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Abstract

Image denoising is a well studied problem with an exten-

sive activity that has spread over several decades. Leading

classical denoising methods are typically designed to ex-

ploit the inner structure in images by modeling local over-

lapping patches, and operating in an unsupervised fashion.

In contrast, newcomers to this arena are supervised and

universal neural-network-based methods that bypass this

modeling altogether, targeting the inference goal directly

and globally, tending to be deep and parameter heavy.

This work proposes a novel lightweight learnable ar-

chitecture for image denoising, using a combination of

supervised and unsupervised training of it, the first aim-

ing for a universal denoiser and the second for an in-

stance adaptation. Our architecture embeds in it concepts

taken from classical methods, leveraging patch process-

ing, non-local self-similarity, representation sparsity and

a multiscale treatment. Our proposed universal denoiser

achieves near state-of-the-art results, while using a small

fraction of the typical number of parameters. In addi-

tion, we introduce and demonstrate two highly effective

ways for further boosting the denoising performance, by

adapting this universal network to the input image. The

code reproducing the results of this paper is available at

https://github.com/grishavak/LIDIA-denoiser.

1. Introduction

Image denoising is a well studied problem, and many

successful algorithms have been developed for handling this

task over the years, e.g. NLM [2], KSVD [11], BM3D [8],

EPLL [52], WNNM [12] and others [36, 24, 47, 9, 32, 28,

15, 35, 43, 45, 40, 29]. These classically-oriented algo-

rithms strongly rely on models that exploit properties of

natural images, usually employed while operating on small

fully overlapped patches. For example, both EPLL [52] and

PLE [47] perform denoising using Gaussian Mixture Mod-

eling (GMM) imposed on the image patches. The K-SVD

algorithm [11] restores images using a sparse modeling of

such patches. BM3D [8] exploits self-similarity by group-

(a) Clean image (b) Noisy (σ = 50)

(c) Denoised

PSNR = 24.33dB

(d) Denoised (after adaptation)

PSNR = 26.25dB

Figure 1: Our adaptation approach: (a) and (b) show the

clean and noisy images; (c) is the denoised result by our

universal architecture (d) presents our externally adapted re-

sult, using an additional single astronomical image.

ing similar patches to 3D blocks and filtering them jointly.

The algorithms reported in [40, 29] harness a multi-scale

analysis framework on top of the above-mentioned local

models. Common to all these and many other classical de-

noising methods is the fact that they operate in an unsuper-

vised fashion, adapting their treatment to each image.

Recently, supervised deep-learning based methods en-

tered the denoising arena, showing state-of-the-art (SOTA)

results in various contexts [3, 6, 44, 48, 25, 49, 34, 41, 23,

50, 22]. In contrast to the above-mentioned classical al-

gorithms, deep-learning based methods tend to bypass the

need for an explicit modeling of image redundancies, op-

erating instead by directly learning the inference from the

incoming images to their desired outputs. In order to ob-

tain a non-local flavor in their treatment, as self-similarity

or multi-scale methods would do, most of these algorithms

([22] being an exception) tend to increase their footprint by

utilizing very deep and parameter heavy networks. These
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reflect badly on their memory consumption, the required

amount of training images and the time for training and in-

ference. Note that most deep-learning based denoisers oper-

ate in an universal fashion, i.e., they apply the same trained

network to all incoming images.

An interesting recent line of work by Lefkimmiatis pro-

poses a denoising network with a significantly reduced

number of parameters, while persisting on near SOTA per-

formance [18, 19]. This method leverages the non-local

self-similarity property of images by jointly operating on

groups of similar patches. The network’s architecture con-

sists of several repeated stages, each resembling a single

step of the proximal gradient descent method under sparse

modeling [30]. In comparison with DnCNN [48], the work

reported in [18, 19] shows a reduction by factor of 14 in

the number of parameters, while achieving denoising PSNR

that is only ∼ 0.2 dB lower.

