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This Lecture Presents ...

A Theoretical Explanation of
Deep-Learning (DL) Architectures
based on Sparse Data Modeling

Context:

o Theoretical explanation for DL has become the holy-grail of
data-sciences — this event is all about this

o There is a growing volume of such contributions

o Our work presents another chapter in this
“erowing book” of knowledge

o The overall dream: A coherent and
complete theory for deep-learning
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Who Needs Theory ?

Ali Rahimi: == “Machine
We All Do ! NIPS 2017 ;‘ﬁ o s

Test-of-Time become
Award .7 alchemy”
.. because ... A theory - =
o ...could bring the next rounds of ideas Yan LeCun Understanding is a good

thing ... but another goal is
inventing methods. In the
history of science and
technology, engineering

to this field, breaking existing barriers
and opening new opportunities

o ...could map clearly the limitations of

existing DL solutions, and point to key preceded theoretical understanding:
features that control their performance " Lens & telescope — Optics

- . = Steam engine — Thermodynamics
of us that DL is a “dark magic”, turning = Radio & Comm. —> Info. Theory
it into a solid scientific discipline = Computer — Computer Science
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A Theory for DL ?

Stephane Mallat (ENS) & Joan
Bruna (NYU): Proposed the
scattering transform and
emphasized the treatment of
invariances in the input data

Richard Baraniuk & Ankit Patel
(RICE): Offered a generative
probabilistic model for the
data, showing how classic
architectures and learning
algorithms relate to it
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Raja Giryes (TAU): Studied the architecture of DNN in the context
of their ability to give distance-preserving embedding of signals

Gitta Kutyniok (TU) & Helmut Bolcskei (ETH): Studied the ability of
DNN architectures to approximate families of functions

Architecture
Data
Algorithms

Rene Vidal (JHU): Explained the ability to optimize the
typical non-convex objective and yet get to a global minima

Stefano Soatto’s team (UCLA): Analyzed the Stochastic
Gradient Descent (SGD) algorithm, connecting it to the
Information Bottleneck objective




Where Are We in this Map?

What About You? Architecture
» Eran Malach (SGD, generalization, ) Data
= Haim Sompolinsky ( ] ) Algorithms

= Sanjeev Arora (Loss func. connectivity, optimization & generalization)

= Tomaso Poggio ( , optimization, generalization)
= Jeffery Pennington ( , batch-normalization)
= Surya Ganguli ( , dynamics of learning)

= Naftali Tishbi (information bottleneck)

= Yasaman Bahri (training & generalization)

Our work?
We start by and show how it reflects on the
choice of the and on their expected performance
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Interesting Observation

o Languages used: Signal Processing, Control Theory, Information Theory,
Harmonic Analysis, Sparse Representation, Quantum Physics, PDE,
Machine learning, Theoretical CS, Neuroscience, ...

Ron Kimmel: “DL is a dark monster covered
with mirrors. Everyone sees his reflection in it ...”

David Donoho: “... these mirrors are taken
\\\ from Cinderella’s story, telling each that
he is the most beautiful”

O Today s talk is on our proposed theoretical view:

Yaniv Romano Vardan Pabyan Jeremias Sulam Aviad Aberdam and our theory iS the beSt O
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This Lecture: More Specifically

Sparseland CSC ML-CSC
Sparse Convolutional Multi-Layered

Representation Sparse » Convolutional
Theory Coding Sparse Coding

Sparsity-Inspired Models > Deep-Learning

Another underlying idea that accompanies us

Generative modeling of data sources enables
o A systematic algorithm development, &
o A theoretical analysis of their performance
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Our eventual goal in today’s talk is to present the ...

Multi-Layered Convolutional
Sparse Modeling

So, lets use this as our running title,
parse it into words,
and explain each of them
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Multi-Layered Convolutional

sparse|Modeling
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Our Data is Structured

Matrix Data

. . . =t R
Stock Market ~ Text Docments Biological Signals ~ Z=Esait
- g S by
m;r_wyg Wity < Still Images ~ cial Networks ———
\“\\ - ‘

Videos " U S i n g m O d I S

o We are surrounded by various diverse
sources of massive information

o Each of these sources have an internal
structure, which can be exploited

o This structure, when identified, is the
engine behind the ability to process data

Voice SiTnaIs . 3D Obiect
ects

edicé_l_lmaging I
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o How to identify structure?
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Models

o A model: a mathematical Principal-Component-Analysis

description of the underlying
signal of interest, describing our
beliefs regarding its structure

Gaussian-Mixture
Markov Random Field

Laplacian Smoothness

o The following is a partial list of 'DCT concentration
commonly used models for images ‘Wavelet Sparsity
o Good models should be simple while Piece-Wise-Smoothness
matching the signals
Simplicit ” Reliabilit
PREEY Y
: Beltrami-F|
o Models are almost always imperfect  —
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What this Talk is all About?

