
J. Vis. Commun. Image R. 77 (2021) 103095

A
1

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier.com/locate/jvci

Full length article

Learned Greedy Method (LGM): A novel neural architecture for sparse coding
and beyond✩

Rajaei Khatib ∗, Dror Simon, Michael Elad
The Computer Science Department - The Technion, Haifa 3200003, Israel

A R T I C L E I N F O

Keywords:
Sparse representation
Orthogonal Matching Pursuit
Unfolding pursuit algorithms
Interpretable image processing architectures
Denoising
Deraining

A B S T R A C T

The fields of signal and image processing have been deeply influenced by the introduction of deep neural
networks. Despite their impressive success, the architectures used in these solutions come with no clear
justification, being ‘‘black box’’ machines that lack interpretability. A constructive remedy to this drawback is
a systematic design of networks by unfolding well-understood iterative algorithms. A popular representative
of this approach is LISTA, evaluating sparse representations of processed signals. In this paper, we revisit this
task and propose an unfolded version of a greedy pursuit algorithm for the same goal. More specifically, we
concentrate on the well-known OMP algorithm, and introduce its unfolded and learned version. Key features
of our Learned Greedy Method (LGM) are the ability to accommodate a dynamic number of unfolded layers,
and a stopping mechanism based on representation error. We develop several variants of the proposed LGM
architecture and demonstrate their flexibility and efficiency.
1. Introduction

In the past decade, Deep Neural Networks (DNN) have been de-
ployed successfully to numerous signal and image processing tasks. This
approach has led to state-of-the-art results in various inverse problems,
such as image denoising, deblurring, super-resolution, inpainting, and
more [1–4], outperforming the more classical model-based and prior-
based methods [5–13]. In-spite of their remarkable results, most of
these DNN architectures lack clear justification and are usually ob-
tained by trial and error. In various cases, this empirical process results
in very complex networks with large number (order of millions) of
parameters. Consequently, training such a DNN becomes expensive in
run-time and memory usage, and a lot of data is required in order to
properly learn its parameters. Compared to traditional methods, DNNs
are treated as ‘‘black box’’ machines, limiting the deployment of these
networks in many fields where interpretability is crucial, such as in
medical imaging.

An appealing way for alleviating this flaw is by systematically de-
signing networks by unfolding/unrolling iterative algorithms emerging
from a prior-based analysis. This line of reasoning stands behind a
series of recent publications [14–19], demonstrated to be a viable and
attractive alternative to the brute-force practice for designing network
architectures. This approach leads to highly interpretable DNN archi-
tectures whose structure is well-motivated. An additional benefit to this
approach is the fewer number of parameters that it usually requires,

✩ This paper has been recommended for acceptance by Zicheng Liu.
∗ Corresponding author.
E-mail addresses: rajaee95@technion.ac.il (R. Khatib), dror.simon@cs.technion.ac.il (D. Simon), elad@cs.technion.ac.il (M. Elad).

easing its learning. The unfolding paradigm dictates various specialized
properties on the network, such as parameter sharing between different
layers, the non-linearity activation function to use, feedback loops, and
more.

A successful instance of this technique is the LISTA method [20]
and its variants [16,19,21], in which a fixed number of iterations from
the ISTA algorithm [22] is unfolded to a DNN and trained end-to-end.
LISTA provides a fast approximation to the ISTA algorithm, aiming to
perform sparse coding to the input signals. In this paper we shall focus
on this mission of sparse approximation, due to its wide relevance, and
offer a DNN alternative to LISTA based on greedy algorithms.

The field of sparse modeling has gained a lot of interest in the
past two decades, both due to its elegant mathematical foundations,
and to the applicability of this model to a wide range of data process-
ing tasks [23]. Intensive work has demonstrated the great relevance
of this model as an effective regularizer for inverse problems (for
denoising [5], deblurring [24], inpainting [25], demosaicing [26],
image-fusion [27], super-resolution [28], compressed-sensing [29], to-
mographic reconstruction [30], MRI imaging [29], and deraining [31]),
as a compression mechanism [11,32,33], and as a feature extractor for
recognition tasks [34–36]. Let us recall the basics of this model, as we
rely on these throughout this paper.

Using an overcomplete dictionary matrix 𝑫 =
[

𝒅1,𝒅2,… ,𝒅𝑚
]

∈
R𝑛×𝑚 (𝑚 ≥ 𝑛) that contains 𝑚 atoms (𝒅𝑘 ∈ R𝑛 for 𝑘 = 1, 2,… , 𝑚)
vailable online 26 March 2021
047-3203/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jvcir.2021.103095
Received 22 October 2020; Received in revised form 12 February 2021; Accepted 1
9 March 2021

http://www.elsevier.com/locate/jvci
http://www.elsevier.com/locate/jvci
mailto:rajaee95@technion.ac.il
mailto:dror.simon@cs.technion.ac.il
mailto:elad@cs.technion.ac.il
https://doi.org/10.1016/j.jvcir.2021.103095
https://doi.org/10.1016/j.jvcir.2021.103095
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2021.103095&domain=pdf

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.

o
a
e
s
N

(

w
e
t
i
o
e
a
I
I
f
c

t
c
i
t
𝐿
r
T
f

b

p
i
a
i
L
a
i
g

g
t
a
d
f
f
a

m
c
v
m
a
d
d
w
o

2

c
𝒙
a
f

as its columns, the sparse-modeling prior assumes that the signal of
interest, 𝒙 ∈ R𝑛, can be represented as a sparse linear combination
f these atoms. Equivalently, this linear combination can be expressed
s 𝑫𝜶, where 𝜶 ∈ R𝑚 is a sparse vector. This representation may be
ither exact (𝒙 = 𝑫𝜶) or approximate (‖𝒙 −𝑫𝜶‖2 ≤ 𝜖). Recovering the
parse representation 𝜶 given 𝒙, 𝜖 and 𝑫 requires solving the following
P-hard [37] problem:

𝑃0,𝜖) min
𝜶

‖𝜶‖0 s.t. ‖𝒙 −𝑫𝜶‖2 ≤ 𝜖, (1)

here ‖𝜶‖0 is the 𝓁0 ‘‘norm’’ that counts the number of non-zero
lements in 𝜶. This problem can be approximated using a family of
echniques known as pursuit algorithms, which can be broadly divided
nto two categories. The first group of algorithms offers a relaxation
f the above optimization, turning it into a continuous problem. For
xample, ‖𝜶‖0 can be replaced by ‖𝜶‖1, forming a convex task known
s the Basis Pursuit (BP) objective. BP can be numerically solved using
STA [22], which explains the connection to our discussion above.
ndeed, running LISTA amounts to learning the appropriate dictionary
or the family of signals to be handled, while optimizing the sparse
oding performance. More on this will be given in Section 2.

The second category of pursuit algorithms is the greedy approach
hat preserves the combinatorial nature of the original problem, re-
overing the coefficients of 𝜶 sequentially. The Orthogonal Match-
ng Pursuit (OMP) is a popular member of this group [38], and in
his work we shall propose a learned unfolded version of it: the
𝑒𝑎𝑟𝑛𝑒𝑑 𝐺𝑟𝑒𝑒𝑑𝑦 𝑚𝑒𝑡ℎ𝑜𝑑 (𝐿𝐺𝑀) network. Similar to LISTA, the pa-

ameters of LGM are learned end-to-end through back-propagation.
he proposed architecture is characterized by several key and unique
eatures:

• This architecture is able of controlling the cardinality of the
resulting sparse representation by modifying the number of un-
folded layers;

• Our scheme can dynamically change the number of layers for each
input signal, controlling this way the magnitude of the residual
error, akin to the stopping criteria used in OMP [5,11]; and

• The resulting network does not utilize the usual element-wise
ReLU or shrinkage activation function, but rather imitates the
greedy nature of OMP of using the maximal projection thresh-
olding.

Our work offers several variants of LGM architectures, all inspired
y the same origin, while serving different needs:

• A simpler greedy method based on the matching pursuit that
avoids Least-Squares fitting 4.1;

• A batch version of the pursuit that aims to speed-up the pro-
cessing when serving a large group of signals sharing the same
dictionary and stopping criterion 4.4;

• An MMSE-based variant of the OMP (which is a MAP approach),
in the spirit of the Random-OMP [39]; and

• A greedy method serving the Convolutional Sparse Coding (CSC)
model [40].

• A Subspace Pursuit (SP) 4.2 compatible algorithm that can oper-
ate on groups of non-zeros and remove atoms from the support,
empowering it further for handling higher dimensional signals
and yielding a more accurate pursuit.

This work demonstrates the proposed LGM schemes in several ex-
eriments. We start with handling of synthetic data, for which our goal
s to show its sparse recovery capabilities, and contrast them with LISTA
nd other pursuit methods. We then move to applications on natural
mages that operate on image patches, exposing the advantages of
GM over more classical dictionary learning alternatives. We start with
n unfolding of the complete K-SVD denoising algorithm for natural
mages [11], which deploys OMP on the image patches while aiming for
2

lobal denoising performance. By training this scheme end-to-end, we
et competitive denoising performance with LGM as the core engine for
he pursuit task. We also demonstrate the LGM on the image deraining
pplication, while relying on a similar architecture to the patch-based
enoising, and exploiting a natural division of the dictionary atoms
or the separation task. All these tests clearly expose the strength,
lexibility, learnability, and usability of the proposed LGM architecture
nd its variants.

This paper is organized as follows: Section 2 briefly recalls the ISTA
ethod and its learned version LISTA. In Section 3 we introduce the

ore construction of the LGM method. LGM extensions and different
ariants are discussed in Section 4. In Section 5 we introduce experi-
ental results for synthetic signals, demonstrating the LGM versus its

lternatives. We discuss specific LGM networks for image denoising and
eraining in Section 6. Section 7 presents experimental results of LGM
enoising and deraining schemes. We conclude the paper in Section 8
ith a summary of the motivation behind this work and the door it
pens for future work.

. Learned ISTA

Assume that an ideal signal 𝒙∗ = 𝑫𝜶∗ is given to us while being
ontaminated by bounded energy noise 𝒙 = 𝒙∗+𝒗, ‖𝒗‖2 ≤ 𝜖. Recovering
∗ from 𝒙 amounts to solving (𝑃0,𝜖), as posed in Eq. (1). ISTA [22] is
n iterative method that aims to solve this problem, by considering the
ollowing convex relaxation alternative, in which the 𝐿0 is replaced by
𝐿1,

(𝑃1,𝜖) min
𝜶

‖𝜶‖1 s.t. ‖𝒙 −𝑫𝜶‖2 ≤ 𝜖. (2)

This problem can be equivalently written in its unconstrained La-
grangian form,

(𝑄1,𝜆) min
𝜶

𝜆‖𝜶‖1 +
1
2
‖𝒙 −𝑫𝜶‖22. (3)

ISTA solves this via the following iterative process:

�̂�0 = 𝟎

�̂�𝑡 = 𝑺𝜆∕𝑐

(

�̂�𝑡−1 +
1
𝑐
𝑫𝑇 (

𝒙 −𝑫�̂�𝑡−1
)

)

for 𝑡 = 1, 2, … (4)

where1 𝑐 > 𝜆max(𝑫𝑇𝑫), and 𝑺𝜃 is an element-wise soft-thresholding
function defined as

𝑺𝜃 (𝑣) = sign (𝑣) max (|𝑣| − 𝜃, 0) . (5)

ISTA is guaranteed to find the global minimum of the penalty posed
in (𝑄1,𝜆) in Eq. (3) [22]. This, however, does not imply that we have
solved the problem (𝑃1,𝜖) in Eq. (2), as the migration from the choice of
𝜖 to 𝜆 is signal-dependent and non-trivial. This means that solving (𝑃1,𝜖)
with ISTA should include a search for 𝜆 so as to satisfy the constraint
‖𝒙 − 𝑫𝜶‖2 ≤ 𝜖. Moreover, being able to solve (𝑄1,𝜆) (or even (𝑃1,𝜖))
does not imply that we have necessarily managed to approximate the
solution of (𝑃0,𝜖) in Eq. (1) – the original sparse approximation problem
we have embarked from. Theoretical guarantees for the proximity
between the obtained and the desired solutions do exist (e.g., [41–43]),
depending on the sparsity of the sought solution and the properties of
the dictionary 𝑫.