In this paper we propose two threads of novelty. Our

first contribution aims at a better design of a denoising net-

work, inspired by Lefkimmiatis’ work. This network is to

be trained in a supervised fashion, creating an effective uni-

versal denoiser for all images. Our second contribution ex-

tends the above by introducing image adaptation: We of-

fer ways for updating the above network for each incoming

image, so as to accommodate better its content and inner

structure, leading to better denoising.

Referring to the first part of this work (our universal de-

noiser), we continue with Lefkimmiatis’ line of lightweight

networks and propose a novel, easy, and learnable archi-

tecture that harnesses several main concepts from clas-

sical methods: (i) Operating on small fully overlapping

patches; (ii) Exploiting non-local self-similarity; (iii) Lever-

aging representation sparsity; and (iv) Employing a multi-

scale treatment. Our network resembles the one proposed

in [18, 19], with several important differences:

• We introduce a multi-scale treatment that combats spa-

tial artifacts, especially noticeable in smooth regions

[40]. While this change does not reflect strongly on

the PSNR results, it has a clear visual contribution;

• Our network is more effective by operating in the

residual domain, similar to the approach taken by [48];

• Our patch fusion operator includes a spatial smooth-

ing, adding an extra force to our overall filtering; and

• Our architecture is trained end-to-end, whereas

Lefkimiatis’s scheme consists of a greedy training of

its layers, followed by an end-to-end update.

Our proposed method operates on all the overlapping

patches taken from the processed image by augmenting

each with its nearest neighbors and filtering these jointly.

The patch grouping stage is applied only once before any

filtering, and it is not a part of the learnable architecture.

Each patch group undergoes a series of trainable steps that

aim to predict the noise in the candidate patch, thereby op-

erating in the residual domain. As mentioned above, our

scheme includes a multi-scale treatment, fusing the process-

ing of corresponding patches from different scales.

Moving to the second novelty in this work (image adap-

tation), we present two ways for updating the universal net-

work for any incoming image, so as to further improve its

denoised result. This part relies on three key observations:

(i) A universally trained denoiser is necessarily less effec-

tive when handling images falling outside the training-set

statistics; (ii) While our universal denoiser does exploit self-

similarity, this can be further boosted for images with pro-

nounced repetitions; and (iii) As our universal denoiser is

lightweight, even a single image example can be used for

updating it without overfitting.

In accordance with these, we propose to retrain the uni-

versal network and better tune it for the image being served.

One option, the external boosting, suggests taking the uni-

versally denoised result, and using it for searching the web

for similar photos. Taking even one such related image and

performing few epochs of update to the network may im-

prove the overall performance. This approach is extremely

successful for images that deviate from the training-set, as

illustrated in Figure 1. The second adaptation technique,1

the internal one, re-trains the network on the denoised im-

age itself (and a noisy version of it). This is found to be

quite effective for images with marked inner-similaries.

To summarize, this paper has two key contributions:

1. We propose a novel architecture that is inspired by

classical denoising algorithms. Employed as a univer-

sal denoiser and trained in a supervised fashion, our

network gives near-SOTA results while using a very

small number of parameters to be tuned 2

2. We present an image-adaptation option, in which the

above network is updated for better treating the incom-

ing image. This adaptation becomes highly effective

in cases of images deviating from the natural image

statistics, or in situations in which the incoming im-

age exhibits stronger inner-structure. In these cases,

denoising results are boosted dramatically, surpassing

known supervised deep-denoisers.

1A recently published work [4, 5] proposes an interesting special ar-

chitecture constraint that allows for training the network on the corrupted

image itself in a fashion similar to our adaptation. We shall return to these

papers in the results’ section and explain more on the relation to our work.
2Reducing the number of network parameters is important for low GPU

memory consumption and for reducing the number of images required for

training. Indeed, our proposed adaptation relies on this feature for avoiding

overfitting. We should note, however, that while the number of parameters

in our proposed network is relatively small, our inference computational

load is similar to DnCNNs.