Data Models and Their Use

o Almost any task in data processing requires a model —
true for denoising, deblurring, super-resolution, inpainting,

compression, anomaly-detection, sampling, recognition,
separation, and more

o Sparse and Redundant Representations offer a new and
highly effective model — we call it

Sparseland

o We shall describe this and descendant versions of it that
lead all the way to ... deep-learning
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Multi-Layered Convolutional
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A New Emerging Model

Signal Machine
Processing Learning Mathematics
Wavelet e Approximation
Theory Theory
Analy5|s Sparse[and' Algebra

Optimization

Signal Theory
Transforms ‘
Semi-Supervised Interpolation Source- >egmentation  “go oo Fusion
Learning : ] —
!nference (solving Separation Classification SutiTE A
Compression inverse problems)

Prediction  Denoising Anomaly Synthesis

Recognition . ;
= * Clustering = |dentification ™ J€teClON  —

|
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The Sparseland Model

o Task: model image patches of
size 8X8 pixels

o We assume that a dictionary of
such image patches is given,

containing 256 atom images

o The Sparse[am{ model assumption:

every image patch can be
described as a linear

combination of few atoms

Michael Elad
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The Sparse[anc[ Model

Properties of this model:

Sparsity and Redundancy

o We start with a 8-by-8 pixels patch and
represent it using 256 numbers

— This is a redundant representation

o However, out of those 256 elements in the

representation, only 3 are non-zeros r‘-.;,_
2
o Bottom line in this case: 64 numbers ﬁ?i;
representing the patch are replaced by 6 am Bl
(3 for the indices of the non-zeros, and 3 :.ﬁuﬁ ;
for their entries) N T
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Chemistry of Data

We could refer to the Sparse[ana’
model as the chemistry of information:

o Our dictionary stands for the [ZEIglele I[N E]¢] [
containing all the elements

o Our model follows a similar rationale:
Every molecule is built of few elements

e
e 'n o [N
e s [l
15 I ] e W e el N 5 T o ‘o s e i
DENEENEEEE S . = %
] i e R N
++ ] 6] S o 15T [ o "1 Do T s T .o

| WOl B W ] e e T W\ .
' Cm Bk Cf E . Fm No Lr .
Cm Bk LF k& Fm No ir s
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Sparseland : A Formal Description

o Every columninD

(dictionary) is a
p m prototype signal (atom)

4
A

H [ (:1t o The vector ais
[ ]
- .  generated

n - :

8 with few non-

v L ) E X i zeros at arbitrary

A Dictionary SIGEEEES locations and
vector
D values

a o This is a generative model

that describes how (we
believe) signals are created
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Difficulties with Sparseland

o Problem 1: Given a signal, how

can we find its atom decomposition?

o Asimple example:

= There are 2000 atoms in the dictionary

= The signal is known to be built of 15 atoms

‘ (2(1)(5)Oj ~2.4e + 37 possibilities

= |f each of these takes 1nano-sec to test,

o So, are we stuck?
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Atom Decomposition Made Formal

Al N

min, ||ally s.t. x = Da

! . D

VN p

ming ||afly s.t. [|[Da—yll, < ¢ m ; X‘
(04

AN EEEEEEEEEETE
g

A

Approximation Algorithms

y’ - A
&\"ZA %_ = This is a projection onto

: S the Sparseland model
Relaxation methods Greedy m

" L,—counting number of
non-zeros in the vector

ethods
= These problems are known

Basis-Pursuit Thresholding to be NP-Hard problem
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Pursuit Algorithms

ming [[allp s.t. |[Da—yll; <€

Approximation Algorithms

Basis Pursuit Thresholding
Change the L, into L; and then the Multiply y by DT and apply shrinkage:
problem becomes convex and manageable

o= :PB{DTY}
ming [|oll; A
S. L.

