. The
reformulation of Equation (7) as a loss function for training is
detailed in Appendix A.

We should note the clear similarity between this formulation
and the random walker used in the seeded segmentation. Still,
there are two main differences between the two: (i) The
matting problem recovers a single image layer, whereas the
segmentation produces L layers; and (ii) The Laplacian L
matrices are formed very differently.

As for the deployment of Deep Energy, during training,
pairs of input images and their seeds {Im,xm}Mm=1 are fed
to the network, and the Deep Energy module computes the
intermediate {Lm,Qm}Mm=1 matrices for the corresponding
matting and data terms. The SGD optimization tunes the net-
work parameters such that the predictions {αm}Mm=1 minimize
the average loss function in Equation (7). At inference, a new
αtest is computed for a fresh set {Itest,xtest} by a simple
forward pass computation.

D. Application 3: Single Image Dehazing

While seeded segmentation and image matting contain some
user intervention, the third application we consider, single
image dehazing, is completely unsupervised. Given a hazy

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 5

input image, our goal is to lift the haze and reveal the hidden
details in the image. This is a vital preliminary stage in many
computer vision pipelines, including autonomous car navigation
and object detection.

The common haze formation model [52] postulates a hazy
image I ∈ RN×3 as a linear combination of a clear-day
scene radiance image J ∈ RN×3 and a constant atmospheric
component A ∈ R3×1, called the “airlight”. The relation
between these two is governed by a transmission map t ∈ RN ,
dependent on the pixelwise depth d ∈ RN from the camera:

Ii = tiJi + (1− ti)A, ∀i ∈ I

ti = exp−βdi ,
(9)

where β is a scattering coefficient, controlling haze thickness.
This model induces an under-determined set of 3N equations
for the known pixels of I and 4N + 3 unknowns for J, t,A.

We adopt the energy function of the well-known “Dark
Channel Prior” (DCP) [16] by He et al., who resolved the
ambiguity of the haze formation model by assuming a specific
prior. DCP is based on a statistical property of natural outdoor
images (excluding sky regions), stating that in small patches, the
darkest pixel of the patch across all RGB channels tends to zero.
This is due to shades and naturally dark and monochromatic
objects. The “Dark Image” is defined as a minimum filter over
small patches across RGB channels. In case of natural outdoor
images, this dark image is mostly zero,

Jdark
i = min

c∈{r,g,b}
(min
k∈Ω(i)

(Jck))→ 0, ∀i ∈ I (10)

where Ω(i) is a patch around pixel i, and c are the RGB
channels. Envoking the DCP on both I and J in the haze
formation model and assuming a constant transmission within
a small patch, results in the following coarse transmission map:

t̃i = 1− ω · min
c∈{r,g,b}

(
min
k∈Ω(i)

Ick
Ac

)
, ∀i ∈ I (11)

where the constant ω injects a small amount of haze for better
visual perception. In [16], the resulting block-artifact-filled
transmission map t̃ is smoothed with the same image matting
technique in Section III-C by Levin et al. [38]. The energy
function that provides the refined version of the transmission
map t is given by

E(t, t̃) = tTLt + λ(t− t̃)T (t− t̃), (12)

where L is the matting Laplacian from Equation. (8), encapsu-
lating the inter-pixel relations in the input hazy image I. As
opposed to image matting, there are no user-provided seeds
and the data term enforces closeness to all pixels in the coarse
transmittance map t̃. The detailed implementation of Equation
(12) as a loss function for training is given in Appendix A.

During training, the network is given the hazy images
{Im}Mm=1 and Deep Energy computes the intermediate
{t̃m,Am}Mm=1 and the final smoothing and data terms. At
test time, a new hazy image enters the learned network
that computes the predicted transmission map tθ. Given this
predicted transmission, the scene radiance J can be computed
using the haze formation model

J =
I−A

max(tθ, t0)
+ A, (13)

where t0 is a small constant threshold, used to avoid division
by zero. The only missing quantity is the airlight A. We follow
the heuristic in [16] of inspecting the 0.1% brightest pixels in
the dark channel image of I. Out of these locations, the RGB
value of the brightest pixel in I is chosen as the airlight A.

IV. RESULTS

We now present the results of our Deep Energy approach
on the three applications described above: the two weakly-
supervised tasks of seeded segmentation and image matting
and the fully unsupervised implementation of single image
dehazing. Our results clearly show that through energy-based
training, the network is able to mimic the results of the original
classical solver, and even outperform it in terms of application-
specific criteria.