We move now to the learned variation of ISTA, as originated in [20].
This starts with an alternative and equivalent formation of the iterative
relation in Eq. (4) as

�̂�𝑡 = 𝑺𝜃
(

𝑸�̂�𝑡−1 +𝑾 𝒙
)

, (6)

where 𝑸 = 𝑰 − 1
𝑐𝑫

𝑇𝑫 ∈ R𝑚×𝑚, 𝑾 = 1
𝑐𝑫

𝑇 ∈ R𝑚×𝑛 and 𝜃 = 𝜆
𝑐 . In [20],

a LISTA encoder network is introduced, suggesting a fast sparse coding
approximation that comes to solve (𝑄1,𝜆). This network, denoted by
𝑇 (𝒙;Θ), consists of 𝑇 unfoldings of the ISTA algorithm, in which

1 𝜆 (𝑨) denotes the largest eigenvalue of 𝑨.
max

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.

f
e
a
o
r
t

i
(
r
s
h
a
p
o

o
l

t
o
m
a
v
s
I
m
f

3

3

b
o
v
i
r
𝑆
a
r

𝜶

T
e
r
o
I

𝒚

each layer follows Eq. (6) in a recurrent manner. Furthermore, the
thresholding parameter 𝜃 is extended to a vector of thresholds, allowing
or a different treatment for each element. Fig. 1a describes the LISTA
ncoder architecture. The parameters of this model, Θ = (𝑸,𝑾 ,𝜽),
re to be learned in a supervised fashion. This is done while relying
n a sufficiently rich dataset of noisy signals and their true sparse
epresentations,

{(

𝒙𝑖,𝜶𝑖
)

|𝒙𝑖 ∈ R𝑛,𝜶𝑖 ∈ R𝑚}𝑟
𝑖=1. The learning amounts

o a minimization of the 𝓁2 loss function

𝐿𝐼𝑆𝑇𝐴 = 1
𝑟

𝑟
∑

𝑖=1

‖

‖

‖

𝑇
(

𝒙𝑖;𝛩
)

− 𝜶𝑖
‖

‖

‖

2

2
, (7)

obtained through back-propagation and stochastic gradient descent.
Note that gathering the training set for this learning assumes that 𝑫
s known and available. In addition, we assume that we can solve
𝑄1,𝜆) for each of the input signals {𝒙𝑖}𝑟𝑖=1 so as to get the appropriate
eference representations, {𝜶𝑖}𝑟𝑖=1. Note that this requires choosing a
pecific 𝜆 to work with. And indeed, under these assumptions, LISTA
as been shown to perform favorably, providing a much faster sparse
pproximation when compared to a direct use of ISTA. Recent work
rovides a theoretical analysis of LISTA’s speed of convergence and
rigins of success [44,45].

An appealing alternative to the above is an autoencoder mode
f learning, where the sparse representation vectors {𝜶𝑖}𝑟𝑖=1 are no
onger needed in the training set. Keeping the encoding architecture of
𝑇 (𝒙;Θ) and adding a decoding layer to its output, �̂� = 𝑫�̂�𝑇 , we can

rain this machine end-to-end with a dataset of the form
{

𝒙𝑖,𝒙∗𝑖
}𝑟
𝑖=1,

f noisy signals and their clean origins. In this case, the decoder’s
atrix 𝑫 joins the learned parameters. Fig. 1b describes the LISTA

utoencoder architecture. This approach has led to exciting results in
arious inverse problems, including super-resolution [46], compressed
ensing [47], image demoisaicking [19], and image denoising [16,17].
n all these cases, LISTA yields results that are on par with other DNN
odels, while having an interpretable architecture that contains much

ewer parameters.

. LGM basic architecture

.1. The OMP algorithm

The OMP algorithm [38] (see Algorithm 1) greedily solves the (𝑃0,𝜖)
y iteratively increasing the support of the sought sparse solution by
ne non-zero at a time. Specifically, the algorithm initializes a residual
ector 𝒓 = 𝒙 and an empty support set 𝑆 = {}. Then, in each of its
terations, the algorithm finds the atom most correlated to the current
esidual (assuming the atoms are normalized) and adds it to the set
. Denoting by 𝑫𝑆 the sub-matrix containing the atoms in 𝑫 that
re listed in 𝑆, and by 𝜶𝑆 the non-zero portion in 𝜶, we update the
epresentation by the following Least-Squares:

̂𝑆 = min
𝒛

‖

‖

𝒙 −𝑫𝑆𝒛‖‖
2
2 = (𝑫𝑇

𝑆𝑫𝑆)−1𝑫𝑇
𝑆𝒙. (8)

he residual is updated by 𝒓 = 𝒙 − 𝑫𝑆 �̂�𝑆 , and the algorithm stops
ither when this residual is sufficiently small, or when the support
eaches a certain cardinality. If the former criterion is used, the number
f iterations depends on the given input 𝒙 and the error-threshold.
nterestingly, despite its greedy nature, if the original clean signal (𝒙∗)

has a sufficiently sparse representation, OMP is guaranteed to recover
a stable solution for the (𝑃0,𝜖) problem [23].

3.2. Unfolding OMP

We now turn to describe our approach of unfolding OMP into a
neural network. Generally, each iteration in OMP is transformed into a
layer in the proposed architecture. In the original algorithm, the set 𝑆𝐾
carries the information from one iteration to the next. Unfortunately,
using such a set of indices in a trained network is problematic in
terms of differentiability. We overcome this difficulty by transferring
the aggregated dictionary 𝑫𝑆𝑘

instead. In what follows, we depict the
main building blocks of each layer.
3

Algorithm 1: Orthogonal Matching Pursuit (OMP)
Input : A noisy signal 𝒙 ∈ R𝑛, a dictionary 𝑫 ∈ R𝑛×𝑚, a stopping

residual threshold 𝜖 and/or a maximum cardinality 𝑠
Output: A representation vector �̂� ∈ R𝑚, approximating the

solution of (𝑃0,𝜖)

Init �̂�0 = 𝟎, 𝒓0 = 𝒙, 𝑆0 = {}

for 𝑘 = 1, 2, ..., 𝑠 do
𝑖0 = argmax𝑖

|

|

|

𝒅𝑇
𝑖 𝒓𝑘−1

|

|

|

𝑆𝑘 = 𝑆𝑘−1 ∪
{

𝑖0
}

�̂�𝑆𝑘
=
(

𝑫𝑇
𝑆𝑘
𝑫𝑆𝑘

)−1
𝑫𝑇

𝑆𝑘
𝒙

�̂�𝑘 =

{

�̂�𝑆𝑘
on support

0 off support
𝒓𝑘 = 𝒙 −𝑫�̂�𝑘
if ‖

‖

𝒓𝑘‖‖2 ≤ 𝜖 then
break

endif
endfor
�̂� = �̂�𝑘

3.2.1. Maximal-projection-thresholding (MPT) unit
The 𝑀𝑃𝑇 unit is responsible for deciding which atom will be added

to the support in each layer. It operates on the vector 𝒖 = 𝑫𝑇 𝒓,
representing the correlation of each atom with the current residual. Let
𝑖0 = argmax𝑖 ||𝑢𝑖||, then the 𝑀𝑃𝑇 function is defined as:

= 𝑀𝑃𝑇 (𝒖) =

{

𝑢𝑖 𝑖 = 𝑖0,
0 otherwise.

(9)

In other words, when the input is the correlation vector, the output is a
vector that contains zeros everywhere except for the index correspond-
ing to the most correlated atom. This function resembles a modified
global max-pooling that replaces the regular pooling by a thresholding
operator. The gradient of this unit is computed by taking the gradient
of the output which propagates back from the next unit, zeroing all its
entries except for 𝑖0, which remains intact.

3.2.2. Atom selecting (AtoS) unit
Following the previous computational step, this unit extracts the

selected atom. Given the output of the 𝑀𝑃𝑇 function, 𝒚 ∈ R𝑚, and
the dictionary 𝑫, this unit yields the atom in 𝑫 corresponding to the
index containing the non-zero value in 𝒚. Equivalently, the 𝐴𝑡𝑜𝑆 unit
is defined as follows:

𝐴𝑡𝑜𝑆 (𝑫, 𝒚) = 1
‖𝒚‖∞

𝑫 ⋅ |𝒚|. (10)

The absolute operation is done element-wise, and the 𝐿∞ over 𝒚 simply
produces the maximal absolute entry in this vector. Note that the
composition of the units 𝐴𝑡𝑜𝑆 and 𝑀𝑃𝑇 provides the functionality
of selecting the most correlated atom with the residual 𝒓, i.e., if 𝒅𝑖0
is indeed this atom, then 𝐴𝑡𝑜𝑆

(

𝑫,𝑀𝑃𝑇
(

𝑫𝑇 𝒓
))

= 𝒅𝑖0 . A note worth
mentioning, in the description of this unit and the previous one (𝑀𝑃𝑇),
there is a hidden assumption that the atoms of 𝑫 are normalized. This
is not the case usually, and later we explain how this assumption is
overridden.

3.2.3. Constructing the LGM architecture
We turn to describe a single iteration of OMP as a computational

graph, which is referred to as an LGM layer (see Algorithm 2 and
Fig. 2). As mentioned earlier, in the LGM architecture, the aggregated
sub-dictionary 𝑫𝑆𝑘

is passed between the different layers instead of the
support 𝑆𝑘. The inputs of each layer are: a signal 𝒙 ∈ R𝑛, a global
dictionary 𝑫 ∈ R𝑛×𝑚, the aggregated sub-dictionary from previous
layer 𝑫 ∈ R𝑛×(𝑘−1), and �̂� ∈ R𝑛 which is the restored signal
𝑆𝑘−1 𝑘−1

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.
Fig. 1. LISTA general architectures.
using the atoms of 𝑫𝑆𝑘−1
. The LGM layer starts by identifying and

adding the most correlated atom with the current residual to the
support, by composing the 𝑀𝑃𝑇 and 𝐴𝑡𝑜𝑆 units. Then, by using the
updated support atoms 𝑫𝑆𝑘

, the representation under these atoms �̂�𝑆𝑘
is computed by solving the corresponding LS problem. Finally, the
restored signal �̂�𝑘 = 𝑫𝑆𝑘

�̂�𝑆𝑘
is calculated. Note that the LS solver

(�̂�𝑆𝑘
=

(

𝑫𝑇
𝑆𝑘
𝑫𝑆𝑘

)−1
𝑫𝑇

𝑆𝑘
𝒙) is a part of LGM layer’s computational

graph, and throughout back-propagation, the derivatives of the inverse
matrix are computed as in [48].

Describing LGM layer as a computational graph is essential in order
to build the LGM network (which we are going to introduce next)
as a computational graph, and thus it can be trained through back-
propagation. However, in the evaluation part, where we just want
to apply the model without calculating the derivatives, the model
inference can be accelerated by immediately selecting 𝒅𝑖0 as 𝑖0 column
in 𝑫 (as in the original OMP algorithm), thus the matrix multiplication
operation in 𝐴𝑡𝑜𝑆 is spared.

The LGM network is defined in an iterative manner in Algorithm
3. In our architecture, the number of LGM layers used in the network
changes w.r.t. each input, akin to the OMP algorithm. Specifically, we
incorporate a sparsity constraint in our network, i.e. maximum number
of non-zeros (and thus layers), denoted by 𝑠, and a residual threshold 𝜖
4

Algorithm 2: LGM Layer Inference
Function LGMLayer(𝒙 ∈ R𝑛, 𝑫 ∈ R𝑛×𝑚, 𝑫𝑆𝑘−1

∈ R𝑛×(𝑘−1),
�̂�𝑘−1 ∈ R𝑛):

𝒓𝑘−1 = 𝒙 − �̂�𝑘−1
𝒖 = 𝑾 𝑫𝑫𝑇 𝒓𝑘−1
𝒅𝑖0 = AtoS (𝑫,MPT (𝒖))
𝑫𝑆𝑘

=
[

𝑫𝑆𝑘−1
, 𝒅𝑖0

]

�̂�𝑆𝑘
=
(

𝑫𝑇
𝑆𝑘
𝑫𝑆𝑘

)−1
𝑫𝑇

𝑆𝑘
𝒙

�̂�𝑘 = 𝑫𝑆𝑘
�̂�𝑆𝑘

return {𝑫𝑆𝑘
, �̂�𝑘}

constraint. The parameters of this network are Θ = (𝑫, 𝑠, 𝜖), where 𝑫 is
learned through back-propagation, and (𝑠, 𝜖) are specified in advance,
or manually tuned in case they are not known. However, since 𝑫 is
learned, its atoms are not guaranteed to be normalized; thus 𝑫𝑇 𝒓𝑘−1 is
multiplied by 𝑾 𝑫 = 𝑑𝑖𝑎𝑔−1

(

‖

‖

𝒅1
‖

‖2 , ‖‖𝒅2
‖

‖2 ,… , ‖
‖

𝒅𝑚
‖

‖2
)

(see Algorithm
2).