IDa—yll; < e
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Difficulties with Sparseland

o There are various pursuit algorithms

o Here is an example using the Basis Pursuit (L,):

400 600 800 1000 1200 1400 1600 1800 2000

o Surprising fact: Many of these algorithms are often
accompanied by theoretical guarantees for their
success, if the unknown is sparse enough

*= | Michael Elad
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The Mutual Coherence

o Compute ‘ D ]z
DT Assume '-._
normalized "ul
columns DTD

o The Mutual Coherence u(D) is the largest off-diagonal
entry in absolute value

o We will pose all the theoretical results in this talk using
this property, due to its simplicity

o You may have heard of other ways to characterize the
dictionary (Restricted Isometry Property - RIP, Exact
Recovery Condition - ERC, Babel function, Spark, ...)

* = | Michael Elad 23
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Basis-Pursuit Success

Theorem: Given a noisy signal y = Da + v where ||v]||, < ¢
and a is sufficiently sparse, 1 (1 N 1)

allg < —
» lallo < 7
then Basis-Pursuit: '

min, [lall; s.t. ||[Da—yl[, <e
4.2
1-p4llallo—1)

leads to a stable result: || — a|5 <

Donoho, Elad & Temlyakov (‘06)
Comments:
o Ife=0 >0 =0«
O o Thisisa worst-case

[ H ] 'b ming ol g -
i analysis — better
E bounds exist
9‘/[ ' IDox — y||2 < ¢ o Similar theorems
L exist for many other

V][, < ¢ pursuit algorithms
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Difficulties with Sparseland

o Problem 2: Given a family of signals, how do
we find the dictionary to represent it well? I
2

o Solution: Learn! Gather a large set of
signals (many thousands), and find the

dictionary that sparsifies them e e
= —=m=o m— 1
o Such algorithms were developed in the .‘b"‘.'!- =r- r. -
past 10 years (e.g., K-SVD), and their EEE - "L"n‘ Ty
performance is surprisingly good Ez-s ,ﬁﬁ?;sg
o We will not discuss this matter further - A . -lL)
in this talk due to lack of time . iy
B T WA

Michael Elad 25
The Computer-Science Department
The Technion



Difficulties with Sparseland

o Problem 3: Why is this model suitable to
describe various sources? e.g., Is it good 2
for images? Audio? Stocks? ...

o General answer: Yes, this model is
extremely effective in representing p e ==
various sources S rerrmscr

1L *D e
; . H - ri

= Theorr‘etlcal z(ajnTwer. Clear connection ;EE ':‘}s"nw.

to other models - =

hd A A Ry

. . E A 131 LR -

=  Empirical answer: In a large variety of M- dHITLY T

signal and image processing (and later » = ﬂ:'..a‘..."
- : - I EAMNAS /-
machine learning), this model has been . e (M,
shown to lead to state-of-the-art results _ a. . |& . & |1,
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Difficulties with Sparseland >

.,

HEE 200N

-, B
N BEVYL'
—na\ .MBPF -Fhy
A WM™ .

B-=JNON. JF
, !Hﬂng’ﬂﬁll

CErm
-z

— -
—
-
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Spdi’se[dnc[ for Image Processing

o When handling images, Sparse[anc[ is typically deployed on small

overlapping patches due to the desire to train the model to fit the
data better

= .
o The model assumption is: each patch in the image is believed to
have a sparse representation w.r.t. a common local dictionary

o What is the corresponding global model? This brings us to ... the
Convolutional Sparse Coding (CSC)

Michael Elad 28
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Convolutional
Sparse Modeling

Joint work with

>

1. V. Papyan, J. Sulam, and M. Elad, Working Locally Thinking
Globally: Theoretical Guarantees for Convolutional Sparse
Coding, IEEE Trans. on Signal Processing, Vol. 65, No. 21,
Pages 5687-5701, November 2017.

Yaniv Romano Vardan Papyan Jeremias Sulam

= | Michael Elad 29
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Convolutional Sparse Coding (CSC)

m filters convolved with their sparse
representations

i-th feature-map: An
image of the same size

as X holding the sparse
¢ representation related
to the i-filter

Z d e

An image _ 4 i -

with N HHHH :

pixels ] W — . . =
é?E: The i- th filter of N

P E small sizen

This model emerged in 2005-2010, developed and advocated by Yan LeCun and
others. It serves as the foundation of Convolutional Neural Networks

