5944

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Deep K-SVD Denoising

Meyer Scetbon™, Michael Elad™, Fellow, IEEE, and Peyman Milanfar, Fellow, IEEE

Abstract— This work considers noise removal from images,
focusing on the well-known K-SVD denoising algorithm. This
sparsity-based method was proposed in 2006, and for a short
while it was considered as state-of-the-art. However, over the
years it has been surpassed by other methods, including the
recent deep-learning-based newcomers. The question we address
in this paper is whether K-SVD was brought to its peak in
its original conception, or whether it can be made competitive
again. The approach we take in answering this question is to
redesign the algorithm to operate in a supervised manner. More
specifically, we propose an end-to-end deep architecture with
the exact K-SVD computational path, and train it for optimized
denoising. Our work shows how to overcome difficulties arising
in turning the K-SVD scheme into a differentiable, and thus
learnable, machine. With a small number of parameters to learn
and while preserving the original K-SVD essence, the proposed
architecture is shown to outperform the classical K-SVD algo-
rithm substantially, and getting closer to recent state-of-the-art
learning-based denoising methods. Adopting a broader context,
this work touches on themes around the design of deep-learning
solutions for image processing tasks, while paving a bridge
between classic methods and novel deep-learning-based ones.

Index Terms— K-SVD denoising algorithm, network unfolding,
iterative shrinkage algorithms.

I. INTRODUCTION

HIS paper addresses the classic image denoising problem:

an ideal image x is measured in the presence of an
additive zero-mean white and homogeneous Gaussian noise,
v, with standard deviation ¢. The measured image y is thus
y = x + v, and our goal is the recovery of x from y with the
knowledge of the parameter o . This is quite a challenging task
due to the need to preserve the fine details in x while rejecting
as much noise as possible.

The importance of the image denoising problem cannot be
overstated. First and foremost, noise corruption is inevitable
in any image sensing process, often times heavily degrading
the visual quality of the acquired image. Indeed, today’s
cell-phones all deploy a denoising algorithm of some sort
in their camera pipelines [32]. Removing noise from an
image is also an essential and popular pre-step in various
image processing and computer vision tasks [18]. Last but
not least, many image restoration problems can be addressed
effectively by solving a series of denoising sub-problems,
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further broadening the applicability of image denoising algo-
rithms [1], [34]. Due to its practical importance and the fact
that it is the simplest inverse problem, image denoising has
become the entry point for many new ideas brought over the
years to the realm of image processing. Over a period of
several decades, many image denoising algorithms have been
proposed and tested, forming an evolution of methods with
gradually improved performance.

A common and systematic approach for the design of
novel denoising algorithms is the Bayesian point of view.
This calls for image priors, used as regularizers within the
Maximum a Posteriori (MAP) or the Minimum Mean Squared
Error (MMSE) estimators. In this paper we concentrate on
one specific regularization approach, as introduced in [11]: the
use of sparse and redundant representation modeling of image
patches — this is the K-SVD denoising algorithm, which stands
at the center of this paper. The authors of [11] defined a global
image prior that forces sparsity over patches in every location
in the image. Their algorithm starts by breaking the image into
small fully overlapping patches, solving their MAP estimate
(i.e., finding their sparse representation), and ending with a
tiling of the results back together by an averaging. As the MAP
estimate relies on the availability of the dictionary, this work
proposed two approaches, both harnessing the well-known
K-SVD dictionary learning algorithm [2]. The first option is
to train off-line on an external large corpus of image patches,
aiming for a universally good dictionary to serve all test
images. The alternative, which was found to be more effective,
suggests using the noisy patches themselves in order to learn
the dictionary, this way adapting to the denoised image.

K-SVD has been widely used and extended, as evidenced
by its many followup papers. For a short while, this algorithm
was considered as state-of-the-art, standing at the top in
denoising performance.! However, over the years it has been
surpassed by other methods, such as BM3D [6], EPLL [50],
WNNM [14], and many others. The recent newcomers to this
game — supervised deep-learning based denoising methods —
are currently at the lead [5], [20], [22], [47], [48].

Can K-SVD denoising make a comeback and compete
favorably with the most recent and best performing denoising
algorithms? In this paper we answer this question positively.
We aim to show that the K-SVD denoising algorithm can
be brought to perform far better by considering a different
training strategy. This leads to far better results which should
be taken as reference when comparing new methods with

lRa.nking denoising algorithms is typically done by evaluating synthetic
denoising performance on agreed-upon image databases (e.g. setl2 or
BSD68), measuring Peak-Signal-to-Noise (PSNR) and/or Structured Similar-
ity Index Measure (SSIM) results.
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the K-SVD algorithm. While its original version trained a
dictionary for getting sparse representations, this new end-
to-end training outperforms it provided that its parameters are
tuned in a supervised manner. By following the exact K-SVD
computational path, we preserve its global image prior. This
includes (i) breaking the image into small fully overlapping
patches, (ii) solving their MAP estimate as a pursuit that
aims to get their sparse representation in a learned dictionary,
and then (ii) averaging the overlapping patches to restore the
clean image. A special care is given to the redesign of all
these steps into a differentiable and learnable computational
scheme. We therefore end up with a deep architecture that
reproduces the exact K-SVD operations, and can be trained by
back-propagation for best denoising results. Our work shows
that with small number of parameters to learn and while
preserving the original K-SVD essence, the proposed machine
outperforms the original K-SVD and other classical algorithms
(e.g. BM3D and WNNM), and getting closer to state-of-the-art
learning based denoising methods.

Indeed, adopting a wider perspective, our work can be
viewed as an instance of a recent wider trend of deep unfolding
methods, which convert classical methods by unrolling their
operations, this way defining novel and meaningful deep
neural network designs. The literature on this paradigm is
rich, and we bring here a representative sample [3], [5], [13],
[16], [17], [19], [23], [45], [46], [46], [46], [49]. Our work
aligns with this “unfolding” rationale, adapted to the problem
of image denoising and addressing specifically the K-SVD
denoising method.