In many tasks, such as denoising, it is preferred to learn a different
dictionary for the operation �̂�𝑘 = 𝑫𝑆𝑘

�̂�𝑆𝑘
in the last layer of LGM

— this is the 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦. Achieving this requires to slightly
change the proposed architecture, and instead of having one dictionary,
the network contains two, one as the regular 𝑫 and one as the synthesis

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.
Fig. 2. LGM layer.
dictionary 𝑫2. More precisely, two sub-dictionaries are passed between
the different LGM layers, one is a sub-dictionary of 𝑫 and the other is
a corresponding sub-dictionary of 𝑫2. In each layer, and after selecting
𝒅𝑖0 , the atom with the same index (𝑖0) is also selected from 𝑫2 in a
similar manner by 𝐴𝑡𝑜𝑆

(

𝑫2,𝑀𝑃𝑇 (𝒖)
)

. Then, this atom is added to 𝑫2
sub-dictionary. Finally, the restored signal is synthesized using the sub-
dictionary of 𝑫2 in the last layer. 𝑫 and 𝑫2 are initialized equally and
learned through back-propagation. From here after, when we reference
LGM, it implies two dictionaries unless said otherwise.

Algorithm 3: LGM Network Inference
Input: 𝒙 ∈ R𝑛

Output: �̂� ∈ R𝑛

Init 𝑫𝑆0
= [] ∈ R𝑛×0, �̂�0 = 𝒙

for 𝑘 = 1, 2, ..., 𝑠 do
{𝑫𝑆𝑘

, �̂�𝑘} = LGMLayer(𝒙, 𝑫, 𝑫𝑆𝑘−1
, �̂�𝑘−1)

𝒓𝑘 = 𝒙 − �̂�𝑘
if ‖

‖

𝒓𝑘‖‖2 ≤ 𝜖 then
break

endif
endfor
�̂� = �̂�𝑘

4. LGM variations

In this section we present several LGM variants by unfolding Match-
ing Pursuit (MP) [49], Subspace Pursuit (SP) [50] and Rand-OMP [39]
greedy methods. We also revisit the Batch-OMP [51] algorithm, which
accelerates the inference run-time performance of LGM. In addition,
we consider the Convolutional Sparse Coding (CSC) model 4.5, and
propose a LGM method suited for it, being an unfolded version of the
Global Convolutional Matching Pursuit (GCMP) [52]. Table 1 briefly
summarizes the key differences between these LGM variants, Batch-
OMP is not included since it is not a separate LGM variant but rather
an acceleration technique. We note, however, that we do not provide
experimental results for these algorithms, as our focus remains the plain
LGM method.

4.1. Learned-MP: Matching pursuit based LGM

The MP algorithm [49] is a simplified greedy method that seeks to
solve the (𝑃) problem. MP is very similar to the OMP, but replaced
5

0,𝜖
the Least-Squares update of the coefficients by a simpler computation.
After finding the most correlated atom with the current residual 𝒓,
MP adds its correlation’s coefficient to the corresponding entry in
the representation vector. Since we assume no normalized atoms, the
coefficient update should take this into account and use 𝒅𝑇

𝑖 𝒓∕ ‖‖𝒅𝑖
‖

‖2.
Unlike OMP, MP might choose the same atom more than one time, thus
the cardinality of �̂�𝑠 is always less or equal to the number of iterations
— which is 𝑠. For further analysis and stability guarantees of the MP
algorithm, the reader is referred to Elad [23]. MP is unfolded using the
𝑀𝑃𝑇 unit defined earlier, which given the correlation vector, its output
is a vector that contains the coefficient of the most correlated atom in
its corresponding entry and zero elsewhere. The Least-Squares step in
the OMP is omitted, simplifying the overall network. L-MP inference
is described in Algorithm 4. Similarly to the process described earlier,
this scheme can be extended to include two dictionaries, regular and
synthesis.
Algorithm 4: L-MP Network Inference

Input: 𝒙 ∈ R𝑛

Output: �̂� ∈ R𝑛

Init 𝒓0 = 𝒙 , �̂�0 = 𝟎 ∈ R𝑚

for 𝑘 = 1, 2, ..., 𝑠 do
�̂�𝑘 = �̂�𝑘−1 +𝑾 𝑫MPT

(

𝑾 𝑫
(

𝑫𝑇 𝒓𝑘−1
))

�̂�𝑘 = 𝑫�̂�𝑘
𝒓𝑘 = 𝒙 − �̂�𝑘
if ‖

‖

𝒓𝑘‖‖2 ≤ 𝜖 then
break

endif
endfor
�̂� = �̂�𝑘

4.2. Learned-SP: Subspace pursuit based LGM

The SP algorithm [50] is a more sophisticated method for solving
the (𝑃0,𝜖) problem. The sought sparsity 𝑠 must be provided in advance,
and the cardinality of its recovered representation is exactly 𝑠 (unlike
OMP/MP). SP starts by fining the 𝑠 most correlated atoms with the
signal 𝒙 and adds them to the initial support set 𝑆0. Then, the initial
residual is calculated by solving the corresponding LS problem, i.e. 𝒓0 =
𝒙−𝑫𝑆0

(

𝑫𝑇
𝑆0
𝑫𝑆0

)−1
𝑫𝑇

𝑆0
𝒙 = 𝒙−𝑫𝑆0

𝑫†
𝑆0
𝒙. Afterwards, in each iteration

the 𝑠 most correlated atoms with the residual are added to a temporarily
support set 𝑆𝑘 alongside the atoms from the previous support. Using
the 2𝑠 atoms of 𝑆 , a temporal representation �̃� is obtained by solving
𝑘 𝑘

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.

w
m
e
c
v

4

s
a
t
E
a

𝑆

N
t
r
(

Table 1
LGM variations summary.

Plain LGM (OMP) L-MP L-SP LGM MMSE L-GCMP

Prior model Sparse representation Sparse representation Sparse representation Sparse representation Convolutional Sparse Coding

Initialization Empty sub-dictionary of
chosen atoms

Zero representation
vector.

Empty sub-dictionary of
chosen atoms

Empty sub-dictionary of
chosen atoms

Zero representation vector

Target cardinality Maximum 𝑠, can change
w.r.t. each signal
according to the residual
energy

Maximum 𝑠, can change
w.r.t. each signal
according to the residual
energy

Exactly 𝑠 Maximum 𝑠𝑇 , can
change w.r.t. each signal
according to the residual
energy

Maximum local cardinality 𝑠,
can change w.r.t. each signal
according to the local
residual energy

Layer flow Adding the most
correlated atom with the
residual to the chosen
sub-dictionary, then
applying LS fitting for
calculating the
coefficients

Adding the coefficient of
the most correlated atom
with the residual to its
corresponding location in
the representation vector

Adding the 𝑠 most
correlated atoms with the
residual to the chosen
sub-dictionary, then
applying LS fitting for
calculating the coefficients.
Next, 𝑠 atoms with largest
magnitude coefficients are
extracted and LS fitting is
applied again

Randomly sampling an
atom drawn from the
residual correlation
distribution, then
applying LS fitting for
calculating the
coefficients

Adding the coefficient of the
most correlated atom with
the residual to its
corresponding location in the
representation vector, then
nullifying all atoms which
reside in its stripe. This is
done iteratively until there
remains no atoms to add

Target signals Low dimensional signals,
usually patches

Low dimensional signals,
usually patches

Mid-dimensional signals Low dimensional signals,
usually patches

High dimensional signals
the corresponding LS problem. The 𝑠 atoms that make it to the next
iteration (i.e. the 𝑆𝑘 set) are those with the 𝑠 largest magnitudes in �̃�𝑘.
Next, �̂�𝑘 is updated by solving the corresponding LS problem again.
The algorithm stops when the residual energy stops decaying. The SP
algorithm is described in Algorithm 5. For further details about SP and
its theoretical stability guarantees, the reader is referred to Dai and
Milenkovic [50].

SP is unfolded in a similar approach to what was done in order
to unfold OMP. Generally, each iteration in SP is transformed into a
layer of the proposed architecture. Analogous to the LGM architecture
presented earlier, the aggregated sub-dictionary 𝑫𝑆𝑘

is passed between
the different layers of L-SP instead of the chosen atoms support 𝑆𝑘. In
what follows, we depict the main building blocks of each layer, then
we combine them together in order to obtain the L-SP architecture.

4.2.1. Maximal-S-Projection-thresholding (MSPT) unit
The 𝑀𝑆𝑃𝑇 unit is responsible for deciding which 𝑠 atoms will

be added to the support in each layer. Given a vector 𝒖, let 𝐼 =
{

𝑖1, 𝑖2,… , 𝑖𝑠
}

denote the indices corresponding to the largest entries of
|𝒖|. The 𝑀𝑆𝑃𝑇 function is defined as

𝒀 = 𝑀𝑆𝑃𝑇 (𝒖) =
[

𝒚1, 𝒚2,… , 𝒚𝑠
]

∈ R𝑚×𝑠, (11)

where 𝒚𝑗 include zeros except for 𝑖𝑗 entry, which includes 𝒖𝑖𝑗 . In other
ords, when the input is the correlation vector 𝑫𝑇 𝒓, the output is a
atrix that contains 𝑠 columns, and each column 𝒚𝑗 contains zeros

verywhere except for index 𝑖𝑗 (which is the index of one of the 𝑠 most
orrelated atoms with the residual). The 𝑀𝑆𝑃𝑇 unit is a generalized
ersion of 𝑀𝑃𝑇 , and in the case of 𝑠 = 1, the two are the same.

.2.2. S atom selecting (SAtoS) unit
Following the previous computational step, this unit extracts the 𝑠

elected atoms. Given the output of the 𝑀𝑆𝑃𝑇 function, 𝒀 ∈ R𝑚×𝑠,
nd the dictionary 𝑫, this unit yields the 𝑠 atoms in 𝑫 corresponding
o the 𝑠 indices that contain the non-zero values in the columns of 𝒀 .
quivalently, the 𝑆𝐴𝑡𝑜𝑆 unit is defined using 𝐴𝑡𝑜𝑆 mentioned earlier
s follows:

𝐴𝑡𝑜𝑆 (𝑫, 𝒀) =
[

𝐴𝑡𝑜𝑆
(

𝑫, 𝒚1
)

, 𝐴𝑡𝑜𝑆
(

𝑫, 𝒚2
)

,… , 𝐴𝑡𝑜𝑆
(

𝑫, 𝒚𝑠
)]

. (12)

ote that the composition of the units 𝑆𝐴𝑡𝑜𝑆 and 𝑀𝑆𝑃𝑇 provides
he functionality of selecting the 𝑠 most correlated atoms with the
esidual 𝒓, i.e., if

{

𝒅1,𝒅2,… ,𝒅𝑠
}

are indeed these atoms, then 𝑆𝐴𝑡𝑜𝑆
(𝑇)) []
6

𝑫,𝑀𝑆𝑃𝑇 𝑫 𝒓 = 𝒅1,𝒅2,… ,𝒅𝑠 or a permutation of them.
Algorithm 5: Subspace Pursuit (SP) 4.2
Input : A noisy signal 𝒙 ∈ R𝑛, a dictionary 𝑫 ∈ R𝑛×𝑚, cardinality 𝑠
Output: A representation vector �̂� ∈ R𝑚, approximating the

solution of (𝑃0,𝜖)

Init 𝑆0 =
{

𝑠 indices corresponding to the largest magnitude entries of 𝑫𝑇 𝒙
}

,

�̂�0 =

⎧

⎪

⎨

⎪

⎩

(

𝑫𝑇
𝑆0
𝑫𝑆0

)−1
𝑫𝑇

𝑆0
𝒙 on support

0 off support
,

𝒓0 = 𝒙 −𝑫�̂�0

for 𝑘 = 1, 2, ... do
𝑆𝑘 = 𝑆𝑘−1 ∪
{𝑠 indices corresponding to the largest magnitude entries of
𝑫𝑇 𝒓𝑘−1