2. The Proposed Universal Network

2.1. Overall Algorithm Overview

Our proposed method extracts all possible overlapping

patches of size
√
n × √

n from the processed image, and

cleans each in a similar way. The final reconstructed image

is obtained by combining these restored patches via averag-

ing. The algorithm is shown schematically in Figure 2.

In order to formulate the patch extraction, combination

and filtering operations, we introduce some notations. As-

sume that the processed image is of size M × N . We de-

note by Y, Ŷ ∈ R
MN the noisy and denoised images re-

spectively, both reshaped to a 1D vector. Similarly, the

corrupted and restored patches in location i are denoted by

zi, ẑi ∈ R
n respectively, where i = 1, . . . ,MN .3 Patch ex-

traction from the noisy image is denoted by zi = RiY , and

the denoised image is obtained by combining the denoised

patches {ẑi} using weighted averaging,

Ŷ =

(

∑

i

wiR
T
i Ri

)

−1
∑

i

wiR
T
i ẑi, (1)

where these weights are wi = exp {−β · var (ẑi)},

(var (z) is a sample variance of z, and β is learned).

2.2. Our Scheme: A Closer Look

Zooming in on the local treatment, it starts by augment-

ing the patch zi with a group of its k− 1 nearest neighbors,

forming a matrix Zi of size n × k. The nearest neighbor

search is done using a Euclidean metric, limited to a search

window of size b× b around the center of the patch.

The matrix Zi undergoes a series of trainable operations

that aim to recover a clean candidate patch ẑi. Our filtering

network consists of several blocks, each consisting of (i) a

forward 2D linear transform; (ii) a non-negative threshold-

ing (ReLU) on the obtained features; and (iii) a transform

back to the image domain. All transforms operate sepa-

rately in the spatial and the similarity domains. In contrast

to BM3D and other methods, our filtering predicts the resid-

ual rather than the clean patches, just as done in [48].

Our scheme includes a multi-scale treatment and a fu-

sion of corresponding patches from the different scales.

The adopted strategy borrows its rationale from [46], which

studied the single image super resolution task. In their algo-

rithm, high-resolution patches and their corresponding low-

resolution versions are jointly treated by assuming that they

share the same sparse representation. The two resolution

patches are handled by learning a pair of coupled dictio-

naries. In a similar fashion, we augment the correspond-

ing patches from the two scales, and learn a joint trans-

form for their fusion. In our experiments, the multi-scale

3We handle boundaries by padding using mirror reflection. Thus, the

number of extracted patches is equal to the number of pixels in the image.

scheme includes only two scales, but the same concept can

be applied to a higher pyramid. In our notations, the 1st

scale is the original noisy image Y, and the 2nd scale im-

ages are created by convolving Y with the low-pass filter

fLP = 1
16

[

1 2 1
]T ·

[

1 2 1
]

and down-sampling the

result by a factor of two. In order to synchronize between

patch locations in the two scales, we create four downscaled

images by sampling the convolved image at either even or

odd locations: Y
(2)
ee ,Y

(2)
eo ,Y

(2)
oe ,Y

(2)
oo (even/odd columns

& even/odd rows). For each 1st scale patch, the correspond-

ing 2nd scale patch (of the same size
√
n×√

n) is extracted

from the appropriate down-sampled image, such that both

patches are centred at the same pixel in the original image.

We denote the 2nd scale patch that corresponds to zi by

z
(2)
i ∈ R

n. This patch is augmented with a group of its

k−1 nearest neighbors, forming a matrix Z
(2)
i of size n×k.

The nearest neighbor search is performed in the same down-

scaled image from which z
(2)
i is taken.Both matrices, {Zi}

and {Z(2)
i }, are fed to the filtering network, which fuses the

scales using a joint transform, as described next.