We should note that the performance of the proposed
method still falls short when compared to leading state-of-
the-art deep learning based denoising methods. Further work
is required to close this gap, and we outline options for this
feat in the discussion towards the end of the paper. However,
we emphasize that it is not the goal of our paper to propose yet
another denoiser with top performance. Rather, our prime goal
in this work is to offer an appealing bridge between classical
methods in image processing and the new era of deep neural
networks, with the hope to pave the way to followup work
that will show the synergy that could exist between the two
paradigms. We contribute to the construction of this bridge
by focusing on the K-SVD denoising algorithm, showing that
it can be treated as a deep network and trained as such, and
demonstrating the fact that it can be substantially improved
via supervised learning.

Alongside the obtained boost in performance, compared to
the original method we embark from, the resulting network
has other valuable benefits. The obtained network has a clear
and meaningful interpretation of its parameters and the data
flowing in it, a property very much lacking in other deep
denoisers, and something that could be leveraged in various
ways. Please recall that the rationale of sparse decomposition
of signals has been found useful in many other applications
in the field of compressed sensing and signal recovery.

Another benefit has to do with the fact that the network
obtained is more concise, implying that it can be trained with
less data, or even adapted to the incoming image, as in [43].
Beyond all these, and more importantly, the main message
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we aim to convey is that design of neural architectures for
image processing tasks could be done differently, replacing the
arbitrary trial-and-error networks by well-motivated ones that
emerge from the classic know-how. All the above represents
an ambitious endeavor, and our work offers few of the first
steps in this long track of required work.

More specifically, by rewriting the chain of operations in
the K-SVD algorithm in a differentiable manner, we are
able to back-propagate through its parameters and obtain an
algorithm which performs much better than all its earlier
variants. Indeed, the resulting network is almost consistently
better than all other model-based methods and some widely
used deep learning based methods as well. Please note that
our strategy embarks from the weaker version of the K-SVD
denoising algorithm that relies on a universal dictionary for all
images (as opposed to the image-adapted option), and yet it
shows that by a task-driven design of its parameters, a much
better suited dictionary and overall denoising performance are
within reach.

This paper is organized as followed. Section II recalls the
K-SVD denoising algorithm, serving as the background for
our derived alternative. In Section III we present the designed
architecture with various modifications and adjustments that
enable differentiabilty, local adaptivity, and more. Section IV
describes series of experiments that demonstrate the superior-
ity of the proposed learned network over the classic K-SVD
denoising algorithm, and shows the tendency of our proposed
network to have competitive performance with recent learned
methods. We conclude this work in Section V with a wide
discussion about this work and its contributions, and highlight
potential future research directions.

II. THE K-SVD DENOISING ALGORITHM

In [11] the authors address the image denoising problem
by using local sparsity and redundancy as ingredients in the
formation of a global Bayesian objective. In this section
we describe this K-SVD denoising algorithm by discussing
(1) their global prior; (ii) the objective function induced; (iii) its
corresponding numerical solver; and (iv) the two approaches
for training the corresponding dictionary.

A. From the Patch- To a Global Objective Function

We start by introducing the local prior as imposed on
patches in [11]. Let x be a small image patch of size ./p x /p
pixels, ordered lexicographically as a column vector of length
p. The sparse representation model assumes that x is built as
a linear combination of s < p columns (also referred to as
atoms) taken from a pre-specified dictionary?> D € RP*™. Put
formally, x = Da, where a € R™ is a sparse vector with s
non-zeros (this is denoted by [|a|lo = s). Consider y, a noisy
version of X, contaminated by an additive zero-mean white
Gaussian noise with standard deviation ¢. The MAP estimator
for denoising this patch is obtained by solving

6 = argmin laflo s.t. Do y[3 < po?, (1)

2The option m > n implies that the dictionary is redundant.
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aiming to recover the sparse representation vector of x. This
is followed by X = Da, obtaining the denoised result [4], [9],
[41]. Note that the above optimization can be changed to a
Lagrangian form,

N . 1
@ = argmin Allallo + 5 IDe = I3, @)

such that the constraint becomes a penalty. With a proper
choice of 4, which is signal (the vector y) dependent, the two
problems can become equivalent.

Moving now to handle a complete and large image X of size
VN x +/N and its noisy version Y (both held as vectors of
length N), the global image prior proposed in [11] imposes the
above-described local prior on every patch in X, considering
their extractions with full overlaps. This leads to the following
global MAP estimator for the denoising:

min_ £ X - Y3
{ar}i.X 2

1
+> (Aknakno + 5D — Ran%) SNE)
k

In this expression, the first term is the log-likelihood global
force that demands a proximity between the measured image,
Y, and its denoised (and unknown) version X. Put as a
constraint, this penalty would have read || X — Y||% < No?2,
which reflects the direct relationship between x and o.

The second term stands for the image prior that assures that
in the constructed image, X, every patch® x; = RyX of size
/P X /p in every location (thus, the summation by k) has
a sparse representation with bounded error. The matrix Ry €
RP*N stands for an operator that extracts the k-th block from
the image. As to the coefficients 1;, those must be spatially
dependent, so as to comply with a set of constraints of the
form || Doy — Xk||% < po?.

B. Numerical Solution

Assume for the moment that the underlying dictionary D is
known. The objective function in Equation (3) has two kinds
of unknowns: the sparse representations oy per each location,
and the output image X. Instead of addressing both together,
the authors of [11] propose a block-coordinate minimization
algorithm that starts with an initialization X = Y, and then
seeks the optimal a; for all locations k. This leads to a
decoupling of the minimization task to many smaller pursuit
problems of the form

N . 1
= argmin Zylallo + - Dk — i3, “)

each handling a separate patch. This is solved in [11] using
the Orthonormal Matching Pursuit (OMP) [10], which gathers
one atom at a time to the solution, and stops when the error
Do —xk||% goes below* po?. This way, the choice of A; has
been handled implicitly. Thus, this stage works as a sliding

3For simplicity and without loss of generality, a single index is used to
account for the spatial image location.