A. Architecture

We use the same network structure for all three applications,
as it was found to provide favorable results for various image-to-
image applications. Our network architecture, shown in Figure
1, is fully convolutional and based on the Context Aggregation
Network (CAN), introduced in [59]. The spatial dimension of
the input, output and all intermediate layers remains the same,
without using pooling or strided convolutions, preserving fine
details in the image. To capture larger-scale semantic structures,
we use dilated convolutions that also aggregate the sparse seed
information in both seeded segmentation and image matting.
These dilated convolutions have exponentially increasing
dilation rates, this way enlarging the network receptive field.
We incorporate Resnet-style [60] skip connections to allow
for additional gradient flow through the network layers and to
facilitate the direct propagation of finer details in the image.

Specifically, our network is a cascade of “Dilated Residual
Blocks”. Each block contains two regular convolution layers,
followed by a single dilated-convolution layer. The dilation
factor is 2d, where d is the block number, starting from dilation
of 1, then 2, 4, and so on, until 2d. All convolution layers, apart
from the final output, are followed by batch normalization and
ReLU nonlinearity, and have 3× 3 filters with an output width
of 32. The final output layer is a linear 1 × 1 convolution
of width equal to the size of the desired output. In seeded
segmentation, there is an additional softmax layer to output the
probabilities of Random Walker. Finally, we add Resnet-style
addition skip connections between the input and output of each
block, as shown in Figure 1.

B. Datasets

Seeded Segmentation and Image Matting: We utilize the
Pascal VOC 2012 dataset [29], augmented with extra annota-
tions from [61]. We randomly split the original 10, 582 training
images to 500 for validation and parameter tuning, and the rest
for training. We use the original 1, 449 images in Pascal ‘val’
as test. We adopt the seed annotations supplied in [37]. Since
seeded segmentation is originally intended as user-assisted
segmentation, we use the seeds during training and test time.
To determine the quality of our solution during validation and

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 6

Energy
Loss

dilated conv 3x3x32
batch-norm
ReLU

conv 3x3x32
batch-norm
ReLU

conv 1x1x1

x1 x2 x4 x8 x16 x32

Input

Predictionx64

Fig. 1: System architecture. At input, the network receives either regular images or images concatenated with seeds, and outputs
a prediction. Our network is a series of “Dilated Residual Blocks” in which the spatial dimensions remain intact, but the
receptive field increases due to dilated convolutions with increasing dilation factor. Additional Resnet-style skip-connections
between the input and output of each block are added for improved gradient flow. The Deep Energy loss receives only the
input and prediction of the network, without relying on fully-annotated ground-truth labels.

test, we evaluate the mean-Intersection-over-Union (mIoU),
averaged over all 21 classes.

Image matting is originally a two-class task of separating
a foreground object from its background. Thus, to construct
two-class images out of the multi-class Pascal VOC, we create
L copies of the same L-class natural image, with different
seed locations from [37] for each individual class. We repeat
the same train-validation split and obtain two-class images,
resulting in 14, 772 training and 735 validation images. Note
that Pascal VOC was not originally intended for image matting.
Two possible alternatives are (i) Smaller datasets [47] that are
less suitable for deep learning applications, and (ii) Carefully
controlled simulated datasets [44] that may not fully capture
the behavior in the wild. Instead, we train on easy-to-obtain
natural images and use the minimal seeds described above,
rather than complex trimaps commonly used in image matting
[47], [44]. We evaluate the performance of the trained network
on the 27 test images in alphamatting.com, accompanied
with corresponding trimaps. We treat the constant background
and foreground pixels as seeds; the missing gray pixels are
completed by the algorithm.
Single Image Dehazing: We use the RESIDE (REalistic Single
Image DEhazing) dataset [53], containing both real-world and
simulated hazy images, accompanied with corresponding clear-
day ground-truths. In general, collecting real-world pairs of
clear and hazy images is impossible. Thus, learning-based
methods resort to simulating hazy images with the haze
formation model in Equation (9). Given a clear-day image
and its corresponding depth map, one can generate multiple
hazy images with varying amounts of haze thickness β and
airlight components A. Since outdoor depth maps are less
accurate and much harder to acquire, the common practice is
using indoor depth data and creating an indoor dehazing dataset.
We, on the other hand, do not need the ground-truth outputs
and can directly train on the RTTS – RESIDE’s collection of
4, 322 real-world outdoor hazy images. To evaluate the PSNR
(Peak Signal-to-Noise Ratio) and SSIM (Structured-Similarity)
values of our trained model during validation, we use a random

subset of 500 images from RESIDE’s OTS dataset. Our test set
is RESIDE’s collection of 500 outdoor images, called “SOTS-
outdoor”, and the smaller HSTS, consisting of 10 outdoor
images.