2.3. The Filtering Network

A basic component within our network is the TRT

(Transform–ReLU–Transform) block, which follows the

classic Thresholding algorithm in sparse approximation the-

ory [10]. The same conceptual structure is employed by the

well-known BM3D [8]. The TRT block applies a learned

transform, non-negative thresholding (ReLU) and another

transform on the resulting matrix. Both transforms are sep-

arable, denoted by the operator T and implemented us-

ing a Separable Linear (SL) layer, T (Z) = SL (Z) =
W1ZW2 +B, where W1 and W2 operate in the spatial and

the similarity domains. Separability of SL allows a substan-

tial reduction in the number of parameters. As concatena-

tion of two SL layers can be replaced by a single effective

SL, we remove one SL layer in such concatenations. The

TRT component without the second transform is denoted

by TR, and when concatenating k TRT-s, the first k − 1
blocks should be replaced by TR-s. Another variant we use

in our network is TBR, which is a version of TR with batch

normalization added before the ReLU.

Another component of the filtering network is an Ag-

gregation block (AGG). This block imposes consistency

between overlapping patches {zi} by combining them to a

temporary image xtmp using plain averaging and extract-

ing them back from the obtained image by Rixtmp. The

complete architecture of the filtering network is presented

in Figure 3. The network receives as input two sets of ma-

trices, {Zi} and {Z(2)
i }, and its output is an array of filtered

overlapping patches {ẑi}. At first, each of these matrices is

multiplied by a diagonal weight matrix diag(wi)Zi. Recall

that the columns of Zi (or {Z(2)
i }) are image patches, where



Figure 2: The proposed denoising Algorithm: Extract overlapping patches and their corresponding reduced-scales; Augment

the patches with their nearest neighbors and filter. Reconstruct by combining all the filtered patches via averaging.

the first is the processed one and the rest are its neighbors.

The weights wi express the network’s belief regarding the

relevance of each of the neighbors to the denoising process.

These weights are calculated using an auxiliary network de-

noted as “weight net”, consisting of seven FC (Fully Con-

nected) layers of size k × k with batch normalization and

ReLU between each two FC’s. The network gets as input

the sample variance of the processed patch and k−1 squared

distances between the patch and its neighbors.

After multiplication by diag(wi) the Zi matrix under-

goes a series of operations that include transforms, ReLUs

and AGG, until it gets to the TBR2 block, as shown in

Figure 3. The aggregation block imposes consistency of

the {Zi} matrices, which represent overlapping patches,

but also causes loss of some information. Thus, we split

the flow into two branches: with and without AGG. Since

the output of any TR or TBR component is in the feature

domain, we wrap the AGG block with Tpre and TRpost,

where Tpre transforms the features to the image domain,

and TRpost transforms the AGG output back to the fea-

ture space, while imposing sparsity. The 2nd scale matri-

ces, {Z(2)
i }, undergo very similar operations as the 1st scale

ones, but with different learned parameters.

TBR2 applies a joint transform that fuses the features

coming from four origins: the 1st and 2nd scales with and

without aggregation. The columns of all these matrices are

concatenated together such that the same spatial transforma-

tion W1 is applied on all. Note that the network size can be

reduced at the cost of a slight degradation in performance

by removing the TBR1, TBR
(2)
1 and TBR3 components.

We discuss this option in the result section.

3. Image Adaptation

The above designed network, once trained, offers a uni-

versal denoising machine, capable of removing white addi-

tive Gaussian noise from all images by applying the same

set of computations to all images. As such, this machine

is not adapted to the incoming image, which might deviate

from the general statistics of the training corpus, or could

have an inner structure that is not fully exploited. This lack

of adaptation may imply reduced denoising performance.

In this section we address this weakness by discussing an

augmentation of our denoising algorithm that leads to such

an adaptation and improved denoising results.