4In fact, the threshold used in [11] is ¢ - pa?, with ¢ = 1.15, which was
found empirically to perform best.
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window sparse coding stage, operated on each patch of size
/P X /P pixels at a time.

Given all the sparse representations of the patches, {a},
we can now fix those and turn to update X. Returning to the
expression in Equation (3), we need to solve

& _ .y 2, 1 . 2
X = argmin 21X - Y|I3 + EZk)uDak —RiX[3. (5

This is a simple quadratic term that has a closed-form
solution of the form

~1
X= (Z R/R; + ,uI) (,uY + ZR{Dak). (6)
k k

The matrix to invert in the above expression is a diagonal
one, and thus the required computation is quite simple. In fact,
all that this expression does is to put back the patches to their
original locations, and average these with a weighted version
of the noisy image itself.

All the above stands for a single update of {ax}r and then
X. For an effective block-coordinate minimization of the cost
function in Equation (3) we should repeat these pair of updates
several times. However, a difficulty with such an approach is
the fact that once X has been modified, we no longer know
the level of noise in each patch, and thus the stopping criteria
for the OMP becomes more challenging. The original K-SVD
denoising algorithm, as proposed in [11], chose to apply only
the first round of updates. The work reported in [37] adopts
an EPLL point of view [50], extending the iterative algorithm
further for getting improved results.

C. Obtaining the Dictionary D

The discussion so far has been based on the assumption
that the dictionary D is known. This could be the case if we
train it using the K-SVD algorithm over a corpus of clean
image patches [10]. An interesting alternative is to embed the
identification of D within the Bayesian formulation. Returning
to the objective function in Eq. (3), the authors of [11] also
considered the case where D is an unknown,

min

H 2 1 )
FIX=Y A D — Ry X2 ).
wni%p 2! ”2+Zk:( kllakllo + 5 IDax — Ry II2)

In this case, D is learned using all the existing noisy patches
taken from Y itself. Put more formally, a block-coordinate
minimization is done: Initialize the dictionary D as the over-
complete DCT matrix and set X = Y. Then iterate between
the OMP over all the patches and an update of D using the
K-SVD strategy [2]. After T = 10 such rounds, the dictionary
admits a content adapted to the image being treated, and the
representations {ay}; are ready for a final stage in which the
output image is computed via Eq. (6).

III. PROPOSED ARCHITECTURE

In this work our goal is to design a network that reproduces
the K-SVD denoising algorithm, while having the capacity to
better learn its parameters. By reposing each of the opera-
tions within the K-SVD algorithm in a differentiable manner,
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Fig. 1.

The architecture of the proposed method: The upper part shows the overall scheme of splitting the image into fully overlapped patches, denoising

each, and merging the outcomes together by averaging. The botto, part zooms-in on the patch-denoising, showing that each patch goes through an ISTA chain
of operations using an adapted 4. The outcome of this process is a representation that is later multiplied by the dictionary for getting the denoised patch.

we aim to be able to back-propagate through its parameters and
obtain a version of the algorithm that outperforms its earlier
variants. Note that in this supervised mode of work, we adopt
the weaker version of the K-SVD denoising algorithm that
relies on a universal dictionary for all images, as opposed
to the image-adapted option that was shown to be superior
in [11].

One of the main difficulties we encounter is the pursuit
stage, in which we are supposed to replace the greedy OMP
algorithm by an equivalent learnable alternative. This may
seem as an easy task, as we can use the Lj-based Iterated
Soft-Thresholding Algorithm (ISTA), unfolded appropriately
for several iterations [7], [13]. However, the challenge is the
fact that OMP easily adapts the treatment for each patch
using a stopping criterion based on the noise level. The
equivalence in the ISTA case requires an identification of the
appropriate regularization parameter Ay for each patch, which
is a non-trivial task.

Assuming that this issue has been resolved, our compu-
tational process includes a decomposition of the image into
its overlapped patches, cleaning of each by an appropriate
pursuit, and a reconstruction of the overall image by averaging
the cleaned patches. We propose to learn the parameters
of this network by training over pairs of corrupted and
ground-truth images. Next, we describe in details this overall
architecture.

A. Patch Denoising

Figure 1 illustrates our end-to-end architecture. We start by
describing the three stages that perform the denoising of the
individual patches.

1) Sparse Coding: Given a patch y € RVP*VP (held
as a column vector of length p) corrupted by an additive
zero-mean Gaussian noise with standard deviation o, we aim
to derive its sparse code according to a known dictionary D €
RP>*™_This objective can be formulated as in Equation (1).
An approximate solution to this problem can be obtained by

replacing the {p-norm with an ¢ [8], [9]:

)