C. Implementation Details

Data Augmentation: In image matting no data augmentation
is performed and the single-class images of Pascal VOC are
resized using bilinear interpolation to 128 × 128. In seeded
segmentation we enlarge the train set by a factor of four to
40, 328 images. The first augmentation is a simple resize of
the Pascal VOC images to 128× 128. The second, third and
fourth augmentations are obtained by a horizontal flipping, and
random crop to a random-sized square (between 200 pixels and
the minimum dimension of the image), and random rotation
by 0, 90, 180, 270 degrees. All resulting augmentations are
resized using bilinear interpolation to 128 × 128. In Single
image dehazing, we again enlarge the training set by a factor
of four. The first set are simply the train images resized to
128×128. The other augmentations are horizontal flips, random
crops to 256 × 256 or 512 × 512, and random rotations by
0, 45, 90, 135 degrees. Finally, the images are resized to 128×
128. This creates a total of 17, 288 training images.
Experimental Setup: We implement our scheme in Tensor-
Flow on a GTX Titan-X Nvidia GPU. In all applications we
use the Adam [62] optimizer for training, and draw the initial
network weights from a Gaussian distribution N ∼ (0, 0.1). In
seeded segmentation, the network consists of 7 dilated residual
blocks with zero padding, and a maximum dilation factor
of ×64. Although our network is fully-convolutional, naïve
forward-pass of a large image results in an insufficient spread
of the seeds. Instead, to evaluate a new larger-sized image, we
follow [25] and resize it (and its seed) to 128× 128, pass it
through the network, and resize the resulting segmentation
or probability maps back to original size. We found that
simple nearest neighbor interpolation of the segmentation
result is accurate while being much faster than interpolating
21 probability maps.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 7

Our training schedule operates as follows: we first initialize
the learning rate to 0.01 and decrease it by a factor of

√
2

every two sign changes of the derivative of the validation loss.
We allow a cool-off period of two epochs, during which sign
changes are ignored. Finally, our batch size is 13. As to the
parameters of the energy function, we found the effect of the
parameter λ to be negligible in comparison to β. Thus, we
set λ = 1 and tune only the β parameter using the validation
set. The best performance of the analytic solution is obtained
for β = 100 and the network’s best solution corresponds to
β = 1000. For our best configuration of β = 1000, we stop
training after 25 epochs, corresponding to 15 hours.

In image matting, the network consists of 6 dilated residual
blocks with reflective padding. The learning rate schedule
is similar to seeded segmentation and starts from an initial
rate of 0.01, decreases by

√
2 every 4 sign changes of the

derivative of the validation loss, and features a 2 epoch cool-
off period. The batch size is 10 and the hyper-parameters of
the energy function are as recommended in [38]: the patch
size is set to 3× 3, and λ = 1, ε = 10−5. Training lasts for 59
epochs, corresponding to roughly 35 hours. During validation,
we perform a fully-convolutional forward-pass through the
network, with the original input dimensions.

Finally, in single image dehazing the network consists of 6
dilated residual blocks with zero padding. The learning rate
starts from 3× 10−4, exponentially decreased by a factor of
0.96 every 3 epochs. The batch size is 24, and the energy
function hyper-parameters are adopted exactly from [16]: λ =
10−4, ω = 0.95, t0 = 0.1, ε = 10−6, the DCP patch size is
15× 15, and the soft matting patch size is 3× 3. Training is
stopped after 30 epochs, which are roughly 8 hours.

D. Quantitative Results

First, we wish to quantify the proximity of the trained
network solution to the “analytic solution”, obtained by directly
minimizing the energy functions in Equations (4), (7), and (12).
By plugging-in the solution of the network or the analytic
solver back to the loss function, one can obtain a loss value.
We measure this average loss value over the test set for both
the analytic and the network solutions and report the results
in Table I. Additionally, we compare the overall quality of the
solutions by task-specific criteria. In seeded segmentation, we
provide the mIOU score over the Pascal VOC ‘val’ dataset3.
In image matting, we report the MSE (Mean Square Error)
and SAD (Sum Absolute Differences) scores of both solutions
on the training set of alphamatting.com. Finally, in single
image dehazing we measure the PSNR and SSIM metrics on
SOTS-outdoor and HSTS. These results are given in Table I
as well.

In seeded segmentation we show the performance for β =
100 and β = 1000, the best hyper-parameter values for the
analytic and network solutions respectively. In both cases, the
average loss value of the analytic solution is lower than that of
the network. Clearly, Deep Energy cannot reach the absolute

3We report the loss of the 128× 128 images and the mIOU score of the
fully-resized segmentation results of both the analytic and network solutions.

minimum of the loss function with the chosen architecture4.
Nonetheless, in terms of the actual quality of the obtained
segmentation, represented by the mIOU metric, the network’s
solution is better. For β = 100 it slightly outperforms the
analytic solution, and for β = 1000 it improves it considerably.
In addition, while the analytic solution is sensitive to the choice
of β (5% difference in mIOU between the two configurations),
our network is more robust.