Michael Elad 30
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CSC in Matrix Form

o Here is an alternative global sparsity-based model formulation

), €= E Crt = : | = DI
i=1 rm
o C!' € R¥*N is 3 banded and Circulant o e—
. . . . [ FREEEN
matrix containing a single atom | . “EECE
) . i n\|mem CEE
with all of its shifts SemEm .
= [ [ [ [l
|| = [ ] [
- » Cl = | ™=
[ | — B T (e
g T T e
B TR T T
COHENEEN
i N h di Ffici M MEE
oI € R" are the corresponding coefficients jﬁ@égiéi
ordered as column vectors \< o
N
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The CSC Dictionary

| | |

e
EEE

[EEEEE EE

[ /-
| [

.
B HENEEE b
[ [ [ HENENE
[ [ [ N [T
HEN
D ]
[T 1
[ [ T [
N T T [
102 ~371 — | moimem
= CEEEEE
CEEEEE
CEEEEEN
CEEEEEN
N R T
B T [
N T T
[ HETENN
B [ L
T ] e
e T

| [ m
(m [ [

|
0 o
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7
stripe—dictionary/stripe vector J
X=DI -
/ Every patch has a sparse

R;X = Qy; representation w.r.t. to the
same local dictionary (€2) just
Riy1X = Qvyjq

Vi

as assumed for images
g Michael Elad
The Computer-Science Department
The Technion
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Classical Sparse Theory for CSC ?

mrin IT|lg s.t.|]|[Y—=DIJ, <¢

Theorem: BP is guaranteed to “succeed” .... if ||[T||y < %(1 + ﬁ)

o Assuming that m = 2 and n = 64 we have that [welch, '74]
u=0.063

o Success of pur :
The classiC S
-\-_ p \I\d

does N
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Moving to Local Sparsity: Stripes

m = 2
£0,0 Norm: [|T'|[g o, = max |lyillo :
bmln IT|[3,0 s-t. [[Y—=DT; < '
» IT|]3, 0 is low — all y; are sparse — every ;
. A
patch has a sparse representation over () (=

. . . e Yierd o (Vi
The main question we aim to address is this: g
\I
Can we generalize the vast theory of Sparse[ancfto this :
new notion of local sparsity? For example, could we E

provide guarantees for success for pursuit algorithms? F
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Success of the Basis Pursuit

1
[pp = min = IY = DIIIZ + AT,

Theorem: For Y = DI' + E, if A = 4||E||12),Oo , if

S 1 1 This is a much better

’ 3 u(D) result — it allows few

then Basis Pursuit performs very-well: NON-ZET0S I.ocaIIY in
1. The support of I'gp is contained in that of T each strlp?, implying
. a permitted O(N)

ITep = Tlleo < 75Ell3 0 non-zeros globally

2
3. Every entry greater than 7.5||E||12),Oo is found
4

ers 16 WG Papyan, Sulam
2 G & Elad (‘17)
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Multi-Layered Convolutional
Sparse Modeling

2. V. Papyan, Y. Romano, and M. Elad, Convolutional
Neural Networks Analyzed via Convolutional Sparse
Coding, Journal of Machine Learning Research,
. . Vol. 18, Pages 1-52, July 2017.
‘m | 3. V. Papyan, Y. Romano, J. Sulam, and M. Elad,
| = y Theoretical Foundations of Deep Learning via Sparse

s VerE e e G Representations, |IEEE Signal Processing Magazine,
v | u
oY Vol. 35, No. 4, Pages 72-89, June 2018.
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From CSC to Multi-Layered CSC

XeRY D; e R¥V™ T € RV™ We propose to impose the
m, same structure on the
representations themselves

[

Fl € ]Rle D2 € ]RleXNmZ FZ = ]RNmZ

_ m ]
Convolutional sparsity My
(CSC) assumes an !
inherent structure is = my {

present in natural
sighals

» Multi-Layer CSC (ML-CSC)
Michael Elad 38
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Intuition: From Atoms to Molecules

X D, I, X D, D, T,

 —  —
B &. B

o The atoms of D, D, are atoms
combinations of atoms from D4 molecules
- these are now molecules
— cells
o Thus, this model offers
tissue

different levels of abstraction
in describing X body-parts ...