. 2 2
min [lafl; s.t |[Da—yl; < po”.
aeRlTl

For a proper choice of 4, the above can be reformulated as

N 1

& = argmin ~[IDa = y[3 + Zlal). ®)
A popular and effective algorithm for solving the

above problem is the Iterative Soft Thresholding Algorithm

(ISTA) [7], which is guaranteed to converge to the global

optimum

Qi1 = Si/c (O?x - %DT(D&I - Y)) i ap =0, )
where ¢ is the square spectral norm of D and S,/ is the
component-wise soft-thresholding operator,
[So(V)]; = sign(v;)(vi| — ). (10)
The motivation to adopt a proximal gradient descent
method, as done above, is the fact that it allows an unrolling
of the sparse coding stage into a meaningful and learn-
able scheme, just as practiced in [13]. Indeed, replacing the
{p-norm by the £1 supports this goal as it allows to differentiate
through this scheme. Moreover the iterative formula given by
Eq. (9) is operated on each patch, which means that it is
just like a convolution in terms of operating on the whole
image. Because of these reasons, in this work we consider
a learnable version of ISTA by keeping exactly the same
recursion with a fixed number of iterations 7, and letting ¢
and D become the learnable parameters. Note that we also
consider the fp-based proximal gradient descent where the
soft-thresholding is replaced by an hard one which leads to
worst results. The smoothness given by the {j-norm gives a
more dense dictionary which deals better to remove the noise.
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2) A Evaluation: Referring to the pursuit formulation in
Equation (8), an important issue is the need to set the para-
meter A. This regularization coefficient depends not only on
o but also on the patch y itself. Following the computational
path of the K-SVD denoising algorithm in [11], we should set
A for each patch yi so as to yield sparse representation with
a controlled level of error, | Doy — yk||% < po?. As there is
no closed-form solution to this evaluation of A-s, we propose
to learn a regression function from the patches y; to their
corresponding regularization parameters A;. A Multi-Layer
Perceptron (MLP) network is used to represent this function,
A = fp(y), where @ is the vector of the parameters of the MLP.
Our MLP consists of three hidden layers, each composed of
a fully connected linear mapping followed by a ReLLU (apart
from the last layer). The input layer has p nodes, which is
the dimension of the vectorized patch, and the output layer
consists of a single node, being the regularization parameter.
The overall structure of the network is given by the following
expression, in which [a@ x b] symbolizes a multiplication by
a matrix of that size: MLP: y — [p x2p] — ReLU —
[2p x p] - ReLU — [p/2 x 1] — A. Thus, an overall of
nearly 4 p? parameters are needed for this regression network.

3) Patch Reconstruction: This stage reconstructs the
cleaned version X of the patch y using D and the sparse
code . This is given by X = Da. Note that in our learned
network, the dictionary stands for a set of parameters that
are shared in all locations where we multiply by either D or
D7 The proposed approach based on the patch-decomposition
and reconstruction is closely related to a convolutional sparse
coding approach as it has been shown in [36].

B. End-to-End Architecture

We can now discuss the complete architecture. We start
by breaking the input image into fully overlapping patches,
then treat each corrupted patch via the above-described patch
denoising stage, and conclude by rebuilding the image by
averaging the cleaned version of these patches. In the last stage
we slightly deviate from the original K-SVD, by allowing a
learned weighted combination of the patches. Denoting by
w € RVP*VP this patch of weights, the reconstructed image
is obtained by

>R} (WO %)
k
S>RI'w
3

where © is the Schur product, and the division is done
element-wise. This weighted averaging aligns with Guleryuz’
approach as advocated in [15].

To conclude, the proposed network F is a parametrized
function of # (the parameters of the MLP network computing
A), ¢ (the step-size in the ISTA algorithm), D (the dictionary)
and w (the weights for the patch-averaging). The overall
number of parameters stands on p(4p + m + 3/2) + 1; for
example, for p = 64 and m = 256, this number is 32, 865.

Given a corrupted image Y, the computation X=F (Y)
returns a cleaned version of it. Training F is done by minimiz-
ing the loss function £ = >, | X; — F(Y,-)||§, with respect to
all the above parameters. In the above objective, the set {X;};

X = (11)
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stands for our training images, and {Y;}; are their synthetically
noisy versions, obtained by Y; = X; +V;, where V; is a zero
mean and white Gaussian iid noise vector.

To better clarify, we note that our scheme does not propose
an online training on the incoming image to be denoised.
Rather, the strategy proposed is a differentiable approximation
of the K-SVD operations, and training this network off-line
once to set its parameters. Once completed, this universal
denoiser is ready for use as a simple and fixed inference of
the given network on any incoming image.

C. Extension to Multiple Update

As already mentioned in the previous section, an EPLL
version of the K-SVD can be envisioned, in which the process
of cleaning the patches is repeated several times. This implies
that once the above architecture obtains its output X the whole
scheme could be applied again (and again). This diffusion
process of repeated denoisings has been shown in [37] to
improve the K-SVD denoising performance. However, the dif-
ficulty is in setting the noise level to target in each patch after
the first denoising, as it is no longer po 2. In our case, we adopt
a crude version of the EPLL scheme, in which we disregard
the noise level problem altogether, and simply assume that the
A evaluation stage takes care of this challenge, adjusting the
MLP in each round to best predict the 1 values to be used.
Thus, our iterated scheme is trained end-to-end, and shares
the dictionary across all denoising stages, while allowing a
different A evaluation network for each stage.

1V. EXPERIMENTAL RESULTS
We turn to present experiments with the proposed Learned
K-SVD (LKSVD). Our goals are to show that LKSVD is

o Much better than the original KSVD in its two forms —
the image adaptive algorithm (KSVDy), and the one using
a universal dictionary (KSVD);

o Better than other classic denoising algorithms; and

« Competitive with recent deep-learning based denoisers.

A. Training

1) Dataset: In order to train our model we generate the
training data using the Berkeley segmentation dataset (BSDS)
[28], which consists of 500 images. We split these images
into a training set of 432 images and the validation/test set
that consists of the remaining 68 images. We note that these
68 images are exactly the ones used in the standard evaluation
dataset of [35]. In addition, following [22], [47], we test our
proposed method on the benchmark Setl2 — a collection of
widely-used testing images. The training and the two test
sets are strictly disjoint and all the images are converted to
gray-scale in each experiment setup. This allows a fair and
comprehensive comparison with recent deep learning based
methods, as we train and test on the same datasets and
benchmarks used in [5], [20]-[22], [27], [47].