In image matting, the analytic solver outperforms the network
solution. This result is expected since we made a compromise
of training on Pascal VOC images, originally intended for the
coarser task of semantic segmentation. The test set, however,
consists of challenging furry and hairy objects, relevant to
image matting. The ideal solution would be constructing a
large-scale weakly-annotated image matting dataset, but it is
out of the scope of this paper. That said, the network’s solution
is competitive due to its much improved run-time.

Finally, in single image dehazing, we encounter an even
stronger regularization ability as compared to the analytic
solution, reflected in a 7 dB increase in PSNR and a substantial
increase in SSIM. We believe that this large gap is attributed
to the relative weakness of the DCP energy in dealing with the
sky regions in outdoor images. Our network is able to mitigate
this difficulty by facing thousands of real-world hazy images
and characterizing the general appearance of the sky.

Recall that our initial goal was teaching the network to
approximate the minimizer of the energy function. However,
by early-stopping the learning process, before reaching the ab-
solute minimum, we often obtain effective regularization. This
regularization may stem either from the network architecture,
as shown in [18], or from the learning process, as shown in
[63]. Further extensive exploration of this regularization is left
for future work.

E. Runtime Comparison

The analytic solver, as efficient as it may be, requires
separate optimization for each input image. Our method, on the
other hand, allows for a fast prediction via a simple forward-
pass operation over the trained network. To demonstrate the
efficiency of our approach, we provide a runtime comparison
with the analytic solver for each application. We implement
the analytic solver in fully-vectorized Numpy-Scipy code, and
compare to the network solution, implemented in TensorFlow.
Note that in seeded segmentation we compare the overall
runtime of calculating the solution of the 128× 128 images,
along with the interpolation of the segmentation result back to
original size. In other applications we compute the solutions
for the original sizes of the test images. The last row of Table
I shows the average evaluation time for each test set using
the analytic and network solutions. One can clearly see the
benefit in terms of speed in favor of Deep Energy, reflected in
a speedup factor of 22− 56 across all applications. We should
note that our approach enables incorporating more complex
energy functions into real-time applications, while avoiding
the computationally-heavy direct minimization algorithms.

4In fact, this is true for all three applications.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 8

β = 1000

β = 100

input analytic prob. network prob. GT + seeds analytic seg. network seg.

Fig. 2: Seeded segmentation results with different β values. From left to right: original image, analytic and network probabilities
of ‘background’ class, ground truth segmentation with overlayed seeds, analytic and network segmentation.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 9

TABLE I: Quantitative results of the Deep Energy approach. Each cell describes (analytic/network) performance values, and the
better is shown in Bold. In mIOU, SAD, PSNR and SSIM, higher is better, and in MSE lower is better.

Seeded Segmentation Image Matting Single Image Dehazing

β = 100 β = 1000 fine trimap coarse trimap HSTS SOTS-outdoor

Loss 5.153/8.918 0.669/3.425 1.732/4.141 – 0.138/0.910 0.158/1.059
mIOU [%] 71.99/72.12 66.97/73.76 – – – –
MSE – – 0.029/0.038 0.033/0.047 – –
SAD – – 6,810/9, 990 10,512/17, 709 – –
PSNR [dB] – – – – 15.96/24.41 16.96/24.07
SSIM – – – – 0.877/0.934 0.886/0.933
Time [sec] 0.657/0.029(×22) 1.599/0.029(×56) 21.635/0.532(×41) 24.789/0.524(×47) 28.018/0.506(×55) 28.887/0.582(×50)

input trimap GT analytic network

Fig. 3: Image matting results. From left to right: original
image, input trimap, matting ground truth, analytic solution
and network solution.

F. Qualitative Results

We turn to present the results of seeded segmentation on
images taken from Pascal VOC 2012 ‘val’ dataset, accompanied
with seeds collected by [37]. The upper and lower parts
of Figure5 2 feature results with β = 1000 and β = 100
respectively. For the analytic solution, higher values of β lead
to better localized, but often unstable, results (e.g., holes within
objects and over-segmentation), thus a lower value of β = 100
is optimal. The network solution, however, returns blurrier
probability maps, thus an initially higher value of β = 1000
creates a better balance. Overall, the analytic solution, by its
construction, is highly affected by local grayscale changes in
the image. For example, it is strongly affected by the white

5Here and elsewhere, visual results are best viewed with zoom of 300%.

input analytic network GT

Fig. 4: Single image dehazing results. From left to right: hazy
image, analytic solution, network solution and ground truth.

straps around the horse’s head in the first row, or the train
window in the sixth row. The network solution, on the other
hand, seems to better perform in these cases, due to the extra
regularization induced by the chosen network. While the initial
energy function used for the analytic and network solutions
are the same, the solutions may differ and depend on the
hyper-parameters and the network’s architecture.