Several recent papers have already proposed techniques

for training networks while only using corrupted exam-

ples [20, 42, 16, 27, 1, 17, 21, 39, 38]. An interesting spe-

cial case is where the network is trained on the corrupted

image itself. Indeed, this single-image unsupervised learn-

ing has been successfully employed by classical algorithms.

For example, The KSVD Denoising algorithm [11] trains a

dictionary using patches extracted from the corrupted im-

age. Another example is PLE [47], in which a GMM is

fitted to the given image. Recent deep learning based meth-

ods [42, 27] adopted this approach, training on the cor-

rupted image. However, their obtained performance tends

to be non-competitive with fully supervised schemes.

This raises an intriguing question: Could deep regression

machines benefit from both supervised and single-image

unsupervised training techniques? In this paper we provide

a positive answer to this question, while leveraging the fact

that our denoising network is lightweight. Our proposed

denoiser is able to combine knowledge learned from an ex-

ternal dataset with knowledge that lies in the currently pro-

cessed image, all while avoiding overfitting. We introduce

two novel types of adaptation techniques, external and in-

ternal, which should remind the reader of transfer learning.

Both adaptation types start by denoising the input image

regularly. Then the network is re-trained and updated for

few epochs. In the external adaptation case, we seek (e.g.,

using Google image search) one or few other images closely

related to the processed one, and re-train the network on

this small set of clean images (and their noisy versions). In

the internal adaptation mode, the network is re-trained on

the denoised image itself using a loss function of the form

‖ fθ
(

Ŷ + n

)

− Ŷ ‖22, where Ŷ = fθ (Y ) is the universally

denoised image, and n is a synthetic noise. For both ex-



Figure 3: The filtering network

ternal and internal adaptations the procedure concludes by

denoising the input image by the updated network. 4

While the two adaptation methods seem similar, they

serve different needs. External adaptation should be cho-

sen when handling images with special content that is not

well represented in the training set. For example, this mode

could be applied on non-natural images such as scanned

documents. Processing images with special content could

be handled by training class-aware denoisers, however this

might require a large amount of images for training each

class, and holding many networks for covering the vari-

ety of classes to handle. For example, [33, 34] train their

networks on 900 images per class. In contrast, our ex-

ternal adaptation requires a single network for all images,

while updating it for each incoming image. In Section 5 we

present denoising experiments, in which applying external

adaptation gains substantial improvement of more than 1dB

in terms of PSNR. In contrast to external adaptation, the in-

ternal one becomes effective when the incoming image is

characterized by a high level of self-similarity. For exam-

ple, as shown in Section 5, applying internal adaptation on

images from Urban 100 [13] gains a notable improvement

of almost 0.3dB in PSNR on average. Note that these adap-

tation procedures are not always successful. However, fail-

ures usually do not cause performance degradation, indicat-

ing that these procedures, in the context of being deployed

on a lightweight network, do not overfit. Indeed, while we

got a negligible decrease in performance of up to 0.02dB for

few images with the internal adaptation, most unsuccessful

tests led to a marginal increment of at least 0.02− 0.05dB.

4. Experimental Results: Universal Denoising

This section reports the performance of the proposed

scheme, with a comprehensive comparison to recent SOTA

denoising algorithms. In particular, we include in these

comparisons the classical BM3D [8] due to its resemblance

to our network architecture, the TNRD [6], DnCNN [48]

4Our internal adaptation is markedly different from the Noise2Noise

method. While Noise2Noise training requires a dataset of pairs of images

contaminated with independent noise, our internal adaptation requires nei-

ther a dataset nor such pairs, as it trains using the single noisy image.

and FFDNet [49] networks, the non-local and high per-

formance NLRN [22] architecture, and the recently pub-

lished Learned K-SVD (LKSVD) [37] method. We also

include comparisons to Lefkimiatis’ networks, NLNet [18]

and UNLNet [19], which inspired our work. Our algorithm

is denoted as Lightweight Learned Image Denoising with

Instance Adaptation (LIDIA), and we present two versions

of it, LIDIA and LIDIA-S. The second is a simplified net-

work with slightly weaker performance (see more below).