2) Training Settings: During training we randomly sample
cropped images of size 128 x 128 from the training set. We add
ii.d. Gaussian noise with zero mean and a specified level of
noise o to each cropped image as the noisy input during
training. We train a different model for each noise level,
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TABLE I

LKSVD Vs. CLASSIC METHODS (BSD68): DENOISING PERFORMANCE
(PSNR [dB]) FOR VARIOUS NOISE LEVELS

Dataset | Noise | BM3D  WNNM  KSVD; KSVDy  LKSVD
15 31.07 31.37 30.91 30.87 31.48
BSD 68 25 28.57 28.83 28.32 28.28 28.96
50 25.62 25.87 25.03 25.01 25.97

TABLE I

LKSVD VERSUS CLASSIC METHODS (BSD68): DENOISING PERFOR-
MANCE (SSIM) FOR VARIOUS NOISE LEVELS

Dataset | Noise | BM3D  WNNM  KSVD; KSVDp LKSVD
15 0.8717 0.8766 0.8692 0.8685 0.8835
BSD 68 25 0.8013 0.8087 0.7876 0.7894 0.8171
50 0.6864  0.6982 0.6322 0.6462 0.7035

considering ¢ = 15, 25,50. We should note that one could
envision training a “blind” network that operates well on a
range of o values, either by adding another layer of adaptation,
or by simply training on a diverse set of noise levels. We leave
this for future work.

We use SGD optimizer to minimize the loss function.
We set the learning rate as le — 4 and consider one cropped
image as the minibatch size during training. We use the
same initialization as in the K-SVD algorithm to initialize
the dictionary D, i.e the overcomplete DCT matrix. We also
initialize the normalization paramater ¢ of the sparse coding
stage using the squared spectral norm of the DCT matrix. The
other parameters of the network are randomly initialized using
Kaiming Uniform method. Training a model takes few hours
with a Titan Xp GPU.

3) Test Settings: Our network does not depend on the input
size of the image. Thus, in order to test our architecture’s
performance, we simply add white Gaussian noise with a
specified power to the original image, and feed it to the
learned scheme. The metric used to determine the quality is
the standard Peak-Signal-to-Noise (PSNR).

B. Denoising Performance

In Tables I, II and III we compare® LKSVD with the
two original K-SVD versions (KSVD; and KSVD») and two
leading classic denoising algorithms, BM3D [6] and WNNM
[14]. Tables I and II refer to the BSD68 test-set (one showing
PSNR and the other SSIM quality measures) and Table III
shows the Setl2 results (PSNR only). In this comparison,
LKSVD is set to use the same patch and dictionary sizes as in
KSVD; and KSVD; from [11], namely p = 64 and m = 256.
Also, LKSVD applies T = 7 unfolded iterations of ISTA, and
K = 3 EPLL-like denoising rounds.®

A clear conclusion from the above tables is the fact that
LKSVD is much better performing compared to the classic
K-SVD, be it the universal dictionary approach or the image
adaptive one. Indeed, the PSNR BSD68 results suggest that

S5The results in these tables corresponding to BM3D and WNNM have been
taken from [22] and [48], respectively.

5We have explored the case when the weights are not shared between the
different EPLL-like updates, and we have observed a small improvement
of 0.1 —0.2dB over the reported results. Thus, we omit this option in our
presentation.
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LKSVD is better than BM3D (by ~ 0.5dB) and WNNM (by
~ 0.1dB) as well. Table III zooms-in on this comparison,
by comparing the various K-SVD versions (image-adaptive
dictionary, universally trained dictionary, and the learned mode
proposed in this work) on the images in set12. As can be seen,
the learned scheme is consistently superior to its predecessors,
apart from on the image Barbara, where the image adaptive
dictionary seems to perform better. This is expected due to
the unique textures and their quantities in this image, which
our universal network is not accommodating properly. As a
final note we add that Table II shows that the ordering of
the methods remains the same as we move from PSNR to
the SSIM quality measure, which explains our choice to use
PSNR for the rest of the experiments.

We proceed by exploring the effect of p (patch size), m
(dictionary size) and K (number of denoising steps) on the
LKSVD performance. We denote by LKSVDg , ,, the result
for the proposed architecture with these specified parameters.
Table IV presents the obtained results for the two benchmarks
(BSD68 and Setl12) and a noise level of ¢ = 25. As can be
seen, even with [p, m, K] = [64, 256, 1], LKSVD is markedly
better than the classic K-SVD. As K grows, the performance
improves by ~ 0.1dB per each additional denoising round.
A boost in performance is also obtained when growing the
patch-size to 16 x 16 while preserving the redundancy factor
of the dictionary. This also shows that the proposed scheme has
the capacity to yield results that go beyond the ones reported
in Tables I and III.

We conclude by comparing the LKSVD> 16 1024 With recent
learning-based denoising competitors: TNRD [5], NLNet [20],
DnCNN [47] and NLRNet [22]. The results are shown
in Table V, referring to the two benchmarks. As can be
seen, our scheme surpasses TNRD [5] and even the non-local
deeply-learned denoiser by Lefkimmiatis [20], [21]. Still,
there is a gap between LKSVD and the best performing
denoisers DnCNN [47] and NLRNet [22]. We conclude this
part by presenting visual results of the various methods
compared. Figures 6, 7, and 8 show the denoising results of
BM3D, WNNM, KSVD;, DnCNN, and LKSVD. All these
figures refer to a noise level of ¢ = 25 and the images used
are taken from the BSD68 test set. For each figure, the top row
presents the original image, the noisy one, and several cleaned
images obtained by different methods. The middle row shows
a zoomed in portion of the denoised images. The bottom row
displays the absolute difference between the original and the
cleaned images, where darker regions corresponds to locations
where the images differ the most. As can be seen (both from
the zoomed-in portions and the difference images), the visual
quality of the LKSVD is somewhere in between WNNM and
DnCNN, exceeding BM3D and KSVD;.