In image matting, we show the results of images from the
training set of alphamatting.com [47], which feature heavier
user assistance in the form of trimaps. Although we trained on
Pascal VOC 2012, originally intended for image segmentation,
and used minimal seeds, our network solution, shown in Figure
3, exhibits good generalization ability. In the top four rows,
the analytic and network solutions appear similar, although
the network returns slightly blurrier results. In the fifth row,
the holes of the decorative object are completely filled by the
analytic solution, whereas the network solution is closer to
the ground truth. The last row showcases the failure of the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 10

input ours (27) ours (30) analytic

Fig. 5: Single image dehazing results on real-world images.
From left to right: hazy image, analytic solution, network
solution after 27 epochs and after 30 epochs.

network in capturing the very fine hair on the trolls’ heads.
This blurriness is a result of the architecture that features a long
chain of repeated convolutions. It can possibly be remedied
by an additional “refinement network” as suggested in [44]
and adapted to the Deep Energy loss. We leave this important
direction for future work.

We present the qualitative performance for the single image
dehazing problem on RESIDE’s HSTS benchmark images. The
analytic solution amplifies the contrast and colors in the image,
especially in the sky regions, where the dark channel prior
assumption is not valid. Our solution, on the other hand, returns
a more realistic result, much similar to the ground truth. While
we train our network using the DCP energy function, our aim
is not reaching the absolute global minimum of the energy
function. By an early-stopping during training, we achieve
an additional effective regularization and provide even better
results than DCP.

Figure 5 shows real-world image results of our network,
trained for 27 and 30 epochs. As can be seen, as training
progresses the network reaches a lower minimum of the energy
function, providing similar results as classical DCP. Early

stopping after 27 epochs provides a more subtle dehazing
effect without an enhanced contrast, but with residual haze.
By changing the training stopping point, we can control the
proximity of the network to the analytic solution of DCP.

V. CONCLUSION

This work has introduced a new and principled approach for
unsupervised training of DNNs, through direct minimization
of energy functions that describe the desired inference. The
proposed Deep Energy paradigm has been demonstrated on
three applications: seeded segmentation, image matting and
single image dehazing. Our approach incorporates task-specific
domain knowledge into the loss function and allows for reduced
dependency on annotated and synthetic datasets. We have
demonstrated that even though we train our network to approxi-
mate the minimization of a certain energy function, our solution
is faster and often of much better quality, compared to that of
the analytic alternative. This implies an effective regularization,
which may stem either from the architecture itself or from
the learning process. Future directions of research include
combining supervised and energy-based losses, investigating the
source of added regularization, and a derivation of a theoretical
comparison between supervised and energy-based training.

APPENDIX
TENSORIZATION OF ENERGY FUNCTIONS

Seeded Segmentation One can directly use the energy
expression in Equation (4) as a loss function during training.
Instead, we convert this function to a more “tensor-friendly”
form using a common expansion of Laplacian matrices:

E(X,Y) =
1

2

∑
l

∑
(i,j)∈E

wij(y
l
i − ylj)2

+ λ
∑
i

(∑
l

xli

)(∑
l

(
yli − xli

)2)
.

(14)

Then, we concatenate C identical copies of the output Y ∈
RN×L, along the last dimension, to create Ỹ ∈ RN×L×C ,
where C is the number of neighbors (C = 4 in our case).
Further, we form Ỹη ∈ RN×L×C as a concatenation of the
C “neighbor images” of the output yl; in the case of 4-
neighborhoods, the neighbor images are simply the image
yl shifted left, right, up and down. Finally, the weights can
be represented as an N × C matrix; we then take L copies of
this matrix and put them in the 3-tensor W ∈ RN×L×C . The
energy function can now be written as follows:

E(X,Y) =
1

2

B∑
b=1

N∑
n=1

L∑
l=1

C∑
c=1

W � (Ỹ − Ỹη)2

+ λ

B∑
b=1

N∑
n=1

[
L∑
l=1

X

]
�

[
L∑
l=1

(Y −X)2

]
,

(15)

where we have summed over the batch dimension, b = 1...B;
and the powers are taken elementwise.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 11

Image Matting We again rephrase the first term in the
energy function in Equation (7) in terms of weights:

αTLα =

N∑
n=1

9∑
i=1

9∑
j=1

wnij(αi − αj)2, (16)

where we sum over all overlapping patches around N pixels
in the resulting alpha matte, as well as over all possible
combinations of pixel pairs i, j in a given 3× 3 patch, where
the total number of combinations is (32) ∗ (32) = 81. The
weights wni,j are given in 8. We can then add the tensorized
data term to get the final loss function:

E(X,α) =

B∑
b=1

N∑
n=1

K∑
k=1

W � (α̃I − α̃J)2

+ λ

B∑
b=1

N∑
n=1

[XF + XB]� [α−XF]
2
,

(17)

where k ∈ [1...K = 81] indexes the pixel pairs i, j in a 3× 3
patch, and W ∈ RB×N×81 is the matrix of weights. α̃I , α̃J ∈
RB×N×81 are repetitions of the alpha matte; the first represents
the alpha mattes in index i → (1, .., 1, 2, ..., 2, ..., 9, ..., 9) ∈
R81, and the second represents the alpha mattes in index
j → (1, 2, ..., 9, 1, 2, ..., 9, ..., 1, 2, ...9) ∈ R81. The data term
is exactly the same as in seeded segmentation, only there is
no need for summation over the classes l; XF ∈ RB×N and
XB ∈ RB×N are the foreground and background seed images.

Single Image Dehazing Note that the energy for this task,
given in Equation 12, is exactly identical to the image matting
energy in 7; α,X are replaced with t, t̃ correspondingly, and
the seed matrix Q is now identity. Following the same steps
as in matting tensorization, we get the following loss function:

E(t, t̃) =

B∑
b=1

N∑
n=1

K∑
k=1

W� (TI −TJ)2 + λ

B∑
b=1

N∑
n=1

(t− t̃)2,

(18)
where TI ,TJ are constructed as α̃I , α̃J in image matting.
The coarse transmission map t̃ is calculated using 11.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[2] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,” in
International Conference on Machine Learning, pp. 173–182, 2016.

[3] Q. Chen, J. Xu, and V. Koltun, “Fast image processing with fully-
convolutional networks,” in IEEE International Conference on Computer
Vision, vol. 9, 2017.

[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia, pp. 675–678, ACM, 2014.

[5] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” in Advances in neural information processing
systems, pp. 649–657, 2015.

[6] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei, “What’s the point:
Semantic segmentation with point supervision,” in European Conference
on Computer Vision, pp. 549–565, Springer, 2016.

[7] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in 2016
Fourth International Conference on 3D Vision (3DV), pp. 565–571, IEEE,
2016.

[8] Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P.-A. Heng, “3d
deeply supervised network for automated segmentation of volumetric
medical images,” Medical image analysis, vol. 41, pp. 40–54, 2017.

[9] Q. Zhu, J. Mai, L. Shao, et al., “A fast single image haze removal
algorithm using color attenuation prior.,” TIP, vol. 24, no. 11, pp. 3522–
3533, 2015.

[10] W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M.-H. Yang, “Single
image dehazing via multi-scale convolutional neural networks,” in ECCV,
2016.

[11] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “Dehazenet: An end-to-end
system for single image haze removal,” TIP, vol. 25, no. 11, pp. 5187–
5198, 2016.

[12] B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “Aod-net: All-in-one
dehazing network,” in ICCV, 2017.

[13] W. Ren, L. Ma, J. Zhang, J. Pan, X. Cao, W. Liu, and M.-H. Yang,
“Gated fusion network for single image dehazing,” CVPR, 2018.

[14] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE
transactions on pattern analysis and machine intelligence, vol. 26, no. 9,
pp. 1124–1137, 2004.

[15] M. Elad and A. Feuer, “Restoration of a single superresolution image
from several blurred, noisy, and undersampled measured images,” IEEE
transactions on image processing, vol. 6, no. 12, pp. 1646–1658, 1997.

[16] K. He, J. Sun, and X. Tang, “Single image haze removal using dark
channel prior,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 12, pp. 2341–2353, 2011.

[17] A. Wedel, D. Cremers, T. Pock, and H. Bischof, “Structure-and motion-
adaptive regularization for high accuracy optic flow,” in Computer Vision,
2009 IEEE 12th International Conference on, pp. 1663–1668, IEEE,
2009.

[18] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” arXiv
preprint arXiv:1711.10925, 2017.

[19] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic
style,” arXiv preprint arXiv:1508.06576, 2015.

[20] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution,” in European Conference on Computer
Vision, pp. 694–711, Springer, 2016.

[21] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky, “Texture
networks: Feed-forward synthesis of textures and stylized images.,” in
ICML, pp. 1349–1357, 2016.