We start with denoising experiments in which the noise

is Gaussian white of known variance. This is the common

case covered by all the above mentioned methods. Our net-

work is trained on 432 images from the BSD500 set [26],

and the evaluation uses the remaining 68 images (BSD68).

The network is trained end-to-end using decreasing learn-

ing rate over batches of 4 images using the MSE loss. We

start training with the Adam optimizer (learning rate 10−2)

and switch to SGD with an initial learning rate of 10−3.

Figure 4 presents a comparison between our algorithm

and leading alternative ones by presenting their PSNR ver-

sus their number of trained parameters. This figure ex-

poses the fact that the performance of denoising networks

is heavily influenced by their complexity. As can be seen,

the various algorithms can be split into two categories:

lightweight architectures with a number of parameters be-

low 100K (TNRD [6], LKSVD [37], NLNet [18] and UNL-

Net, and much larger and slightly better performing net-

works (DnCNN [48], FFDNet [49], and NLRN [22]) that

use hundreds of thousands of parameters. Other SOTA

denoisers published in the past year are FOCNet [14],

RDN+ [51], and N3Net [31]. However, all of these achieve

denoising performance similar to NLRN [22], while be-

longing to the heavier networks category. Therefore, we

show comparisons with NLRN as a representative of this

class of high performing large architectures. As we proceed

in this section, we emphasize lightweight architectures in

our comparisons, a category to which our network belongs.

Figure 4 shows that our networks (both LIDIA and LIDIA-

S) achieve the best results within this lightweight category.

Detailed quantitative denoising results per noise level are



Figure 4: Comparing denoising networks: PSNR perfor-

mance vs. the number of trained parameters (σ = 25).

Method
Noise σ

Average
15 25 50

TNRD[6] 31.42 28.92 25.97 28.77

DnCNN[48] 31.73 29.23 26.23 29.06

BM3D[8] 31.07 28.57 25.62 28.42

NLRN[22] 31.88 29.41 26.47 29.25

NLNet1[18] 31.50 28.98 26.03 28.84

NLMS(our) 31.62 29.11 26.17 28.97

Table 1: B/W denoising performance: Best PSNR in red,

and best PSNR within the low-weight category in blue.

DnCNN NLRN TNRD NLNet1 NLMS NLMS-S

556K 330K 26.6K 24.3K 61.6K 40.2K

Table 2: Denoising networks: Number of parameters.

reported5 in Table 1. Table 2 reports the number of trained

parameters per each of the competing networks.

For denoising of color images we use 3D patches of

size 5 × 5 × 3 and increase the size of the matrices W1

from (49 × 64, 64 × 64, 64 × 49) to (75 × 80, 80 × 80,

80 × 75) accordingly, which increases the total number

of our network’s parameters to 94K. The nearest neigh-

bor search is done using the Luminance component, Y =
0.2989R+0.5870G+0.1140B. Quantitative denoising re-

sults are reported in Table 3, where our network is denoted

as C-LIDIA (Color LIDIA). As can be seen, our network is

the best within the lightweight category, achieving a similar

performance as CDnCNN [48]. Note, however, that CD-

nCNN is no longer SOTA for color images, as RDN+ [51]

achieves 0.2 − 0.3dB higher PSNR. Figure 5 presents an

example of a denoising result. Since our architecture is re-

5 NLNet [18] complexity and PSNR are taken from the released code.

Method
Noise σ

Average
15 25 50

FFDNet[49] 33.87 31.21 27.96 31.01

CDnCNN[48] 33.99 31.31 28.01 31.10

CBM3D[7] 33.50 30.68 27.36 30.51

CNLNet1[18] 33.81 31.08 27.73 30.87

C-LIDIA(our) 34.03 31.31 27.99 31.11

Table 3: Color denoising performance: Best PSNR in red,

and best PSNR within the low-weight category in blue.

