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The Sparseland Model

Dictionary Learning:
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Model assumption: All data vectors are linear
combinations of FEW (T < N) atoms from D

Dictionary Learning for Graph Signals
By: Yael Yankelevsky

-,
&




K-SVD Algorithm Overview (anzron et al. ‘0]
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Using OMP
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Data is often structured...

Meshes & Point
Clouds

[A—

Transportation Networks Social Networks
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What happens for non-conventionally structured signals?

Can dictionary learning work well for such signals as well?

The general idea:
Model the underlying structure as a graph and
incorporate it in the dictionary learning algorithm
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Basic Notations

We are given a graph: ¢ = (V,&E, W)

= The it" node is characterized
by a feature vector v;

= The edge between the it"* and

jt" nodes carries a weight

wij X d(zijzj)_l

= The degree matrix: [, — Z (T

= Graphlaplacian: [, =D — W
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Basic Notations

= The it" node has a value f;

f = graph signal

= The combinatorial Laplacianis a
differential operator:

(Lf)i = Zwij(fi — f5)

= Defines global regularity on the
graph (Dirichlet energy):

fTLf — %wa(fz - fj)2
i,J
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Related Work: Dictionaries for Graph Signals

L Ignore structure (MOD, K-SVD) [Engan et al. ’99],[Aharon et al. ’06]

m Analytic transforms

= Graph Fourier transform [sandryhaila & Moura "13]
= Windowed Graph Fourier transform [shuman et al. "12]

m Graph Wavelets [Coifman & Maggioni '06],[Gavish et al. "10],[Hammond
et al. "11],[Ram et al. ’12],[Shuman et al. ’16],...

m Structured learned dictionaries [Zhang et al. ’12],[Thanou et al. '14]

our solution: Graph Regularized Dictionary Learning
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The Basic Concept

Construct 2 graphs capturing the and
the data manifold structure
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Example: Traffic Dataset

Richmond Walnut Brentwood

Creek

Dublin

Daly. City v e
) Y Hayward Livermore

Pacifica Z
Union City

Fremont

300

250

200

Livermore
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Dual Graph Regularized Dictionary Learning

Introduce graph regularization terms that
preserve these structures

arg%li)lg 1Y — DX||% +/Tr(XL X

s.t. ||xillo T Vi

Imposed smoothness (graph Dirichlet energy):

Tr(XLX"T) = Zw |2 — 2|3

S|
= Dictionary Learning for Graph Signals 11
¥ By: Yael Yankelevsky



The Importance of the Underlying Graph

We can learn L and adapt it to promote the

desired smoothness [tuetal /13, [Dong et al. 5],
[Kalofolias "16], [Segarra et al. ‘17],...

= Dictionary Learning for Graph Signals 12
¥ By: Yael Yankelevsky



Dual Graph Regularized Dictionary Learning

argDm)i(ﬂL Y — DX||7 +BTr(XLeX ")+ 1| L%

Li;=L; <0 (i#})
L-1=0
Tr(L) =~yN

Key idea:

Similar signals have similar sparse representations
The graph is adapted to promote the desired smoothness

S|
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The DGRDL Algorithm

argDm)i(nL 1Y — DX||% +BTr(XLeX ")+ 1| L%

Li;=L; <0 (i#j)

SR Graph Updat
TT(L):f)/N rap paate
Initialize Sparse Coding Dictionary Update
. g —
Dictionary
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The DGRDL Algorithm

dj = (|l 3T 1) E; Py

For the j-th atom: {xf — (|ld; |21+ BPTL P )~ PTETq,

Graph Update

Initialize Sparse Coding Dictionary Update
Dicti |~ ? ‘ Atom-by-atom + coeffs.
ICtionary o (modified update rule)
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Graph Regularized Pursuit

argmin || Y — DX ||% 4+ BTr(XLX1)

st. |zllo <T Vi
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Graph Regularized Pursuit

arg 1’)1(11%1 |Y — DX||% + BTr(XLX ")

S.t. HZZHO S T V’L,
X=12Z

ADMM: [Boyd et al. "11]

X®) « (DTD 4 pI)X + XL = DTY + p (z“f—l) - U<’€—1>)

C Z*) — Py (X("’) + U<k—1>)

Uk — gk-1) 4 xk) _ z(k)
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Graph Regularized Pursuit

graph SC [Zheng et al. '11]

Representation Error
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Theoretical Guarantees

Classical sparse theory:

(P5)  argmin [x[lo s.t. [ly —Dx|j; <€

Theorem: If the true representation X satisfies

1 1
IXll[o =s<=|1+—==

2 u(D)
then a solution X for (P;) must be close to it
R , 4¢? 4¢?
IX —x]|3 <

1 — 8y =1- (2s — Du(D)
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Theoretical Guarantees

Graph sparse coding:

(Pooo)  argmin [[X[loe st [[Y - DX|% + T (XL X") < €2

Theorem: If the true representation X satisfies
1 1+ f(B, L
|mmm=s<_Q+ <Bc»

2 u(D)
then a solution X for (Pg o) must be close to it
IR x|} < o< =
F™1-8;5 1—-(2s—1)u(D) +f(B, L)
=0
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Back to DGRDL...

argDm)i(nL 1Y — DX||%

Li;=L;; <0 (i#])

+BTr (XL X)) 41| L%

similar signals have
similar sparse codes

graph is adapted to
promote smoothness

Graph Update

L-1=0
Tr(L) =~yN
Initialize Sparse Code
. g Using ADMM
Dictionary oursuit

Dictionary Update

‘ Atom-by-atom + coeffs.
(modified update rule)

= Dictionary Learning for Graph Signals
¥ By: Yael Yankelevsky

21



Results:
Network Data Recovery
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Traffic Dataset

Settings:

m N=578 sensors

m M=2892 signals
= 1500 for training
= 1392 for testing

m Graph signal = daily avg.

bottleneck (min.) measured

at each station
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Representation
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Representation
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Denoising
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Denoising
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Inpainting
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Inpainting
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Results:
Image Denoising Revisited
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A Glimpse at Image Processing

» L isann X n grid (patch structure)

= Dislearned from only 1000 patches

S|
= Dictionary Learning for Graph Signals 31
g By: Yael Yankelevsky



Image Denoising (0=25)

Original Noisy (20. 18dB) K-SVD (28.35dB) DGRDL ( )
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Structure Inference

Learn the underlying patch structure (pixel dependencies) from
the data

NN
learned  INNNNNNMZ%
L NN\%7777
NONONNNNN V7 /1 DEXIXIX
NN\ A7 /N R
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Time to Conclude...

We have shown how
sparsity-based models
become applicable also for
oraph structured data

Processing data is enabled
by an appropriate
modeling that exposes its
inner structure

Extensions include
supervised
dictionary learning

and supporting
high dimensions We demonstrated how

We developed an
efficient algorithm for
joint learning of the
dictionary and the graph

can benefit from the
new model
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Thank You
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