= | Michael Elad 39
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Intuition: From Atoms to Molecules

X D, D, Dy I

 —
 —

00O

[
ly
I
Iy
g,

Desf = D;DyD3 "Dy —  x= DIk

o This is a special Sparseland (indeed, a CSC) model

o However: A key property in our model: the intermediate
representations are required to be sparse as well

Su= | Michael Elad 40
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A Small Taste: Model Training (MNIST

MNIST Dictionary:

*D;: 32 fiIter {2 (dense)

*D,: 128 filif wu S 1- 99.09 % sparse
*D;: 10 L A h arse

%

Michael Elad
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ML-CSC: Pursuit

o Deep—Coding Problem (DCP, ) (dictionaries are known):
([ X=D,I} IT1 5,00 < 24 )
Ih =D, IT2115.00 < A7

k-1 = DxlIk ITkll5.00 < Ak )

o Or, more realistically for noisy signals,
(lY-D,Lill, <€ IT1115,00 < A1)

= S <
Flnd {F]}]K_:l s. t. < F]_ .DZFZ ”FZHO,(.)O — )\2

L FK—l — DKF}( ”FK”?),oo = AKJ

Michael Elad )
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A Small Taste: Pursuit

I
94.51 % sparse

2
99.52% sparse
i

. (30 nnz)

99.51% sparse
(5 nnz)

Su= | Michael Elad 43
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The simplest pursuit algorithm (single-layer case) is
the THR algorithm, which operates on a given input signal Y by:

10
_ —— Hg(z) - Hard |
= 8 B
Y ],)F +E Ss(z) - Soft / |
and I' is sparse 611 » S%(2) - Soft Nonnegative i
4 |
e
2 b
0
[ =P;(DY) »

—1910 -8 -6 -4 -2 0 2 4 6 8 10
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Consider this for Solving the DCP

o Layered Thresholding (LT):
Estimate I'; via the THR algorithm

i K
(DCP{): Find {1“]-}]_=1 s.t.

A (MY —DiNill; <€ NTllfe <2y
T — T T = S <
=7, (017, 000) | nonm |
N Y . :
N N S
Estimate I', via the THR algorithm | Tk-1 = Dxlx ITicll0,00 = }\KJ

o Now let’s take a look at how Conv. Neural Network operates:
f(Y) = ReLU(b, + W3 ReLU(b; + W[Y))

The layered (soft nonnegative)
thresholding and the CNN forward pass
algorithm are the very same thing !!!

Michael Elad 45
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Theoretical Path

a/l g ,\*‘vﬁ'«'«,’W“r
+

A

X = (DCPY) (T, }K
: Layered THR
Iy, = DTy (Forward Pass)

Maybe other?
I is Ly o Sparse

Armed with this view of a generative source model, we
may ask new and daring theoretical questions

Su= | Michael Elad 46
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Success of the Layered-THR

»

1

Theorem:IfIII‘iII?)OO<l 1+ — |Fi::{| —— 'srilr;ax
' 2 u(D;) T ;) [rP]

then the Layered Hard THR (with the proper thresholds)
finds the correct supports and ||} — I‘i||}23Oo < ¢!, where

we have defined € = ||E||g’oo and

el = J INIE - (670 + p(D) (T e — 1)ITma%))

Papyan, Romano & Elad (‘17)

Problems:

1. Contrast

2. Error growth

3. Error even if no noise

Michael Elad 47
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Layered Basis Pursuit (BP)

o We chose the Thresholding algorithm
due to its simplicity, but we do know
that there are better pursuit methods
— how about using them? .

o Lets use the Basis Pursuit instead ...

1
% = Hll,in > Y — D3 115 + A4 1Ty |
1

) K
(DCPY): Find {Fi},-=1 s.t.

(IY =Dyl < &
I =D,I

| Tk-1 = Dklk

1

2
;°" = mln ” [ °" — D,I, |2+7\2||F2||1

“I‘lllg,oo =< }\1\
”I‘leg,oo = )\2

~N"

||FK”(S),OO < }\Kj

Deconvolutional networks
[Zeiler, Krishnan, Taylor & Fergus ‘10]

Michael Elad
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Success of the Layered BP

Th

Theorem: Assuming that |[Ti||j ., < (1 +

U(Dl))
then the Layered Basis Pursuit performs very well:

1. The support of I‘LBP is contained in that of I

» 2. The error is bounded: |I‘LBP I‘-||pOO < &l , where

el = 75BN, Ty (IS,

3. Every entry in I greater than
Problems:

si/\/ll[‘illgmwillbe found 1. Contrast

2. Error growth

~

Papyan, Romano & Elad (‘17) 3. Errereven-H-re-neise

Michael Elad
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Layered lterative Thresholding

Layered BP: I‘]-LBP—mln || LBP Djrj”i"'Ei“Fi'h ]

.