}

�̃�𝑘 =

⎧

⎪

⎨

⎪

⎩

(

𝑫𝑇
𝑆𝑘
𝑫𝑆𝑘

)−1
𝑫𝑇

𝑆𝑘
𝒙 on support

0 off support
𝑆𝑘 =
{

𝑠 indices corresponding to the largest magnitude entries of �̃�𝑘
}

�̂�𝑘 =

⎧

⎪

⎨

⎪

⎩

(

𝑫𝑇
𝑆𝑘
𝑫𝑆𝑘

)−1
𝑫𝑇

𝑆𝑘
𝒙 on support

0 off support

𝒓𝑘 = 𝒙 −𝑫�̂�𝑘
if ‖

‖

𝒓𝑘‖‖2 > ‖

‖

𝒓𝑘−1‖‖2 then
�̂� = �̂�𝑘−1
break

endif
endfor

4.2.3. Constructing the L-SP architecture
Similarly to the way the previous LGM architectures have been

constructed, now we turn to describe a single iteration of SP as a com-
putation graph. As mentioned earlier, the aggregated sub-dictionary
𝑫𝑆𝑘

is passed between the different layers instead of the support
𝑆𝑘. L-SP single layer is described in Algorithm 6, starting by finding
the 𝑠 most correlated atoms with the current residual, obtained by
composing the 𝑀𝑆𝑃𝑇 and 𝑆𝐴𝑡𝑜𝑆 units. These atoms are added to the
temporal sub-dictionary 𝑫𝑆𝑘

alongside atoms from the previous layer.
A representation under 𝑫𝑆𝑘

is calculated (�̂�𝑆𝑘
). Next, 𝑫𝑆𝑘

is calculated
̂
by finding the atoms with the 𝑠 maximum magnitudes in 𝜶𝑆𝑘

, done by

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.

p

7
l
a

o

T
T

composing 𝑀𝑆𝑃𝑇 and 𝑆𝐴𝑡𝑜𝑆 again. Using the updated support atoms
𝑫𝑆𝑘

, the representation �̂�𝑆𝑘
is updated by solving the corresponding LS

roblem. Finally, the restored signal �̂�𝑘 = 𝑫𝑆𝑘
�̂�𝑆𝑘

is obtained.
Using the L-SP layer, the L-SP architecture is described in Algorithm

. Like LGM, L-SP is also characterized by the dynamic number of
ayers that changes w.r.t. each input. The parameters of L-SP network
re 𝛩 = (𝑫, 𝑠), where 𝑫 is learned through back-propagation and 𝑠 is

specified in advance, or somehow predicted in case it is not known.
Similarly to the process described earlier, this scheme can be extended
to include two dictionaries, regular and synthesis.

Algorithm 6: L-SP Layer Inference
Function LSPLayer(𝒙 ∈ R𝑛, 𝑫 ∈ R𝑛×𝑚, 𝑫𝑆𝑘−1

∈ R𝑛×𝑠, �̂�𝑘−1 ∈ R𝑛):
𝒓𝑘−1 = 𝒙 − �̂�𝑘−1
𝒖 = 𝑾 𝑫𝑫𝑇 𝒓𝑘−1
𝑫𝑡𝑚𝑝 = AStoS (𝑫,MSPT (𝒖))
𝑫𝑆𝑘

=
[

𝑫𝑆𝑘−1
, 𝑫𝑡𝑚𝑝

]

�̂�𝑆𝑘
=
(

𝑫𝑇
𝑆𝑘
𝑫𝑆𝑘

)−1
𝑫𝑇

𝑆𝑘
𝒙

𝑫𝑆𝑘
= AStoS

(

𝑫𝑆𝑘
,MSPT

(

𝑾 −1
𝑫𝑆𝑘

�̂�𝑆𝑘

))

�̂�𝑆𝑘
=
(

𝑫𝑇
𝑆𝑘
𝑫𝑆𝑘

)−1
𝑫𝑇

𝑆𝑘
𝒙

�̂�𝑘 = 𝑫𝑆𝑘
�̂�𝑆𝑘

return {𝑫𝑆𝑘
, �̂�𝑘}

Algorithm 7: L-SP Network Inference
Input: 𝒙 ∈ R𝑛

Output: �̂� ∈ R𝑛

Init �̂�0 = 𝒙, 𝑫𝑆0
= AStoS

(

𝑫,MSPT
(

𝑾 𝑫𝑫𝑇 𝒙
))

for 𝑘 = 1, 2, ... do
{𝑫𝑆𝑘

, �̂�𝑘} = LSPLayer(𝒙, 𝑫, 𝑫𝑆𝑘−1
, �̂�𝑘−1)

𝒓𝑘 = 𝒙 − �̂�𝑘
if ‖

‖

𝒓𝑘‖‖2 > ‖

‖

𝒓𝑘−1‖‖2 then
�̂� = �̂�𝑘−1
break

endif
endfor

4.3. LGM MMSE

The Random OMP [39] algorithm is a key component in turning
a pursuit algorithm into a Minimum Mean Square Error (MMSE) esti-
mator. This algorithm operates in a similar manner to OMP except for
one critical difference, which is the way a new atom is chosen in each
iteration. As mentioned earlier, OMP chooses the atom most correlated
with the residual, whereas, Random OMP chooses the atom randomly,
drawn from a distribution 𝐴 ⋅ 𝑒𝑐

|

|

|

𝑾 𝑫𝑫𝑇 𝒓||
|, i.e. giving higher probability

to larger projection values. The MMSE estimation is obtained by an
averaging on the representation vectors from 𝑇 different Random OMP
instantiations:

�̂�𝑀𝑀𝑆𝐸 = 1
𝑇

𝑇
∑

𝑖=1
�̂�𝑖, (13)

in which
{

�̂�1, �̂�2,… , �̂�𝑇
}

are the representation vectors that have been
btained by different Random OMP runs.

We turn to describe how to unfold the Random OMP algorithm.
o do so, we need first to define the Random Maximal-Projection-
hresholding (𝑅𝑀𝑃𝑇) unit. This unit is very similar to 𝑀𝑃𝑇 defined

earlier, except for one difference, which is the way the index of the only
7

surviving entry 𝑖0 is chosen. 𝑅𝑀𝑃𝑇 chooses 𝑖0 index randomly with the
normalized correlation vector (its input) the as its Probability Density
Function (PDF), where entries with absolute values smaller than 𝜏 =
0.8 ‖𝒖‖∞ are nullified and are not taken into account. Consequently,
the Random OMP method is unfolded just like OMP except for the
use of 𝑅𝑀𝑃𝑇 unit instead of 𝑀𝑃𝑇 . LGM MMSE method is achieved
by unfolding 𝑇 instantiations of Random OMP in parallel with shared
parameters and a common input. In addition, we also add the result of
the regular LGM network (i.e. MAP estimation). Finally the output of
LGM MMSE is obtained by averaging these results.

4.4. Batch-OMP acceleration

The Batch-OMP algorithm [51] is a method to accelerate the run-
time of OMP when applied to a large batch of signals with the same
dictionary 𝑫. The main concept behind this method is to do as many
computations as possible in advance, and since we are using the same
dictionary for all the signals, these computations are shared between
all the signals in the batch. More specifically, given a batch of signals
to handle 𝑿 =

[

𝒙1,𝒙2,… ,𝒙𝑟
]

∈ R𝑛×𝑟, 𝑫𝑇𝑫 and 𝑫𝑇𝑿 are calculated
in advance, and then the sparse representations are calculated for all
of these signals using these pre-calculated matrices. Batch-OMP uses
also a variation of Cholesky decomposition in order to solve the LS
problem efficiently within the OMP. The authors of [51] have shown
that if the batch is large enough, then Batch-OMP is more efficient in
terms of run-time than the regular OMP. Thus, Batch-OMP can be used
(with the corresponding adjustments) in order to accelerate the run-
time inference of the LGM network in the evaluation part, where there
is no need to calculate the derivatives. Moreover, some techniques used
in Batch-OMP such as Cholesky decomposition can be also used in order
to accelerate the inference of the LGM network in general (including
training part).

4.5. Learned-GCMP: CSC based LGM

4.5.1. CSC model & GCMP pursuit algorithm
When dealing with high dimensional signals, applying the sparse

prior becomes challenging. More specifically, in such cases the dictio-
nary dimensions become gigantic, making it hard to store and almost
impossible to multiply with in a pursuit algorithm. A popular method
to tackle this disadvantage is to apply the sparse prior on local patches
as discussed later in Section 6. Another method is to use the CSC
model that presents a global signal model without suffering from the
disadvantages of the global sparse prior.

The CSC model is a special case of the sparse model where 𝑫 is a
concatenation of 𝑚 banded circulant matrices, where each such matrix
has a band of width 𝑛 ≪ 𝑁 , in which 𝑁 is the dimension of the signal.
As such, by a simple permutation of its columns, such a dictionary
consists of all shifted versions of a local dictionary 𝑫𝐿 of size 𝑛 × 𝑚
and contains 𝑚𝑁 global atoms, i.e. 𝑫 ∈ R𝑁×𝑚𝑁 and the corresponding
representation becomes a vector of the form 𝜶 ∈ R𝑚𝑁 . Under this
structure, each patch of size 𝑛 in the signal is affected only by the atoms
whose support overlap it. The subvector in 𝜶 that matches these atoms,
is referred to as the stripe of this patch. Since the dictionary 𝑫 consists
of all shifted versions of 𝑫𝐿, each such stripe consists of (2𝑛 − 1)𝑚
entries. Note that overlapping patches are represented by overlapping
stripes in the global sparse representation. For further information
and analysis of the CSC model, the reader is referred to Grosse et al.
[40],Plaut and Giryes [52],Papyan et al. [53].

GCMP [52] is a greedy pursuit algorithm that seeks to approximate
the global representation vector under the assumption that the signal
of interest can be modeled with the CSC model prior. This algorithm
is inspired by the observation that when dealing with the CSC model,
it is preferred to have a representation vector which is ‘‘locally sparse’’
rather than globally sparse [53]. As such, GCMP operates by initializing
a zero representation vector, and then, at each iteration, the ‘‘local

sparsity’’ in the above-mentioned stripes is increased by one.

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.

o

w
𝑀
f
c
w
a
d

f
c
t

C
t
t
e
d
i

i
v

v

m

4.5.2. Unfolding GCMP
Similarly to the process which have been done earlier, we start by

presenting the core units of the construction, and then unfolding GCMP.
Like the previous methods, 𝑫𝑇 𝒓 and 𝑫�̂� are calculated several times
throughout the deployment of GCMP or its learned version. However,
since we are dealing with high dimensional signals, calculating these
expressions directly using matrix multiplication is expensive in run-
time, and storing 𝑫 itself is also challenging. However, since 𝑫 consists
f all shifted versions of 𝑫𝐿, we can store 𝑫𝐿 instead. Moreover, calcu-

lating 𝑫𝑇 𝒓 and 𝑫�̂� can be done efficiently using convolutions operation
ith the columns of 𝑫𝐿 (or their flipped version). Analogously to the
𝑃𝑇 unit, 𝐺𝑀𝑃𝑇 unit is defined in Algorithm 8, and is responsible

or choosing which atoms are added at each iteration alongside their
oefficients. For atom number 𝑖0, 𝛺𝑖0 is the group of indices of atoms
hose support overlap atom number 𝑖0. Using the 𝐺𝑀𝑃𝑇 unit, GCMP
lgorithm is unfolded into the L-GCMP network, and its inference is
escribed in Algorithm 9.

Algorithm 8: Group-Maximal-Projection-Thresholding
Function GMPT(𝒖 ∈ R𝑚𝑁):

𝒚 = 𝟎 ∈ R𝑚𝑁

while max𝑖 ||𝑢𝑖|| > 0 do
𝑖0 = argmax𝑖 ||𝑢𝑖||
𝒚𝑖0 = 𝒖𝑖0
𝒖𝛺𝑖0

= 𝟎
endwhile

return 𝒚

Algorithm 9: L-GCMP Network Inference
Input: 𝒙 ∈ R𝑁

Output: �̂� ∈ R𝑁

Init 𝒓0 = 𝒙 , �̂�0 = 𝟎 ∈ R𝑚𝑁

for 𝑘 = 1, 2, ..., 𝑠 do
�̂�𝑘 = �̂�𝑘−1 +𝑾 𝑫GMPT

(

𝑾 𝑫𝑫𝑇 𝒓𝑘−1
)

�̂�𝑘 = 𝑫�̂�𝑘
𝒓𝑘 = 𝒙 − �̂�𝑘
if ‖

‖

𝒓𝑘‖‖2 ≤ 𝜖 then
break

endif
endfor
�̂� = �̂�𝑘

5. Synthetical experiments

In this section we describe the conducted synthetical experiments,
in which, we compare the denoising performance of the proposed
LGM network and some of its variants with LISTA. These experiments
demonstrate the superiority of the LGM based networks over LISTA,
which is known to be the state-of-the-art sparse coding oriented deep
neural network prior to this work.

Data generation: First we build the dictionary 𝑫 to be the DCT
matrix of size 100 × 400, by sampling the cosine wave in different
frequencies. Next we generate the representation vector 𝜶 ∈ R400 for
each signal, setting the cardinality to be 𝑠, and choosing the location of
these 𝑠 non-zeros in 𝜶 randomly. The absolute value of each non-zero
coefficient is distributed Uniformly in the interval (0, 1], and its sign
is also chosen randomly. After, each signal is created by multiplying
its corresponding representation with the dictionary 𝑫 (i.e. 𝑫𝜶), and
finally the signals are normalized by their 𝐿∞ norm.