[22] Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha, “Unsupervised deep
learning for optical flow estimation.,” in AAAI, pp. 1495–1501, 2017.

[23] E. Richardson, M. Sela, R. Or-El, and R. Kimmel, “Learning detailed
face reconstruction from a single image,” in Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on, pp. 5553–5562, IEEE,
2017.

[24] Q. Fan, J. Yang, D. Wipf, B. Chen, and X. Tong, “Image smoothing
via unsupervised learning,” in SIGGRAPH Asia 2018 Technical Papers,
p. 259, ACM, 2018.

[25] M. Tang, A. Djelouah, F. Perazzi, Y. Boykov, and C. Schroers, “Nor-
malized cut loss for weakly-supervised cnn segmentation,” in IEEE
conference on Computer Vision and Pattern Recognition (CVPR), Salt
Lake City, 2018.

[26] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive foreground
extraction using iterated graph cuts,” in ACM transactions on graphics
(TOG), vol. 23, pp. 309–314, ACM, 2004.

[27] Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal boundary
& region segmentation of objects in nd images,” in Computer Vision,
2001. ICCV 2001. Proceedings. Eighth IEEE International Conference
on, vol. 1, pp. 105–112, IEEE, 2001.

[28] L. Grady, “Random walks for image segmentation,” IEEE transactions on
pattern analysis and machine intelligence, vol. 28, no. 11, pp. 1768–1783,
2006.

[29] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International journal
of computer vision, vol. 88, no. 2, pp. 303–338, 2010.

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale
visual recognition challenge,” International Journal of Computer Vision,
vol. 115, no. 3, pp. 211–252, 2015.

[31] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3431–3440, 2015.

[32] D. Pathak, P. Krahenbuhl, and T. Darrell, “Constrained convolutional
neural networks for weakly supervised segmentation,” in Proceedings of
the IEEE international conference on computer vision, pp. 1796–1804,
2015.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. Y, OCTOBER 2018 12

[33] A. Kolesnikov and C. H. Lampert, “Seed, expand and constrain: Three
principles for weakly-supervised image segmentation,” in European
Conference on Computer Vision, pp. 695–711, Springer, 2016.

[34] Y. Wei, X. Liang, Y. Chen, X. Shen, M.-M. Cheng, J. Feng, Y. Zhao,
and S. Yan, “Stc: A simple to complex framework for weakly-supervised
semantic segmentation,” IEEE transactions on pattern analysis and
machine intelligence, vol. 39, no. 11, pp. 2314–2320, 2017.

[35] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille, “Weakly-and
semi-supervised learning of a deep convolutional network for semantic
image segmentation,” in Proceedings of the IEEE international conference
on computer vision, pp. 1742–1750, 2015.

[36] J. Dai, K. He, and J. Sun, “Boxsup: Exploiting bounding boxes
to supervise convolutional networks for semantic segmentation,” in
Proceedings of the IEEE International Conference on Computer Vision,
pp. 1635–1643, 2015.

[37] D. Lin, J. Dai, J. Jia, K. He, and J. Sun, “Scribblesup: Scribble-supervised
convolutional networks for semantic segmentation,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3159–3167, 2016.

[38] A. Levin, D. Lischinski, and Y. Weiss, “A closed-form solution to natural
image matting,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 30, no. 2, pp. 228–242, 2008.

[39] Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski, “A bayesian
approach to digital matting,” in Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, vol. 2, pp. II–II, IEEE, 2001.

[40] E. S. Gastal and M. M. Oliveira, “Shared sampling for real-time alpha
matting,” in Computer Graphics Forum, vol. 29, pp. 575–584, Wiley
Online Library, 2010.

[41] K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun, “A global sampling
method for alpha matting,” in Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pp. 2049–2056, IEEE, 2011.

[42] L. Grady, T. Schiwietz, S. Aharon, and R. Westermann, “Random walks
for interactive alpha-matting,” in Proceedings of VIIP, vol. 2005, pp. 423–
429, 2005.

[43] J. Wang and M. F. Cohen, “Optimized color sampling for robust matting,”
in Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on, pp. 1–8, IEEE, 2007.

[44] N. Xu, B. Price, S. Cohen, and T. Huang, “Deep image matting,” in
Computer Vision and Pattern Recognition (CVPR), 2017.

[45] X. Shen, X. Tao, H. Gao, C. Zhou, and J. Jia, “Deep automatic portrait
matting,” in European Conference on Computer Vision, pp. 92–107,
Springer, 2016.

[46] D. Cho, Y.-W. Tai, and I. Kweon, “Natural image matting using deep
convolutional neural networks,” in European Conference on Computer
Vision, pp. 626–643, Springer, 2016.