C. The Network Inner Works

We turn to have a closer look at the parameters learned by
our proposed network and the data flowing in it. We do so
by comparing the dictionary and the sparse codes obtained
from LKSVD (referring to LKSVD; g 256) with its universal
model-based method KSVD,. Figure 2 shows the learned
dictionaries obtained from the KSVD, [11], and LKSVD
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TABLE III
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LKSVD VERSUS KSVD (SET12): DENOISING PERFORMANCE (PSNR [dB]) FOR VARIOUS NOISE LEVELS. BEST RESULTS ARE MARKED IN BOLD

Images C.man  Peppers House Airplane Couple Parrot Man  Monarch  Starfish  Boat  Barbara  Lena [ Average
Noise level o=15
KSVD; 31.43 3221 34.23 30.80 31.59 3099  31.64 31.45 30.95 31.83 32.44 3378 31.95
KSVD> 31.39 32.16 33.85 30.96 31.66 3096  31.62 31.71 30.99 31.63 30.58 33.49 31.75
LKSVD 32.16 32.92 34.59 31.54 32.11 31.66 32.22 32.78 31.78 32.18 3222 34.24 32.53
Noise level o =25
KSVD; 28.75 29.64 31.86 28.21 29.10 2842  29.26 28.83 28.27 29.44 29.77 31.37 29.41
KSVD3y 28.78 29.74 31.46 28.39 29.04 28.57  29.16 28.85 28.24 29.18 27.61 31.04 29.17
LKSVD 29.70 30.35 32.53 28.92 29.71 29.13 29.85 30.15 28.99 29.95 29.36 31.99 30.05
Noise level o =50
KSVD; 25.12 25.93 27.82 24.86 25.56 2480  26.16 25.11 24.45 25.98 25.78 27.71 25.78
KSVD2 25.29 26.02 27.71 24.85 25.44 25.15 2598 24.82 24.32 25.93 24.04 27.32 25.58
LKSVD 26.68 26.96 29.37 25.62 26.55 2599 2695 26.54 25.38 26.99 25.73 28.85 26.80
TABLE IV

LKSVD PARAMETER EFFECT: DENOISING PERFORMANCE (PSNR [dB]) FOR ¢ = 25 ON BSD68 AND SET12 WHILE VARYING p, m, K

Dataset ‘ Noise ‘ KSVD1 KSVD2 LKSVD1’8,256 LKSVD378256 LKSVD1,16’1024 LKSVD2’16’1024
BSD 68 25 28.32 28.28 28.76 28.96 28.95 29.07
Set 12 29.41 29.17 29.76 30.05 30.09 30.22
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Fig. 2. Comparison of the dictionaries (top: LKSVD, bottom: KSVD;) for
noise level o = 25.

trained on noisy images with ¢ = 25. Figure 3 presents
the distribution of the cardinalities of the sparse codes
obtained in both KSVD; and LKSVD. Figure 4 completes

Fig. 3. Comparison of the cardinality histograms of the sparse code for noise
level o =25 (top: LKSVD, bottom: KSVD»).

this comparison by showing the cardinality of the sparse codes
obtained from the two methods one versus the other for each
patch.
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Fig. 4. The patch cardinality of the KSVD; as a function of the cardinality
obtained by the LKSVD for randomly chosen patches.

TABLE V

LKSVD VERSUS LEARNED METHODS: DENOISING PERFORMANCE
(PSNR [dB]) FOR VARIOUS NOISE LEVELS ON BSD68 AND SETI12.
RESULTS EXCEEDING LKSVD ARE MARKED IN BOLD

TABLE VI
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MODEL COMPLEXITIES COMPARISON OF OUR PROPOSED SCHEME AND
TWO STATE-OF-THE-ART NETWORKS

Dataset Noise | TNRD NLNet DnCNN NLRNet LKSVD2 16 1024
15 31.42 31.52 31.73 31.88 31.54
BSD 68 25 28.92 29.03 29.23 29.41 29.07
50 25.97 26.07 26.23 26.47 26.13
15 32.50 - 32.86 33.16 32.61
Set 12 25 30.06 30.44 30.80 30.22
50 26.81 27.18 27.64 27.04

As can be clearly seen from Figure 2, the LKSVD dictionary
is markedly different from the universal one derived in [11].
Indeed, the atoms learned by our scheme seem to be more local
or edge-like, capturing very specific and small-scale patterns of
the patches, while the atoms of the KSVD;, method tend to be
more global. Why would local atoms behave better than global
ones? The answer is given in Figures 3 and 4. We see that the
obtained sparse representations are in fact not sparse at all,
and may contain number of non-zeros that could even exceed
the dimension of the patches being treated. This implies that
the LKSVD gathers many more atoms for representing each
patch, thus being able to operate with more local atoms.

One may wonder whether the newly learned LKSVD dic-
tionary could be used in the classic K-SVD algorithm, while
providing a performance benefit. This idea has been tested
without much success, which is quite expected. Observe that
the LKSVD atoms learned are non-smooth and much more
localized, and their improved performance goes hand in hand
with the tendency of our learned pursuit to produce dense
representations. In contrast, the original K-SVD denoising
employs an OMP that produces very sparse representations
for the patches, and thus requires a different dictionary char-
acteristics.

A natural question to pose is whether our new scheme con-
tradicts sparse modeling altogether? Surprisingly, the answer
is negative — dense representations do make sense even if the
original signals emerge as sparse compositions of atoms from a
given dictionary. This is in-fact the outcome of the Minimum-
Mean-Squared-Error (MMSE) estimation, as described in [12].
Thus, as our end-to-end training loss is the MSE, it should

DnCNN | NLRNet | LKSVD
Max effective depth 17 38 21
Parameter sharing No Yes Yes

Parameter no. 554k 330k 45k

0.00800 4 = Taining loss
— Validation loss

0.00775
0.00750
0.00725
0.00700
0.00675
0.00650
0.00625
0.00600 . . : .