Compared methods: For each noise level we compare the denois-
8

ing performance of these different methods:
• LGM: We use the LGM version in which the synthesis dictio-
nary is free from the analysis one, and both dictionaries are of
the same shape as the true dictionary. We set 𝜖 = 𝜎𝑛𝑜𝑖𝑠𝑒

√

𝑛 2

(stopping criteria coefficient) and 𝑠 = 15 (maximum number of
layers/cardinality).

• LGM Post-training MMSE: Applying LGM MMSE network with the
parameters learned by the regular LGM network as its parameters.
We set 𝑡 = 5 (number of unfolded Rand-OMP instantiations) and
𝜖, 𝑠 get the same values as LGM.

• LGM MMSE: LGM MMSE network trained from scratch. We set
𝑡 = 5 (number of unfolded Rand-OMP instantiations) and 𝜖, 𝑠 get
the same values as LGM.

• LGM True Cardinality: LGM version in which the stopping crite-
rion is the true cardinality/sparsity of the input signal, i.e. the
number of unfolded layers of LGM in each signal equals its true
sparsity.

• LISTA: We use LISTA model with 𝑇 = 7 (number of unfolded
layers). Instead of using the LISTA version explained earlier we
use the version in which the learned parameters are: 𝑾 = 1

𝑐𝑫
𝑇 ,

𝑫1 = 𝑫, 𝑫2 = 𝑫 (synthesis dictionary) and 𝜽. The reason behind
this decision is to compare LISTA’s learned dictionaries with the
true one.

• OMP True Dict & Cardinality: Applying OMP algorithm given the
true dictionary and the true cardinality of each input signal.

• OMP True Dict: Applying OMP algorithm given the true dictio-
nary, this method uses the residual energy threshold stooping
criteria (like LGM). We set 𝜖, 𝑠 as the same values as LGM.

• OMP True Dict MMSE: Applying LGM MMSE given the true
dictionary.

• Oracle: Recovering each signal given the true dictionary 𝑫 and its
true support 𝑆, i.e. the Oracle restored version of a noisy signal
𝒙 is �̂� = 𝑫𝑆

(

𝑫𝑇
𝑆𝑫𝑆

)−1 𝑫𝑇
𝑆𝒙.

Experiments process: We conduct two experiments, in the first one
we generate 10 000 training signals and 2000 test signals, both with
cardinality 10. In the second experiment we generate 10 000 signals for
each cardinality in the group {5, 6, 7, 8, 9, 10}, then we combine them
together forming the training set (60 000 signals in total). The test set
for experiment 2 is created in the same manner as in its training (12 000
signals in total). For each experiment, we sweep over the following
noise levels (standard deviation) {0.04, 0.06, 0.08, 0.1, 0.12, 0.14}, then
or each one of them we create the input–output training pairs by
ontaminating each signal by an additive white Gaussian noise with
he chosen standard deviation.

We initialize the learned models (LGM, LGM MMSE, LGM True
ardinality, LISTA) from the same random dictionary, and trained using
he input–output training pairs defined earlier, seeking to minimize
he 𝐿2 loss function. For the LGM based models, we add to the loss
xpression a regularization term of the mutual coherence of the learned
ictionaries.3 More specifically, the loss function of LGM based models
s:

=

(

∑

(𝒙,𝒙∗)∈𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

‖

‖

𝒙∗ − �̂�‖
‖

2
2

)

+ 𝜉

(

∑

𝑫∈𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠
𝜇 (𝑫)

)

, (14)

n which 𝒙 is the noisy signal, 𝒙∗ is the clean signal, �̂� is its denoised
ersion (the output of the model), and 𝜉 is set to be 5𝑒−5. All these

2 This is the square root of the expectation of 𝐿2 norm square of the noise
ector.

3 The mutual coherence of a dictionary 𝑫 ∈ R𝑛×𝑚 is defined as: 𝜇(𝑫) =
ax𝑖≠𝑗

|
𝒅𝑇
𝑖 𝒅𝑗 |

‖
𝒅𝑖‖2‖𝒅𝑗‖2

. Informally, the mutual coherence indicates the maximum
amount of ‘‘shared’’ information between two different atoms. This figure also
plays a crucial role in many of the pursuit algorithms stability guaranties, more
specifically, the smaller this figure can be, the larger the possibility of OMP
to recover the true support. For more information about the mutual coherence

the reader is referred to Elad [23].

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.
Fig. 3. Synthetic experiment 1 (true cardinality 10) testset results.
Fig. 4. Synthetic experiment 2 (true cardinality 5 − 10) testset results.
models are trained using ADAM optimizer [54] with batch size equals
50, the learning rate for LGM and LGM True Cardinality is 0.002, 0.01
for LGM MMSE and 0.00001 for LISTA.

Results: In order to have a clearer comparison, we split the com-
pared methods into two (overlapping) comparison groups, the first
one contains LGM, LGM True Cardinality, LISTA, OMP True Dict &
Cardinality, OMP True Dict and Oracle, the second one contains LGM,
LGM Post-training MMSE, LGM MMSE, LISTA, Oracle and OMP True
Dict MMSE. Fig. 3 presents the results of experiment 1 (true cardinality
10), and Fig. 4 presents the results of experiment 2 (true cardinality
5 − 10). Referring to the first group, Figs. 3aand 4a describe the MSE
performance on the testset as a function the noise level, and it is
clearly observed that LGM outperforms LISTA and has a relatively
9

close performance to OMP True Dict. Figs. 3c, 3d and 4b, 4c describe
the average cardinality of the restored testset signals, and as can be
observed, LGM restored signals are much sparser than LISTA’s ones
(which are dense) and their recovered cardinality is very close to the
true one. Referring to the second group, Fig. 3b describes the MSE
performance on the testset as a function the noise level, and the main
observation from it is that, as expected, the MMSE approach gives
a boost to the denoising performance. We did not test the MMSE
approach in the second experiment since it is not our main focus.

Fig. 5 presents the learned dictionaries distance from the true one,
and the average cardinality of the restored signals in the test set during
training on a specific noise level. The dictionary distance metric that we
use is defined in the Supplementary Materials, this metric values lie in

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.
Fig. 5. Distance from the true dictionary and average cardinality during training on a specific noise level in synthetic experiment 1 (true cardinality 10).
Fig. 6. The distribution of the restored cardinality as a function of the true cardinality
on a specific noise level in experiment 2 (true cardinality 5 − 10).

the interval [0, 1], and the smaller it gets, the closer the dictionaries are.
As observed in this figure, LGM and LGM MMSE learned dictionaries al-
most converge to the true one, while LISTA’s learned ones are far away
from it. Moreover, Fig. 6 presents the distribution of the cardinality
of the restored test set signals on a specific noise level in experiment
2. The results of these experiments clearly demonstrate the superior-
ity of the LGM method compared to LISTA when dealing with true
sparse data. These experiments alongside the following experiments are
implemented in https://github.com/RajaeeKh/LearnedGreedyMethod-
LGM.

6. LGM in image processing applications

6.1. LGM for image denoising

We move now to the image denoising problem, in which our task
is to recover a clean image 𝒙∗ ∈ R𝑁 given its noisy version 𝒙 ∈ R𝑁 ,
i.e. 𝒙 = 𝒙∗ + 𝒗, where 𝒗 ∈ R𝑁 is an additive white Gaussian noise
vector with zero mean and standard deviation 𝜎. Following [5], when
dealing with natural images, the sparse prior model can be imposed
on the image patches instead of the whole image. More specifically,
for the image denoising task, the noisy image 𝒙 is divided into fully
overlapping 𝑝 × 𝑝 patches, and then each patch undergoes a pursuit
operation in order to obtain an approximate representation �̂� under a
given dictionary 𝑫. Next, the restored patches are synthesized using
their representation, and finally the restored image is created by re-
turning each restored patch to its original location and averaging over
10
the overlaps. More formally, returning the restored patches into their
original location requires solving the following problem:

�̂� = argmin
𝒚

𝜆 ‖𝒙 − 𝒚‖22 +
∑

𝑖

‖

‖

𝑹𝑖𝒚 −𝑫�̂�𝑖
‖

‖

2
2 , (15)

where 𝑹𝑖 ∈ R𝑝2×𝑁 is a matrix that extracts the 𝑖th patch from the
image, and 𝜆 is a scalar parameter that is related to the noise level.
This problem is a quadratic problem and its closed form solution is

�̂� =

(

𝜆𝑰 +
∑

𝑖
𝑹𝑇

𝑖 𝑹𝑖

)−1 (

𝜆𝒙 +
∑

𝑖
𝑹𝑇

𝑖 𝑫�̂�𝑖

)

. (16)

Now we present an LGM based denoising end-to-end architecture along
the above lines.

6.1.1. Basic LGM denoising architecture
We start by describing the patch denoising part, and then we move

on to describe the whole end-to-end image denoising architecture.

Patch denoising: This part is an LGM network that takes a noisy patch
of size 𝑝 × 𝑝 and returns its restored version. As mentioned earlier, we
use an LGM network in which the synthesis dictionary is freed from
the analysis one, both dictionaries are initialized with DCT dictionary of
size 𝑝2×4𝑝2. Following [55], an atom of ones (up to a scalar) is added to
each dictionary for better handling of the DC in each patch, and when
calculating the correlation vector 𝒖, the entry corresponding to it is not
divided by its norm, i.e. 𝑾 𝑫 = 𝑑𝑖𝑎𝑔−1

(

‖

‖

𝒅1
‖

‖2 , ‖‖𝒅2
‖

‖2 ,… , ‖‖
‖

𝒅4𝑝2
‖

‖

‖2
, 1
)

.

Each dictionary gets a different scalar, and both are initialized equally
with value 2.5, then they are learned during the learning process.

Instead of using a hard-coded residual threshold stopping criteria
as in the original LGM architecture, we use a small fully-connected
DNN to perform this task. Recall that we use LGM net with maximum
cardinality 𝑠 (i.e. LGM net includes 𝑠 layers), and the output of layer
number 𝑖 is �̂�𝑖 which is the restored signal until that layer. Thus, given
an input signal 𝒙, we apply the LGM scheme mentioned earlier, getting
the output of all layers

{

�̂�1, �̂�2,… , �̂�𝑠
}

along with their corresponding
residuals 𝒓𝑖 = 𝒙− �̂�𝑖. These residuals are organized as the columns of a
matrix of size 𝑝2 × 𝑠, fed to the small FC-DNN mentioned earlier, and
its output 𝒑 ∈ R𝑠 is a weights vector that includes the weight of each
�̂�𝑖, such that the output signal is �̂� =

∑𝑠
𝑖=1 𝑝𝑖�̂�𝑖. In other words, this

small FC-DNN somehow models the error threshold stopping criteria
by giving a higher weight to the best residual, thus giving an attention
to it. We call this an ‘‘Attention Network’’, and it is composed of 5
layers, the first 4 are fully connected layers defined by multiplying the
input matrix with 𝑾 1 ∈ R𝑝2×𝑝2 from the right and 𝑾 2 ∈ R𝑠×𝑠 from
the left, these layers are followed by adding a bias then applying ReLU

https://github.com/RajaeeKh/LearnedGreedyMethod-LGM
https://github.com/RajaeeKh/LearnedGreedyMethod-LGM
https://github.com/RajaeeKh/LearnedGreedyMethod-LGM

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.
Fig. 7. Denoising results: Visual comparison of LGM vs. other methods with noise level 𝜎 = 25.
Fig. 8. Denoising results: Visual comparison of LGM vs. other methods with noise level 𝜎 = 25.
Fig. 9. Denoising results: Visual comparison of LGM vs. other methods with noise level 𝜎 = 25.
activation function. The last layer is defined by multiplying the input
matrix with 𝑾 ∈ R𝑝2×1 from the right and applying a Softmax function.