[47] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and P. Rott, “A
perceptually motivated online benchmark for image matting,” in Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
pp. 1826–1833, IEEE, 2009.

[48] R. T. Tan, “Visibility in bad weather from a single image,” in CVPR,
2008.

[49] G. Meng, Y. Wang, J. Duan, S. Xiang, and C. Pan, “Efficient image
dehazing with boundary constraint and contextual regularization,” in
ICCV, 2013.

[50] R. Fattal, “Dehazing using color-lines,” TOG, vol. 34, no. 1, p. 13, 2014.
[51] D. Berman, T. Tali, and S. Avidan, “Non-local image dehazing,” in

CVPR, 2016.
[52] W. K. Middleton, “Vision through the atmosphere,” in Geophysik

II/Geophysics II, pp. 254–287, Springer, 1957.
[53] B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang,

“Benchmarking single-image dehazing and beyond,” IEEE Transactions
on Image Processing, vol. 28, no. 1, pp. 492–505, 2019.

[54] D. Fleet and Y. Weiss, “Optical flow estimation,” in Handbook of
mathematical models in computer vision, pp. 237–257, Springer, 2006.

[55] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth
from a conventional camera with a coded aperture,” ACM transactions
on graphics (TOG), vol. 26, no. 3, p. 70, 2007.

[56] M. Rubinstein, D. Gutierrez, O. Sorkine, and A. Shamir, “A comparative
study of image retargeting,” in ACM transactions on graphics (TOG),
vol. 29, p. 160, ACM, 2010.

[57] D. J. Jobson, Z.-u. Rahman, and G. A. Woodell, “A multiscale retinex
for bridging the gap between color images and the human observation of
scenes,” IEEE Transactions on Image processing, vol. 6, no. 7, pp. 965–
976, 1997.

[58] C. Couprie, L. Najman, and H. Talbot, “Seeded segmentation methods
for medical image analysis,” in Medical Image Processing, pp. 27–57,
Springer, 2011.

[59] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[61] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik, “Semantic
contours from inverse detectors,” in 2011 International Conference on
Computer Vision, pp. 991–998, IEEE, 2011.

[62] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[63] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro, “Implicit bias of
gradient descent on linear convolutional networks,” arXiv preprint
arXiv:1806.00468, 2018.

Alona Golts received the B.Sc. and M.Sc. degrees
from the Department of Electrical Engineering, Tech-
nion—Israel Institute of Technology, Haifa, Israel, in
2010 and 2015, respectively. She is currently pursuing
her Ph.D. in the department of Computer Science in
the Technion. Her research interests are deep learning,
inverse problems and sparse representations.

Daniel Freedman received the AB in Physics from
Princeton University (Magna Cum Laude) in 1993,
and his Ph.D. in Engineering Sciences from Har-
vard University in 2000. From 2000-9, he served
as Assistant Professor and Associate Professor in
the Computer Science Department at Rensselaer
Polytechnic Institute (RPI) (Troy, NY). In 2007, he
became a Fulbright Fellow and Visiting Professor
of Applied Mathematics and Computer Science at
the Weizmann Institute of Science. He then worked
in a number of research positions in HP Labs, IBM

Research, Microsoft Research, and finally Google Research. In addition to the
Fulbright Fellowship, he received the National Science Foundation CAREER
Award.

Michael Elad received the B.Sc., M.Sc., and D.Sc.
degrees from the Department of Electrical engi-
neering, Technion—Israel Institute of Technology,
Haifa, Israel, in 1986, 1988, and 1997, respectively.
Since 2003, he has been a faculty member in the
Department of Computer Science, Technion—Israel
Institute of Technology, where since 2010, he is a
Full Professor. He works in the field of signal and
image processing, specializing in inverse problems,
and sparse representations. He was the recipient of
numerous teaching awards, the 2008 and 2015 Henri

Taub Prizes for Academic Excellence, and the 2010 Hershel-Rich prize for
innovation. He is a SIAM Fellow (2018). Since January 2016, He has been the
Editor-in-Chief for SIAM Journal on Imaging Sciences since January 2016.

	Introduction
	Related Work
	Proposed Approach
	Deep Energy: General Scheme
	Application 1: Seeded Segmentation
	Application 2: Image Matting
	Application 3: Single Image Dehazing

	Results
	Architecture
	Datasets
	Implementation Details
	Quantitative Results
	Runtime Comparison
	Qualitative Results

	Conclusion
	Appendix: Tensorization of Energy Functions
	References
	Biographies
	Alona Golts
	Daniel Freedman
	Michael Elad