0 5 10 15 20

Time (hour)

Fig. 5. Training and Validation losses of our proposed method for o = 25.
not come as a surprise that the pursuit obtained by our
unfolded LISTA tunes itself to this behavior. Indeed, the same
phenomenon can be expected with LISTA in general [13].

D. Complexity

Tables VI and VII shed more light on the above results
by presenting respectively the model complexities and the run
times involved in this experiment. As can be seen, our network
LKSVD uses about 10% of the overall number of parameters
compared to the better performing methods. More precisely,
the total number of algebraic operations for inference is
O(pmTK N) where N is the image size (e.g. 2562), p is the
patch-size (e.g. 64), m is the number of atoms (e.g. 256), T
is the number of unfoldings (e.g. 10), and K is the number of
EPLL rounds (e.g. 3.

In terms of run-time, the proposed method is very compet-
itive with respect to the model based methods, while being
on par when compared to DnCNN. We should note that our
GPU implementation could have been much faster if all the
pursuit would be merged to a common process, something
that implies that the multiplication by each atom is done on
all patches together, forming a convolution. Put in other words,
each iteration in LISTA for all the patches can be represented
as m convolutions. Figure 5 shows the training and validation
losses, demonstrating that our proposed method could be fully
trained in less than 10 hours.

V. DISCUSSION AND CONCLUSION

Why should we bring classical methods and deep learning
together? Clearly, the performance of the proposed method
still falls short when compared to leading state-of-the-art deep
networks. Below we dive deeper into this question, discussing
the motivation behind this work, and explaining the merits and
prospects of the specific network proposed.
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TABLE VII

RUN TIME (IN SECONDS) OF DIFFERENT METHODS ON IMAGES OF SIZE 256 x 256 AND 512 x 512. WE GIVE THE RUN TIMES ON CPU (LEFT) AND
GPU (RIGHT) FOR DNCNN AND THE LKSVD. NOTE THAT ALL THE REPORTED EXPERIMENTS WERE CONDUCTED ON AN INTEL(R) XEON(R)
CPU E5-2620v4 @ 2.10GHz COMPUTER WITH 256GN RAM AND 4 RTX 2080T1 GPU’s

Image size ‘ BM3D WNNM KSVD2 DNCNN LKSVDL&Q56 LKSVD3’8’256

256 x 256 0.65 203.1 65.25 0.86 / 0.0045 0.91/0.033 2.73/0.10

512 x 512 2.85 773.2 261.4 3.86 / 0.0059 4.06 /0.13 13.7 7 0.41
Noisy

Zn

PSNR=20.86

PSNR=27.07 PSNR=27.26 PSNR=27.20 PSNR=27.67 PSNR=27.47
Fig. 6. Denoising results for noise level o = 25.
True Noisy BM3D WNNM KSVD;, DnCNN LKSVD

PSNR=20.67  PSNR=32.42

Fig. 7.

A. Why Bother Improving K-SVD Denoising?

The rationale behind this work goes beyond a simple
improvement of the K-SVD denoising algorithm. Indeed, our
motivation is drawn from the hope to propose systematic ways
of designing deep-learning architectures and connecting novel
solutions to classical algorithms.

A fundamental question nowadays in computational imag-
ing is whether old/classic methods should be discarded and
replaced by their deep-learning alternatives. In the context of
image denoising, classical methods focused on data modeling
and optimization, and searched for ways to identify and exploit
the redundancies existing in the visual data. The recent deep
networks, which lead the denoising performance charts today,
take an entirely different route, targeting the inference stage
directly, and learning their parameters for optimized end-
to-end performance. Now that these methods are getting close
to touch their ceiling, our work comes to argue that the classic
methods are still very much relevant, and could become key in

a3
£ A

PSNR=32.59

PSNR=31.79 PSNR=32.61

PSNR=33.02

Denoising results for noise level o = 25.

breaking such barriers. We believe that classic image process-
ing algorithms will have a comeback for this exact reason.

Adopting a different point of view, this work offers a
migration from intuitively chosen architectures, as many recent
papers have offered, towards well-justified ones based on
domain knowledge of the problem we are trying to solve. That
is, the structure of the denoising problem is embedded into the
deep learning architecture, making the overall algorithm enjoy
both the flexibility of the deep methods, and the structure
brought by the more classical approaches. The option of
piling convolutions, ReL.U’s, batch-normalization steps, skip
connections, strides and pooling operations, dilated filtering,
and many other tricks, and seeking for best performing archi-
tectures by trial and error, has been the dominating approach
so far.

It is time to return to the theoretical foundations of signal
and image processing in order to go beyond this point. Relying
on sparse representation modeling, the K-SVD network we
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PSNR=28.21

Fig. 8.

PSNR=28.34

PSNR=27.92 PSNR=28.76 PSNR = 28.54

Denoising results for noise level o = 25.

BM3D

PSNR=20.39  PSNR=25.60

WNNM

PSNR=25.86

KSVD,

PSNR=25.76

PSNR=26.27

PSNR=26.16

Fig. 9. Denoising results for noise level o = 25.

introduce in this work has a clear objective, a concise structure,
and yet it works quite well. We believe that the results shown
here stand as yet another testimony for the central role that
sparse modeling plays in broad data processing. We hope that a
fusion of the past knowledge with the new deep-learning view
could bring us to the next levels in a long list of applications
in image processing. This paper offers a valuable step in
this direction, as the architecture we propose offers a clear
interpretability of its features (being the sparse representations
of overlapping image patches) and parameters (being the
learned dictionary and the threshold for the pursuit).