End-to-End denoising: The noisy image 𝒙 is broken into fully over-
lapping 𝑝 × 𝑝 patches. Each patch 𝒙𝑖 undergoes the patch denoising
scheme mentioned above, and the denoised image is reconstructed by
the following equation:

�̂� =

(

∑

𝑹𝑇
𝑖 𝑹𝑖

)−1 (
∑

𝑹𝑇
𝑖 �̂�𝑖

)

, (17)
11

𝑖 𝑖
in which �̂�𝑖 is the denoised version of patch 𝒙𝑖. The number of learned
parameters of the basic LGM denoising architecture are:

2
⏟⏟⏟

𝑡𝑤𝑜 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠

×

⎛

⎜

⎜

⎜

⎝

4𝑝4
⏟⏟⏟

𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

+ 1
⏟⏟⏟

𝐷𝐶 𝑎𝑡𝑜𝑚 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

⎞

⎟

⎟

⎟

⎠

+ 4
(

𝑝4 + 𝑠2 + 𝑠
)

+ 𝑝2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑛𝑒𝑡

= 12𝑝4 + 4
(

𝑠2 + 𝑠
)

+ 𝑝2 + 2 ≈ 12𝑝4 + 4𝑠2. (18)

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.
Fig. 10. Denoising results: Visual comparison of LGM vs. other methods with noise level 𝜎 = 25.
Fig. 11. Comparison of the learned dictionaries for noise level 𝜎 = 25.
6.1.2. Advanced LGM denoising architecture
The advanced LGM denoising network is compound of 2 basic LGM

denoising networks with 𝑝 = 8, 12 and 𝑠 = 10, 20 respectively. This
network operates in two phases, the first phase consists of feeding the
noisy images to each one of the basic LGM denoisers independently,
and in the second phase the 2 denoised images are combined together
by using a smart averaging deep neural network. More specifically, in
order to get the value of pixel (𝑖, 𝑗) at the final image, patches with
size 5 × 5 at center (𝑖, 𝑗) are extracted from the 2 denoised images and
organized in a 2 × 5 × 5 tensor, then it is flattened into 1d vector and
fed to a small fully-connected deep neural network, the output of which
is a scalar value of the output pixel. In addition, the denoised images
(i.e. output of the first phase) are reflection padded in order to get final
denoised image with the same size. The averaging network includes 3
fully connected layers with biases, each followed by a ReLU activation
function. The size of these layers is 50 × 50, and the size of the final
layer is 50 × 1 (without bias). The network also has two weighted skip
connections, one from input to middle (size 50 × 50), and one from
input to output (size 50 × 1). The number of learned parameters of
this network is:
∑

𝑝∈{8,12}

(

12𝑝4 + 4𝑠2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑏𝑎𝑠𝑖𝑐 𝐿𝐺𝑀 𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑟𝑠

+4
(

502
)

+ 5 (50)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑎𝑣𝑒𝑟𝑎𝑔𝑖𝑛𝑔 𝐷𝑁𝑁

= 310, 234. (19)

6.2. LGM for image deraining

Image deraining is the process of removing rain streaks from an im-
age. The widely used rain model [31,56,57] assumes that the captured
rainy image 𝒙 ∈ R𝑁 is expressed as 𝒙 = 𝒙∗ + �̃�, in which 𝒙∗ ∈ R𝑁 is
12
the clean image and �̃� ∈ R𝑁 is the rain streaks component. The main
observation in which the LGM deraining scheme built-on is that the
rain streaks component which we aim to remove is a structured noise,
thus it can represented using the sparse prior as well. Similarly to the
LGM image denoising architecture mentioned earlier, this scheme also
operates locally on all overlapping 𝑝×𝑝 sized patches. Since this scheme
is applied on RGB images, we initialize both dictionaries with the same
random dictionary of size 3𝑝2 × 9𝑝2. As before, a ones atom is added to
the dictionary, and since we are dealing with RGB images, each channel
is multiplied by a different scalar, and each scalar is initialized to be
2.5.

As mentioned earlier, our goal is to express the rain streaks com-
ponent using the sparse prior, thus we aim to split the dictionary
atoms into two groups, one responsible for the image content and the
other responsible for the rain streaks component. We operate in a fully
supervised mode of work in which we have clean images and rain
steaks images. Our algorithm is posed as a network that operates on
a combination of an image and rain, and the output is matched to
the clean image and the rain streaks image. We leverage almost the
same architecture as used in the denoising, with one main difference -
a separator of the atoms to the two contents. In order to achieve this
separation, a vector 𝜽 ∈ R9𝑝2 is added to the learned parameters, and
𝑓 (𝜽) ∈ [0, 1]9𝑝

2 is a coefficients vectors that describes the image content
percentage of each atom. 𝑓 is an element-wise function defined as
𝑓 (𝜃) = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (0, 𝜃) , 1), and all elements of 𝜽 are initialized randomly
in the interval [0, 1]. Consequently, the proposed LGM deraining scheme
operates by unfolding the LGM network for each patch independently
until the residual energy is almost zero. Then, given the representation
at the final layer �̂�𝑆𝑘

for patch number 𝑖 (𝑘 is the last layer), the content
part is obtained by �̂�𝑐 = 𝑫

(

�̂� ⋅ 𝑓
(

𝜽
))

and the rain streaks part
𝑖 𝑆𝑘 𝑆𝑘 𝑆𝑘

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.
Fig. 12. Restored patches cardinality histogram on a specific image.
Fig. 13. KSVD restored cardinality as a function of LGM effective cardinality of the
same patch on a specific image.

is obtained by �̂�𝑠𝑖 = 𝑫𝑆𝑘

(

�̂�𝑆𝑘
⋅
(

𝟏 − 𝑓
(

𝜽𝑆𝑘

)))

, in which ⋅ is element
wise multiplication and 𝜽𝑆𝑘

is a sub vector of 𝜽 at the corresponding
indices. Next, the image content part �̂�𝑐 is created by averaging the
content part of each patch like (17), and the same applies for the rain
streaks part �̂�𝑠. Hopefully, during the training procedure, most of the
element in 𝑓 (𝜽) converge to either 0 or 1, thus getting the desired
separation between content and rain atoms.

The above process leads to two versions of the derained image �̂�𝑐

and 𝒙 − �̂�𝑠. We obtain the final derained image by combining these
two using a smart averaging deep neural network like before. More
specifically, in order to get the value of pixel (𝑖, 𝑗) at the final image,
patches with size 5 × 5 at center (𝑖, 𝑗) are extracted from these three
images and organized in a 9 × 5 × 5 tensor, this tensor is flattened into
1d vector and fed to a small fully-connected deep neural network, the
output of which is a 3 dimensional vector which represents the RGB
components of the output pixel. In addition, the images (�̂�𝑐 , 𝒙− �̂�𝑠 and
𝒙) are padded in order to get final denoised image with the same size.
The averaging network includes 4 fully connected layers with biases,
each followed by a ReLU activation function. The size of these layers
are (from left to right): 225 × 50, 50 × 50, 50 × 25 and 25 × 25. The
output of these layers is added to a weighted skip connection layer
from the input, and its size is 225 × 25. Then, this temporally result
is followed by a 25 × 3 final layer, obtaining the final derained image
�̂�.
13
7. Image processing applications — results

7.1. Denoising

Earlier, we proposed two versions of LGM image denoisers (basic
and advanced), and for the basic LGM we set 𝑝 = 8 and 𝑠 = 10. In order
to train each one of these models we prepare a training set of clean
and noisy image pairs. The training set for basic LGM is the BSD432
dataset [58], whereas the Waterloo Exploration dataset [59] is com-
bined with BSD432 for the advanced scheme. The inputs are created by
adding an additive white Gaussian noise with standard deviation 𝜎 to
the clean images (sampled at each epoch), then we randomly crop the
clean and noisy images at the same location, and finally we subtract the
mean of the noisy crop from both of them, this way creating the input–
output pairs. Crop size for basic LGM is 100 × 100 and 56 × 56 for
the advanced one. For each noise level, LGM models are initialized as
explained earlier, and then trained using ADAM optimizer with batch
size of 8 and learning rate of 0.002. The learning rate is multiplied
by a factor of 0.5 every 20 epochs when training the advanced LGM.
Moreover, the loss function we seek to minimize during the training
process is the 𝑙𝑜𝑔 𝑙2 loss function, augmented by the mutual coherence
𝜇 of the learned dictionaries as a regularization term to the training
loss. Thus, the final training loss is defined as follows:

 = 𝑙𝑜𝑔

(

∑

(𝒙,𝒙∗)∈𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

‖

‖

𝒙∗ − �̂�‖
‖

2
2

)

+ 𝜉

(

∑

𝑫∈𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠
𝜇 (𝑫)

)

,

(20)

in which 𝒙∗ is the clean image crop and �̂� is its denoised version (the
output of the model). 𝜉 is a parameter which we set it to be 1𝑒−5.

Table 2a presents basic and advanced LGM denoising results on
Set12 dataset alongside other known methods, Table 2b presents de-
noising results on BSD68 dataset , Figs. 7, 8, 9 and 10 present visual
comparison of the denoised images. Deep-KSVD1, Deep-KSVD2 and
DeepKSVD3 are LKSVD1,8,256, LKSVD3,8,256 and LKSVD2,16,1024 respec-
tively, as denoted in Scetbon et al. [17]. Note that the better results
in Scetbon et al. [17] assume a repetition of the denoising in several
steps, imitating the EPLL, while our scheme does not use this option.

As can be seen from these two tables, our advanced scheme is much
better than the original KSVD method, and comparable in performance
with the better Deep-KSVD results [17]. Recall that the main difference
between these two schemes is the pursuit applied — LISTA (relaxation)
versus LGM (greedy). We believe that the similarity in performance is
due to the MMSE flavor of our training approach, which weakens the
natural benefits of the greedy alternative in the denoising application.

Fig. 11 presents the learned dictionaries of the basic LGM and
the universal KSVD (the version with global dictionary) referring to
the same noise level. As can be noticed, LGM analysis and synthesis

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.
Fig. 14. Visual example of LGM different stages.
Fig. 15. LGM deraining 𝑓 (𝜽) histogram.

dictionaries are very similar, and they are more edge-friendly than the
KSVD’s one. A similar figure in [17] exposes the fact that our learned
dictionaries are very different form the ones LISTA leads to.

Fig. 12 presents the histograms of LGM and KSVD restored patches
cardinality on the same image. The true cardinality of the restored
patches of Basic LGM is always 𝑠, but since the attention net learns
the stopping criterion, the effective cardinality of each patch can be
calculated by a weighted averaging of the attention weights, ∑𝑠

𝑖=1 𝑖𝑝𝑖,
and these are the values presented in Fig. 12a. In the same spirit, Fig. 13
presents the representation’s cardinality for each patch in the original
KSVD versus the cardinality obtained by our Basic LGM representation.
As can be seen, there is a rough match between the two, but it is not
a perfect alignment. It appears that the LGM scheme tends to a deeper
sparsity when compared to the original KSVD, something that could be
explained by the better tuned dictionary we have. Again, we refer the
reader to similar graphs in [17], where the behavior is totally different,
with representations that are not sparse at all.

7.2. Deraining

We move on to the image deraining task. We set 𝑝 = 8 and 𝑠 = 20
for the LGM deraining scheme presented earlier. The training set is
14
composed of 200 clean and rainy image pairs. For each clean image,
its rainy version is created by adding synthesized rain streaks to it. For
further details about the training set, the reader is referred to Yang et al.
[60]. During the training procedure, the model’s inputs are created by
randomly cropping both the clean and the rainy images at the same
location, and since we are working with RGB images, the crop size is set
to be 52 × 52. The model is trained using ADAM optimizer with batch
size of 8 and learning rate of 0.002, and the learning rate is multiplied
by a factor of 0.5 every 400 epochs. Moreover, the loss function which
we seek to minimize is:

 = 𝑙𝑜𝑔

(

∑

(𝒙,𝒙∗)∈𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

‖

‖

𝒙∗ − �̂�‖
‖

2
2 + 0.01 ‖

‖

𝒙∗ − �̂�𝑐‖
‖

2
2

+ ‖

‖

‖

𝒙∗ −
(

𝒙 − �̂�𝑠
)

‖

‖

‖

2

2

)

+ 𝜉

(

∑

𝑫∈𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠
𝜇 (𝑫)

)

, (21)

in which 𝒙∗ is the clean image crop, �̂�𝑐 , �̂�𝑠 and �̂� are the restored
content image, restored rain streaks and derained version respectively.
The reason behind the small coefficient for the context term in the loss
function is because this yields better results than an equally weighted
loss function. 𝜉 is a parameter which we set it to be 1𝑒−2.