Layered Iterative Soft-Thresholding Algorithm (ISTA):

t F]t = SEj/Cj (th_l + D;r(i;]_l — D]-I'jt_l))

Note that our suggestion
implies that groups of layers Can be seen as a very deep

share the same dictionaries residual neural network

— . [He, Zhang, Ren, & Sun ‘15]

Michael Elad _ 8 50
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Where are the Labels?

Answer 1:

o We do not need labels because everything we
show refer to the unsupervised case, in which
we operate on signals, not necessarily in the
context of recognition

X —_ Dlrl X
I = D,I;,
I'k-1 = DkIk

I is Ly o Sparse

We presented the ML-CSC as a
machine that produces signals X

= | Michael Elad 51
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Where are the Labels?

Answer 2:
o In fact, this model could be augmented by a
M . synthesis of the corresponding label by:
X L(X) = Sign{c + Z]K:l W]TF]}
X — Dlrl ) . .
[. =D.T o This assumes that knowing the representations
L a2 suffices for classification — supervised mode

_ - o Thus, a successful pursuit algorithm can lead
I'k-1 = DkIk e .
L(X) to an accurate recognition if the network is

augmented by a FC classification layer
I is Ly o Sparse _
’ o In fact, we can analyze theoretically the

We presented the ML-CSC as a classification accuracy and the sensitivity to
machine that produces signals X ~ adversarial noise — see later
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What About Learning?

Sparseland CSC ML-CSC
Sparse Convolutional » Multi-Layered

Representation Sparse Convolutional
Theory Coding Sparse Coding

All these models rely on proper
Dictionary Learning Algorithms to fulfil their mission:

=  Sparseland: We have unsupervised and supervised such algorithms, and a
beginning of theory to explain how these work

=  (CSC: We have few and only unsupervised methods, and even these are not
fully stable/clear

=  ML-CSC: Two algorithms were proposed — unsupervised and supervised
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Time to Conclude

Michael Elad
The Computer-Science Department
The Technion
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This Talk
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Generative modeling of data
sources enables algorithm
development along with
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A novel interpretation
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understanding of CNN
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Novel View of
Convolutional
Sparse Coding

Multi-Layer
Convolutional
Sparse Coding
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Fresh from the Oven

My team’s work proceeds along the above-described line of thinking:

4. J.Sulam, V. Papyan, Y. Romano, and M. Elad, Multi-Layer Convolutional Sparse Modeling: Pursuit
and Dictionary Learning, IEEE Trans. on Signal Proc., Vol. 66, No. 15, Pages 4090-4104, August 2018.

5. A.Aberdam, J. Sulam, and M. Elad, Multi Layer Sparse Coding: the Holistic Way, SIAM Journal on
Mathematics of Data Science (SIMODS), Vol. 1, No. 1, Pages 46-77.

6. J.Sulam, A. Aberdam, A. Beck, and M. Elad, On Multi-Layer Basis Pursuit, Efficient Algorithms and
Convolutional Neural Networks, to appear in IEEE T-PAMI.

7. Y.Romano, A. Aberdam, J. Sulam, and M. Elad, Adversarial Noise Attacks of Deep Learning
Architectures — Stability Analysis via Sparse Modeled Signals, to appear in JIMIV.

8. EvZisselman, Jeremias Sulam, and Michael Elad, A Local Block Coordinate Descent Algorithm for
the CSC Model, CVPR 2019.

9. I. Rey-Otero, J. Sulam, and M. Elad, Variations on the CSC model, submitted to IEEE Transactions on
Signal Processing.

10. D. Simon and M. Elad, Rethinking the CSC model for Natural Images, NIPS 2019.
-DM. Scetbon, P. Milanfar and M. Elad, Deep K-SVD Denoising, submitted to IEEE-TPAMI. -
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On a Personal Note ...

Disclaimer: | am biased, so take my words with a grain of salt ...

Conjecture: Sparse modeling of data is at the heart of
Deep-Learning architectures, and as such
it is one of the main avenues for developing
theoretical foundations for this field.

Elad (‘19)

My research activity (past, present & future) is
dedicated to establishing this connection and addressing
various aspects of it (applicative & theoretical)
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A New Massive Open Online Course

e‘ x Courses « Programs - Schoo

¥ Israel X

Sparse Representations in Signal. RN
and Image Processing ‘

Learn the theory, tools and algorithms of sparse
representations and their impact on signal and image
processing.

Start the Professional Certificate Program
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More on these (including these slides and the relevant papers) can be
found in http://www.cs.technion.ac.il/~elad

Michael Elad
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