And related to the above, here is an interesting ques-
tion: What is the simplest possible network, in terms of
the number of free parameters to learn and the number
of computations to apply, for getting state-of-the-art image
denoising? In single-image super-resolution it has become
common practice in the literature to compare different solu-
tions by considering their complexity as well (e.g., [40]). This
is done by showing points in a 2D graph of PSNR versus
computational cost. Doing the same in image denoising may
reveal interesting patterns. The general deep-learning based
methods, while showing the best PSNR, tend to be quite heavy
and cumbersome. Could much lighter networks perform nearly

as well (and perhaps even better)? In this work we offer one
such avenue to explore, and we are certain that many others
will follow.

B. Going Beyond Sparsity?

Why has it been so easy to outperform the original K-SVD
denoising algorithm in the first place? A possible answer could
be that this algorithm builds its cleaning abilities on two prime
forces: (i) the spatial redundancy that exists in image patches,
exposed by the sparse modeling; and (ii) the patch-averaging
effect, which has an MMSE flavor to it [30]. Many of the
better performing competitors strengthen their performance by
considering several additional ideas:

o Non-Locality: Non-local self-similarity can be practiced
as an additional prior, as done by BM3D [6] and low-rank
modeling [14], [44]. Indeed, the paper by Mairal et. al
[24] extended the K-SVD denoising by incorporating
joint sparsity on groups of patches, this way introducing
non-locality. Broadly speaking, non-local methods are
known to be effective in capturing the correlation between
far-apart patches, leading to improved restoration.

o Patch Consensus: Patch based methods must address
the disagreement found between overlapping patches.
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PSNR=24.61

PSNR=31.82

PSNR=31.78 PSNR=32.04

Fig. 10. Self-adaptation: Denoising results for the image Starfish with noise level o = 15. As can be seen, the additional adaptation leads to 0.26dB boost

in performance, surpassing the WNNM method.

The original K-SVD scheme we embark from in this
paper proposed an averaging’ of these patches. However,
the EPLL approach [50] suggests a far better strategy,
by imposing the prior on patches taken from the resulting
image, rather than ones extracted from the measured one.
In the context of sparse modeling, this idea boils down
to an iterated K-SVD algorithm, as was shown in [37].
In such a scheme the cleaned image is aggregated and
broken to patches again for subsequent pursuit. We have
deployed this very idea in an elementary way by repli-
cating the filtering process. Closely related alternatives to
this strategy are the SOS boosting method [33] and the
deployment of the CSC model [31].

o Multi-Scale: Multi-scale analysis of visual data seems to
be a natural strategy to follow, and various papers have
shown the benefit of this for image denoising [30]. More
specifically, a multi-scale extension of the K-SVD denois-
ing algorithm has been considered in various practical
ways [25], [26], [29], [38].

The above suggests that K-SVD denoising in its original
form carries a built-in weakness in it. Yet, the results in this
paper suggest otherwise. Consider the more recent and better
performing deep-learning based solutions. These alternatives
seem to disregard these extra forces (at least explicitly),
concentrating instead on capturing image intrinsic properties
by a direct supervised learning of the inference process. Recent
such convolutional neural networks (CNNs) for image restora-
tion [27], [47] achieve impressive performance over classical
approaches. Do these methods exploit self-similarity? anything
reminiscent of patch-consensus? a multi-scale architecture?
One may argue that the answer is, at most, only partially
positive, hidden by the wide receptive field and the global
treatment that these networks entertain. Note that there are
deep learning methods that explicitly use self-similarity in
their processing [20], [22], however those do not necessarily
improve over the simpler alternatives.

The conclusion we draw from the above is that there is room
for introducing non-locality, patch-consensus and a multi-scale
structure into the proposed K-SVD scheme, thereby driving
the revised architecture towards even better results. Indeed,
nothing is sacred in the K-SVD computational path, and

7While the original K-SVD denoising algorithm has used a plain averaging,
we deploy a slightly improved weighted option, due to its simplicity in the
context of a learned machine.

the same treatment as done in this work could be given to
well-performing classical denoising algorithms, such as BM3D
[6], kernel-based methods [39] and WNNM [14]. We leave
these ideas for future work.

C. Unsupervised Version of This Architecture?

This is perhaps a good time to recall that the denoising work
in [11] offered two strategies for getting the dictionary — a
globally universal approach that trains the dictionary off-line,
and an image-adaptive alternative that trains on the noisy
image patches themselves. Interestingly, despite the fact that
the later (image-adaptive) approach was found to be better
performing, the solution we put forward in this paper aligns
solely with the first approach. Why? because the supervised
strategy we adopt naturally leads to a single architecture
that serves all images via the same set of parameters. Could
we offer an unsupervised alternative, more in line with the
image adaptive path? The answer, while tricky, is certainly
be positive. A related approach of great relevance is [42],
in which a chosen network architecture is trained on each
image all over again. A similar concept could be envisioned,
where our own K-SVD architecture is used for synthesizing
the clean image. However, this raises some difficulties and
challenges, which is why we leave this activity for future work.

Another, more immediate direction to answer the above
challenge, is self-adaptation along the lines described in [43].
The core idea is to run the trained universal network to create
an initial denoised result, followed by an adaptation round to
the incoming image by few epochs on the image itself and
its initially cleaned version. Figure 10 presents an example
result of this idea on the image Starfish, showing a boost
of 0.26dB in its denoising. This adaptation is obtained via
the exact same training procedure as the one used to train the
LKSVD network, where the target image is replaced by the
restored image obtained from the universally trained LKSVD
network, and using only few minutes of training.

VI. CONCLUSION

This work shows that the good old K-SVD denoising
algorithm [11] can have a comeback and become much
better performing, getting closer to leading deep-learning
based denoisers. This is achieved very simply by setting
its parameters in a supervised fashion, while preserving its
exact original form. Our work have shown how to turn the
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K-SVD denoiser into a learnable architecture that enables
back-propagation, and demonstrated the achieved boost in
denoising performance. As the discussion above reveals, our
story goes beyond the K-SVD denoising and its improvement,
towards more fundamental questions related to the role of
deep-learning in contemporary image processing.
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