We use two test sets — Rain12 [57] and Rain100L [60] in order
to evaluate the proposed model and compare it with other methods.
The results are given in Table 3a and b. We report two result versions
of our proposed LGM model, the first calculates the error in the RGB
domain, while in the second the metric is calculated after transforming
the image into the luma component in the YCbCr domain. The second
metric (luma component) is the metric used by Yang et al. [60] and
Ren et al. [61], and we calculated it on our model’s output using
the software provided by Ren et al. [61]. As can be noticed, our
approach outperforms the classical methods and some of the deep
learning approaches. Fig. 14 includes a visual example of the LGM
deraining scheme applied on an image from Rain100, where the differ-
ence between �̂�𝑐 , 𝒙− �̂�𝑠 and 𝒙 can be noticed. Moreover, the histogram
of 𝑓 (𝜽) (which describes the image content percentage of each atom) is
attached in Fig. 15. As can be seen, most of the coefficient’s values are
larger than 0.8 or less than 0.2, indicating that the desired separation
is achieved. Fig. 16 presents the learned dictionaries by LGM and the
corresponding content-rain atoms separation. We also test the model on

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.
Fig. 16. LGM learned dictionaries, the color around each atom represents the value of its 𝑓 (𝜃), in which black and white corresponds to 0 (rain) and 1 (content) respectively.
Each value between 0 and 1 gets its corresponding gray-scale intensity.
Fig. 17. Visual comparison of real rainy images deraining.
real images and the results are presented in Fig. 17. As can be noticed
in this figure, LGM performance on real rainy images is very similar to
Jorder [60] and somewhat better.

8. Conclusions

In this work we introduced a technique of unfolding greedy sparse
pursuit algorithms into a deep neural network. Our main goal is to
15
tackle the problem of interpretability which deep learning field still
suffers from until now. Continuously to the series of works in which
classical algorithms are unfolded to deep neural networks, this work
introduces an architecture with well justified features, such as dynamic
number of layers and an activation function with greedy nature. To
our knowledge, this is the first kind of work that gives a clear justifi-
cation to such features. Also, this opens the door for further works in
which classical methods with combinatorial nature turns into a Neural

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.

c
f
d
d

Table 2
Denoising results (PSNR).

(a) Set 12 (b) BSD68

𝜎 15 25 50 𝜎 15 25 50

𝐾𝑆𝑉 𝐷 31.95 29.41 25.78 𝐾𝑆𝑉 𝐷 30.91 28.32 25.03
𝐵𝑀3𝐷 32.37 29.97 26.72 𝐵𝑀3𝐷 31.07 28.57 25.62
𝑊𝑁𝑁𝑀 32.70 30.26 27.05 𝑊𝑁𝑁𝑀 31.37 28.83 25.87
𝑇𝑁𝑅𝐷 32.50 30.06 26.81 𝑇𝑁𝑅𝐷 31.42 28.92 25.97
𝐷𝑒𝑒𝑝 −𝐾𝑆𝑉 𝐷1 – 29.76 – 𝐷𝑒𝑒𝑝 −𝐾𝑆𝑉 𝐷1 – 28.76 –
𝐷𝑒𝑒𝑝 −𝐾𝑆𝑉 𝐷2 32.53 30.12 26.91 𝐷𝑒𝑒𝑝 −𝐾𝑆𝑉 𝐷2 31.48 28.96 25.97
𝐷𝑒𝑒𝑝 −𝐾𝑆𝑉 𝐷3 32.61 30.22 27.04 𝐷𝑒𝑒𝑝 −𝐾𝑆𝑉 𝐷3 31.54 29.07 26.13
𝐷𝑛𝐶𝑁𝑁 33.16 30.80 27.18 𝐷𝑛𝐶𝑁𝑁 31.73 29.23 26.23

𝐵𝑎𝑠𝑖𝑐𝐿𝐺𝑀(𝑜𝑢𝑟𝑠) 32.33 29.83 26.37 𝐵𝑎𝑠𝑖𝑐𝐿𝐺𝑀(𝑜𝑢𝑟𝑠) 31.30 28.76 25.67
𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝐿𝐺𝑀(𝑜𝑢𝑟𝑠) 32.57 30.14 26.78 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝐿𝐺𝑀(𝑜𝑢𝑟𝑠) 31.47 28.96 25.94
Table 3
Deraining results (PSNR/SSIM).

(a) Rain 12 (b) Rain 100L

𝐿𝑃 [57] - results reported in [60] 32.02/0.91 𝐿𝑃 [57] - results reported in [60] 29.11/0.88
𝐷𝐷𝑁 [62] - results reported in [61] 31.78/0.90 𝐷𝐷𝑁 [62] - results reported in [61] 32.16/0.94
𝐷𝑆𝐶 [31] - results reported in [60] 30.02/0.87 𝐷𝑆𝐶 [31] - results reported in [60] 24.16/0.87
𝐽𝑂𝑅𝐷𝐸𝑅 [60] 36.02/0.96 𝐽𝑂𝑅𝐷𝐸𝑅 [60] 36.112/0.97
𝐽𝑂𝑅𝐷𝐸𝑅 - results reported in [61] 33.92/0.95 𝐽𝑂𝑅𝐷𝐸𝑅 - results reported in [61] 36.61/0.97
𝑃𝐸𝑒𝑁𝑒𝑡 [61] 36.69/0.96 𝑃𝐸𝑒𝑁𝑒𝑡 [61] 37.10/0.98

𝐿𝐺𝑀(𝑜𝑢𝑟𝑠) 34.11/0.94 𝐿𝐺𝑀(𝑜𝑢𝑟𝑠) 32.65/0.95
𝐿𝐺𝑀(𝑜𝑢𝑟𝑠) - using metric in [61] 35.46/0.95 𝐿𝐺𝑀(𝑜𝑢𝑟𝑠) - using metric in [61] 34.07/0.96
Network, especially in fields such as Computer Vision, Classification,
NLP and more. Moreover, we hope to see future works in which LGM
is deployed in order to solve problems such as deblurring, super-
resolution and compression. However, the obtained LGM performance
in both denoising and deraining does not compete with the state-of-the-
art methods, which gives the rise to the question, whether it is time to
wonder that sparse model for natural images is outdated?.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was partially supported by the Israel Science Foun-
dation (ISF) under Grant 335/18 and the Technion Hiroshi Fujiwara
Cyber Security Research Center and the Israel Cyber Bureau.

Appendix. Supplementary materials

Dictionary distance metric

The dictionary distance metric that is used throughout this paper is
described in algorithm 10. Given the true dictionary 𝑫𝑡𝑟𝑢𝑒 and a learned
dictionary 𝑫𝑎𝑝𝑝𝑟𝑜𝑥 (both in their normalized versions), the distance is
alculated by sweeping over all the atoms in 𝑫𝑡𝑟𝑢𝑒 and for each we
ind the ‘‘closest’’ atom from 𝑫𝑎𝑝𝑝𝑟𝑜𝑥 and evaluate its corresponding
istance from it. Finally, the metric value is obtained by averaging these
istances.
16
Algorithm 10: Dictionary Distance Metric
Function
DictionaryDist(𝑫𝑡𝑟𝑢𝑒 =

[

𝒅𝑡𝑟𝑢𝑒
1 ,𝒅𝑡𝑟𝑢𝑒

2 ,… ,𝒅𝑡𝑟𝑢𝑒
𝑚1

]

∈ R𝑛×𝑚1 ,

𝑫𝑎𝑝𝑝𝑟𝑜𝑥 =
[

𝒅𝑎𝑝𝑝𝑟𝑜𝑥
1 ,𝒅𝑎𝑝𝑝𝑟𝑜𝑥

2 ,… ,𝒅𝑎𝑝𝑝𝑟𝑜𝑥
𝑚2

]

∈ R𝑛×𝑚2):

𝑑𝑖𝑠𝑡 = 0
for 𝑖 = 1, 2, ..., 𝑚1 do

𝑑𝑖𝑠𝑡+ = min
(

1 − |

|

|

𝑫𝑇
𝑎𝑝𝑝𝑟𝑜𝑥𝒅

𝑡𝑟𝑢𝑒
𝑖

|

|

|

)

end
𝑑𝑖𝑠𝑡∕ = 𝑚1
return 𝑑𝑖𝑠𝑡

References

[1] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a Gaussian denoiser:
Residual learning of deep CNN for image denoising, IEEE Trans. Image Process.
26 (7) (2017) 3142–3155.

[2] K. Zhang, W. Zuo, L. Zhang, Ffdnet: Toward a fast and flexible solution
for CNN-based image denoising, IEEE Trans. Image Process. 27 (9) (2018)
4608–4622.

[3] S. Nah, T.H. Kim, K.M. Lee, Deep multi-scale convolutional neural network
for dynamic scene deblurring, in: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 257–265, http://dx.doi.org/10.1109/
CVPR.2017.35.

[4] C. Dong, C. Loy, K. He, X. Tang, Image super-resolution using deep convolutional
networks, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2) (2016) 295–307, http:
//dx.doi.org/10.1109/TPAMI.2015.2439281.

[5] M. Elad, M. Aharon, Image denoising via sparse and redundant representations
over learned dictionaries, IEEE Trans. Image Process. 15 (12) (2006) 3736–3745,
http://dx.doi.org/10.1109/TIP.2006.881969.

[6] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising with block-
matching and 3D filtering, in: Image Processing: Algorithms and Systems, Neural
Networks, and Machine Learning, Vol. 6064, 2006, 606414.

[7] S. Gu, L. Zhang, W. Zuo, X. Feng, Weighted nuclear norm minimization
with application to image denoising, in: 2014 IEEE Conference on Computer
Vision and Pattern Recognition, 2014, pp. 2862–2869, http://dx.doi.org/10.
1109/CVPR.2014.366.

[8] D. Zoran, Y. Weiss, From learning models of natural image patches to whole
image restoration, in: 2011 International Conference on Computer Vision, 2011,
pp. 479–486, http://dx.doi.org/10.1109/ICCV.2011.6126278.

[9] Y. Romano, M. Elad, P. Milanfar, The little engine that could: Regularization by
denoising (RED), SIAM J. Imaging Sci. 10 (4) (2017) 1804–1844.

http://refhub.elsevier.com/S1047-3203(21)00056-0/sb1
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb1
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb1
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb1
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb1
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb2
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb2
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb2
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb2
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb2
http://dx.doi.org/10.1109/CVPR.2017.35
http://dx.doi.org/10.1109/CVPR.2017.35
http://dx.doi.org/10.1109/CVPR.2017.35
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1109/TIP.2006.881969
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb6
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb6
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb6
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb6
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb6
http://dx.doi.org/10.1109/CVPR.2014.366
http://dx.doi.org/10.1109/CVPR.2014.366
http://dx.doi.org/10.1109/CVPR.2014.366
http://dx.doi.org/10.1109/ICCV.2011.6126278
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb9
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb9
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb9

Journal of Visual Communication and Image Representation 77 (2021) 103095R. Khatib et al.
[10] W. Dong, G. Shi, X. Li, Nonlocal image restoration with bilateral variance
estimation: A low-rank approach, IEEE Trans. Image Process. 22 (2) (2013)
700–711, http://dx.doi.org/10.1109/TIP.2012.2221729.

[11] M. Aharon, M. Elad, A. Bruckstein, K-svd: An algorithm for designing overcom-
plete dictionaries for sparse representation, IEEE Trans. Signal Process. 54 (11)
(2006) 4311–4322, http://dx.doi.org/10.1109/TSP.2006.881199.

[12] J. Zhang, D. Zhao, W. Gao, Group-based sparse representation for image
restoration, IEEE Trans. Image Process. 23 (8) (2014) 3336–3351, http://dx.
doi.org/10.1109/TIP.2014.2323127.

[13] M. Niknejad, H. Rabbani, M. Babaie-Zadeh, Image restoration using Gaussian
mixture models with spatially constrained patch clustering, IEEE Trans. Im-
age Process. 24 (11) (2015) 3624–3636, http://dx.doi.org/10.1109/TIP.2015.
2447836.

[14] V. Monga, Y. Li, Y.C. Eldar, Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing, 2019, arXiv preprint arXiv:1912.10557.

[15] Y. Li, M. Tofighi, J. Geng, V. Monga, Y.C. Eldar, Efficient and interpretable deep
blind image deblurring via algorithm unrolling, IEEE Trans. Comput. Imaging 6
(2020) 666–681, http://dx.doi.org/10.1109/TCI.2020.2964202.

[16] D. Simon, M. Elad, Rethinking the CSC model for natural images, in: Advances
in Neural Information Processing Systems, 2019, pp. 2274–2284.

[17] M. Scetbon, M. Elad, P. Milanfar, Deep k-svd denoising, 2019, arXiv preprint
arXiv:1909.13164.

[18] G. Vaksman, M. Elad, P. Milanfar, LIDIA: Lightweight learned image denoising
with instance adaptation, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2020, pp. 524–525.

[19] B. Lecouat, J. Ponce, J. Mairal, Revisiting non local sparse models for image
restoration, 2019, arXiv preprint arXiv:1912.02456.

[20] K. Gregor, Y. LeCun, Learning fast approximations of sparse coding, in: Pro-
ceedings of the 27th International Conference on International Conference on
Machine Learning, 2010, pp. 399–406.