(a) Original (b) Noisy with σ = 50

(c) CDnCNN [48]

PSNR = 27.81dB

(d) CBM3D [7]

PSNR = 26.98dB

(e) CNLNet [18]

PSNR = 27.41dB

(f) C-LIDIA (ours)

PSNR = 27.79dB

Figure 5: Color image denoising example with σ = 50.

lated to both BM3D and NLNet, we focus on qualitative

comparisons with these algorithms. Our results are signifi-

cantly sharper with less artifacts and preserve more details

than those of BM3D. In comparison to NLNet, our method

is significantly better in high noise levels due to our multi-

scale treatment, recovering large repeating elements, as in

Figure 5f. Differences between the results are better seen

when zooming in on the region marked with a red rectan-

gle. For more examples see the Supplementary Material.

Blind denoising, i.e., denoising with unknown noise

level, is a useful feature when it comes to neural networks.

This allows using a fixed network for performing image

denoising, while serving a range of noise levels. This is

a more practical solution, when compared to the one dis-

cussed above, in which we have designed a series of net-

works, each trained for a particular σ. We report blind

denoising performance of our architecture and compare to



Method
Noise σ

Average
15 25

DnCNN-b[48] 31.61 29.16 30.39

UNLNet[19] 31.47 28.96 30.22

LIDIA-b (ours) 31.54 29.06 30.30

Table 4: Blind denoising performance.

Method
Noise σ

Average
15 25 50

LIDIA 31.62 29.11 26.17 28.97

LIDIA-S 31.57 29.08 26.13 28.93

LIDIA-b 31.54 29.06 – 30.30

LIDIA-S-b 31.49 29.01 – 30.25

Table 5: LIDIA vs. its smaller version LIDIA-S.

similar results by DnCNN-b [48] (a version of DnCNN that

has been trained for a range of σ values) and UNLNet [19].

Our blind denoising network (denoted LIDIA-b) preserves

all its structure, but simply trained by mixing noise level

examples in the range 10 ≤ σ ≤ 30. The evaluation of all

three networks is performed on images with σ = [15, 25].
The results of this experiment are brought in Table 4. As can

be seen, our method obtains a higher PSNR than UNLNet,

while being slightly weaker than DnCNN-b. Considering

again the fact that our network has nearly 10% of the pa-

rameters of DnCNN-b, we can say that our approach leads

to SOTA results in the lightweight category.

Our LIDIA denoising network can be further simplified

by removing the TBR1, TBR
(2)
1 and TBR3 components.

The resulting smaller network, denoted by LIDIA-S, con-

tains 30% less parameters than the original LIDIA architec-

ture (see Table 2), while achieving slightly weaker perfor-

mance. Table 5 shows that for both regular and blind de-

noising scenarios, LIDIA-S achieves an average PSNR that

is only 0.05dB lower than the full-size LIDIA network. For

a visual comparison between NLMS and NLMS-S results

see Section 4 of the Supplementary Material.

5. Experimental Results: Network Adaptation

We turn to present results related to external and inter-

nal image adaptation. We compare the performance of our

network (before/after adaptation) with DnCNN [48]. Un-

less said otherwise, all adaptation results are obtained via

5 epochs, requiring few minutes (depending on the image

size) on Nvidia GeForce GTX 1080 Ti GPU. The adaptation

does not require early stopping – over-training the network

leads to similar and sometimes better results.