[21] H. Sreter, R. Giryes, Learned convolutional sparse coding, in: 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2018, pp. 2191–2195, http://dx.doi.org/10.1109/ICASSP.2018.8462313.

[22] I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math.
J. Issued Courant Inst. Math. Sci. 57 (11) (2004) 1413–1457.

[23] M. Elad, Sparse and Redundant Representations: From Theory to Applica-
tions in Signal and Image Processing, first ed., Springer Publishing Company,
Incorporated, 2010.

[24] W. Dong, L. Zhang, G. Shi, X. Wu, Image deblurring and super-resolution
by adaptive sparse domain selection and adaptive regularization, IEEE Trans.
Image Process. 20 (7) (2011) 1838–1857, http://dx.doi.org/10.1109/TIP.2011.
2108306.

[25] R. Giryes, M. Elad, Sparsity based poisson inpainting, in: 2014 IEEE International
Conference on Image Processing (ICIP), 2014, pp. 2839–2843, http://dx.doi.org/
10.1109/ICIP.2014.7025574.

[26] J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration,
IEEE Trans. Image Process. 17 (1) (2008) 53–69, http://dx.doi.org/10.1109/TIP.
2007.911828.

[27] B. Huang, H. Song, H. Cui, J. Peng, Z. Xu, Spatial and spectral image fusion
using sparse matrix factorization, IEEE Trans. Geosci. Remote Sens. 52 (3) (2014)
1693–1704, http://dx.doi.org/10.1109/TGRS.2013.2253612.

[28] J. Yang, J. Wright, T. Huang, Y. Ma, Image super-resolution via sparse repre-
sentation, IEEE Trans. Image Process. 19 (11) (2010) 2861–2873, http://dx.doi.
org/10.1109/TIP.2010.2050625.

[29] M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, Compressed sensing MRI, IEEE
Signal Process. Mag. 25 (2) (2008) 72–82, http://dx.doi.org/10.1109/MSP.2007.
914728.

[30] L. Pfister, Y. Bresler, Tomographic reconstruction with adaptive sparsifying
transforms, in: 2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2014, pp. 6914–6918, http://dx.doi.org/10.1109/
ICASSP.2014.6854940.

[31] Y. Luo, Y. Xu, H. Ji, Removing rain from a single image via discriminative sparse
coding, in: 2015 IEEE International Conference on Computer Vision (ICCV),
2015, pp. 3397–3405.

[32] I. Horev, O. Bryt, R. Rubinstein, Adaptive image compression using sparse
dictionaries, in: 2012 19th International Conference on Systems, Signals and
Image Processing (IWSSIP), 2012, pp. 592–595.

[33] N. Zhou, H. Jiang, L. Gong, X. Xie, Double-image compression and encryption
algorithm based on co-sparse representation and random pixel exchanging, Opt.
Lasers Eng. 110 (2018) 72–79.

[34] J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse
coding for image classification, in: 2009 IEEE Conference on Computer Vision
and Pattern Recognition, 2009, pp. 1794–1801.

[35] J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition
via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2) (2009)
210–227.
17
[36] J. Yang, D. Chu, L. Zhang, Y. Xu, J. Yang, Sparse representation classifier
steered discriminative projection with applications to face recognition, IEEE
Trans. Neural Netw. Learn. Syst. 24 (7) (2013) 1023–1035.

[37] B. Natarajan, Sparse approximate solutions to linear systems, SIAM J. Comput.
24 (2) (1995) 227–234.

[38] Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, Orthogonal matching pursuit: re-
cursive function approximation with applications to wavelet decomposition, in:
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers,
Vol. 1, 1993, pp. 40–44, http://dx.doi.org/10.1109/ACSSC.1993.342465.

[39] I. Yavneh, M. Elad, Mmse approximation for denoising using several sparse
representations, in: 4th World Conf of the IASC, 2008.

[40] R. Grosse, R. Raina, H. Kwong, A. Ng, Shift-invariant sparse coding for audio
classification, Cortex 9 (2012).

[41] D.L. Donoho, M. Elad, V.N. Temlyakov, Stable recovery of sparse overcomplete
representations in the presence of noise, IEEE Trans. Inform. Theory 52 (1)
(2006) 6–18.

[42] J.A. Tropp, Just relax: convex programming methods for identifying sparse
signals in noise, IEEE Trans. Inform. Theory 52 (3) (2006) 1030–1051.

[43] Z. Ben-Haim, Y.C. Eldar, M. Elad, Coherence-based performance guarantees for
estimating a sparse vector under random noise, IEEE Trans. Signal Process. 58
(10) (2010) 5030–5043.

[44] X. Chen, J. Liu, Z. Wang, W. Yin, Theoretical linear convergence of unfolded
ista and its practical weights and thresholds, in: Advances in Neural Information
Processing Systems, 2018, pp. 9061–9071.

[45] J. Liu, X. Chen, Alista: Analytic weights are as good as learned weights in lista,
in: International Conference on Learning Representations (ICLR), 2019.

[46] Z. Wang, D. Liu, J. Yang, W. Han, T. Huang, Deep networks for image super-
resolution with sparse prior, in: 2015 IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 370–378.

[47] J. Zhang, B. Ghanem, Ista-net: Interpretable optimization-inspired deep network
for image compressive sensing, in: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 1828–1837, http://dx.doi.org/10.
1109/CVPR.2018.00196.

[48] K.B. Petersen, M.S. Pedersen, The Matrix Cookbook, Technical University
of Denmark, 2008, URL: http://www2.imm.dtu.dk/pubdb/p.php?3274, Version
20081110.

[49] S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE
Trans. Signal Process. 41 (12) (1993) 3397–3415.

[50] W. Dai, O. Milenkovic, Subspace pursuit for compressive sensing signal
reconstruction, IEEE Trans. Inform. Theory 55 (5) (2009) 2230–2249.

[51] R. Rubinstein, M. Zibulevsky, M. Elad, Efficient Implementation of the K-SVD
Algorithm using Batch Orthogonal Matching Pursuit, Technical Report, Computer
Science Department, Technion, 2008.

[52] E. Plaut, R. Giryes, Matching pursuit based convolutional sparse coding, in:
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 6847–6851.

[53] V. Papyan, J. Sulam, M. Elad, Working locally thinking globally: Theoretical
guarantees for convolutional sparse coding, IEEE Trans. Signal Process. 65 (21)
(2017) 5687–5701.

[54] D. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Y. Bengio,
Y. LeCun (Eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015,
URL: http://arxiv.org/abs/1412.6980.

[55] J. Mairal, G. Sapiro, M. Elad, Multiscale sparse image representationwith learned
dictionaries, in: 2007 IEEE International Conference on Image Processing, Vol.
3, 2007, pp. III – 105–III – 108.

[56] D. Huang, L. Kang, M. Yang, C. Lin, Y.F. Wang, Context-aware single image rain
removal, in: 2012 IEEE International Conference on Multimedia and Expo, 2012,
pp. 164–169.

[57] Y. Li, R.T. Tan, X. Guo, J. Lu, M.S. Brown, Rain streak removal using layer
priors, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 2736–2744.

[58] P. Arbeláez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical
image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 33 (5) (2011)
898–916.

[59] K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, L. Zhang, Waterloo
exploration database: New challenges for image quality assessment models, IEEE
Trans. Image Process. 26 (2) (2017) 1004–1016.

[60] W. Yang, R.T. Tan, J. Feng, Z. Guo, S. Yan, J. Liu, Joint rain detection and
removal from a single image with contextualized deep networks, IEEE Trans.
Pattern Anal. Mach. Intell. 42 (6) (2020) 1377–1393.

[61] D. Ren, W. Zuo, Q. Hu, P. Zhu, D. Meng, Progressive image deraining networks: A
better and simpler baseline, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 3937–3946.

[62] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, J. Paisley, Removing rain from
single images via a deep detail network, in: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 1715–1723.

http://dx.doi.org/10.1109/TIP.2012.2221729
http://dx.doi.org/10.1109/TSP.2006.881199
http://dx.doi.org/10.1109/TIP.2014.2323127
http://dx.doi.org/10.1109/TIP.2014.2323127
http://dx.doi.org/10.1109/TIP.2014.2323127
http://dx.doi.org/10.1109/TIP.2015.2447836
http://dx.doi.org/10.1109/TIP.2015.2447836
http://dx.doi.org/10.1109/TIP.2015.2447836
http://arxiv.org/abs/1912.10557
http://dx.doi.org/10.1109/TCI.2020.2964202
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb16
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb16
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb16
http://arxiv.org/abs/1909.13164
http://arxiv.org/abs/1912.02456
http://dx.doi.org/10.1109/ICASSP.2018.8462313
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb22
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb22
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb22
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb22
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb22
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb23
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb23
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb23
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb23
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb23
http://dx.doi.org/10.1109/TIP.2011.2108306
http://dx.doi.org/10.1109/TIP.2011.2108306
http://dx.doi.org/10.1109/TIP.2011.2108306
http://dx.doi.org/10.1109/ICIP.2014.7025574
http://dx.doi.org/10.1109/ICIP.2014.7025574
http://dx.doi.org/10.1109/ICIP.2014.7025574
http://dx.doi.org/10.1109/TIP.2007.911828
http://dx.doi.org/10.1109/TIP.2007.911828
http://dx.doi.org/10.1109/TIP.2007.911828
http://dx.doi.org/10.1109/TGRS.2013.2253612
http://dx.doi.org/10.1109/TIP.2010.2050625
http://dx.doi.org/10.1109/TIP.2010.2050625
http://dx.doi.org/10.1109/TIP.2010.2050625
http://dx.doi.org/10.1109/MSP.2007.914728
http://dx.doi.org/10.1109/MSP.2007.914728
http://dx.doi.org/10.1109/MSP.2007.914728
http://dx.doi.org/10.1109/ICASSP.2014.6854940
http://dx.doi.org/10.1109/ICASSP.2014.6854940
http://dx.doi.org/10.1109/ICASSP.2014.6854940
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb31
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb31
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb31
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb31
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb31
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb32
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb32
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb32
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb32
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb32
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb33
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb33
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb33
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb33
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb33
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb34
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb34
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb34
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb34
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb34
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb35
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb35
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb35
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb35
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb35
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb36
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb36
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb36
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb36
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb36
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb37
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb37
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb37
http://dx.doi.org/10.1109/ACSSC.1993.342465
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb39
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb39
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb39
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb40
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb40
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb40
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb41
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb41
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb41
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb41
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb41
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb42
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb42
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb42
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb43
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb43
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb43
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb43
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb43
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb44
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb44
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb44
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb44
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb44
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb45
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb45
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb45
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb46
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb46
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb46
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb46
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb46
http://dx.doi.org/10.1109/CVPR.2018.00196
http://dx.doi.org/10.1109/CVPR.2018.00196
http://dx.doi.org/10.1109/CVPR.2018.00196
http://www2.imm.dtu.dk/pubdb/p.php?3274
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb49
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb49
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb49
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb50
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb50
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb50
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb51
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb51
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb51
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb51
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb51
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb52
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb52
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb52
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb52
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb52
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb53
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb53
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb53
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb53
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb53
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb55
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb55
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb55
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb55
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb55
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb56
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb56
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb56
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb56
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb56
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb57
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb57
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb57
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb57
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb57
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb58
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb58
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb58
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb58
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb58
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb59
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb59
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb59
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb59
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb59
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb60
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb60
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb60
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb60
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb60
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb62
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb62
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb62
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb62
http://refhub.elsevier.com/S1047-3203(21)00056-0/sb62

	Learned Greedy Method (LGM): A novel neural architecture for sparse coding and beyond
	Introduction
	Learned ISTA
	LGM basic architecture
	The OMP algorithm
	Unfolding OMP
	Maximal-projection-thresholding (MPT) unit
	Atom selecting (AtoS) unit
	Constructing the LGM architecture

	LGM variations
	Learned-MP: Matching pursuit based LGM
	Learned-SP: Subspace pursuit based LGM
	Maximal-S-Projection-thresholding (MSPT) unit
	S atom selecting (SAtoS) unit
	Constructing the L-SP architecture

	LGM MMSE
	Batch-OMP acceleration
	Learned-GCMP: CSC based LGM
	CSC model & GCMP pursuit algorithm
	Unfolding GCMP

	Synthetical experiments
	LGM in image processing applications
	LGM for image denoising
	Basic LGM denoising architecture
	Advanced LGM denoising architecture

	LGM for image deraining

	Image processing applications — results
	Denoising
	Deraining

	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix. Supplementary Materials
	Dictionary Distance Metric

	References