External adaptation is useful when the input image devi-

ates from the statistics of the training images. We demon-

strate this adaptation on two non-natural images: an astro-

(a) Clean text

(704× 356)
(b) Noisy with

σ = 50

(c) DnCNN [48]

PSNR = 23.33dB

(d) LIDIA

PSNR = 22.52dB

(e) LIDIA

(after adaptation)

PSNR = 26.78dB

(f) Clean text

(g) Noisy (h) DnCNN

(i) LIDIA (ours) (j) LIDIA (ours)

(after adaptation)

Figure 6: An example of external adaptation.

nomical photograph and a scanned document. Applying a

universal denoising on these images create pronounced ar-

tifacts, as can be seen in Figures 1 and 6. Adapting LIDIA

(our network) by training on a single similar image signifi-

cantly improves the PSNR and the visual quality of the re-

sults. The training images used in the above experiments are

shown in the Supplementary Material, along with a graph of

showing the PSNR vs. the number of adaptation batches.

Table 6 summarises quantitative denoising results of ap-

plying the proposed adaptation procedure on Urban100 and

BSD68 image sets. This table shows that the internal adap-

tation can improve the denoising capability of the network,

but the benefit varies significantly from image to another,

depending on its content. Figure 7 presents histograms of

improvement per image. Clearly, the proposed adaptation

has a minor effect on most of images in BSD68, but it suc-

ceeds well on Urban100, leading to a significant boost. This

difference can be attributed to the pronounced self similarity

that is inherent in the Urban100 images. Figure 8 presents



Image set
CDnCNN C-LIDIA C-LIDIA (ours)

[48] (ours) with adaptation

Urban100 28.16 28.23 28.52

BSD68 28.01 27.99 28.04

Table 6: Internal adaptation for color images.

DnCNN FC-AIDE FC-AIDE LIDIA LIDIA

(adapt.) (adapt.)

26.28 25.55 26.42 26.51 26.71

Table 7: Internal adaptation on Urban100 grayscale images.

(a) BSD68 (b) Urban100

Figure 7: Improvements obtained by the internal adaptation.

visual example of the internal adaptation. The image pre-

sented in this figure is characterised by a strong self sim-

ilarity, which our adaptation is able to exploit. As evident

from Figure 7a, internal adaptation is not always successful,

and it may lead to slightly decreased PSNR. However, we

note that among the 168 test images (BSD68 and Urban100)

only two such failures were encountered, both leading to a

degradation of 0.02dB. We conclude that internal adaptation

is robust and cannot do much harm.

N-AIDE [4] and FC-AIDE [5] fine-tune their networks

for each input image in a fashion similar to our adaptation,

by constraining each output pixel to be a polynomial func-

tion of the corresponding input one. As FC-AIDE outper-

forms N-AIDE, we focus on comparing LIDIA to it. Our

network is much lighter – FC-AIDE contains 820K param-

eters while LIDIA uses 62K. Also, FC-AIDE is designed

for grayscale denoising, while LIDIA can handle color as

well. For a quantitative comparison, we run LIDIA with an

internal adaptation on the grayscale Urban100 with σ = 50.

The results of this experiment are brought in Table 7. As can

be seen, LIDIA obtains a higher PSNR in both the universal

and the adapted versions.

6. Conclusion

This work presents a lightweight universal network

for supervised image denoising, demonstrating competitive

performance with SOTA. Our patch-based architecture ex-

ploits non-local self-similarity and representation sparsity,

augmented by a multiscale treatment. Separable linear lay-

ers, combined with non-local k neighbor search, allow cap-

(a) Clean

(1024× 768)
(b) Noisy

with σ = 50

(c) CDnCNN [48]

PSNR = 28.64dB

(d) C-LIDIA

PSNR = 28.77dB

(e) C-LIDIA

(after adaptation)

PSNR = 29.28dB

(f) Clean

(g) Noisy (h) CDnCNN

(i) C-LIDIA (ours)

(before adaptation)

(j) C-LIDIA (ours)

(after adaptation)

Figure 8: An example of internal adaptation.

turing non-local interrelations between pixels. In addition,

this work offers two image-adaption techniques, aiming for

improved denoising performance by better tuning the above

universal network to the incoming noisy image. We demon-

strate the effectiveness of these methods on images with

unique content or having significant self-similarity.
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