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such as denoising, restoration, segmentation, super-resolution ...

J Deep-learning based solutions have taken a leading role in our
field, due to their impressive performance and ease of design

 The general feeling among younger researchers: No need to
understand anything anymore — the learning takes care of that




Deep-Learning Working Path

In building supervised deep learning solutions in computational
imaging we operate along the following lines:
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This talk is about item #3: The choice of the architectures




Choosing Architectures

So, how do we choose an architecture for a given task?

Option 1 - Copy an existing network that has shown good results in
earlier work (VGG, U-Net, ...), and slightly modify it

Option 2 — Pile and Guess a series of steps that mix known pieces
such as convolutions, fully connected layer, batch-norm, RelLU,
pooling, stride, skips,
upscale/downscale,
connections, ...

and maybe add

new “tricks”




Few Recent Examples

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Variational Denoising Network: Toward Blind Noise
Modeling and Removal

Zongsheng Yue'~, Hongwei Yong®, Qian Zhao', Lei Zhang™, Deyu Meng!

School of Mathematics and Statistics, Xi'an Jiaotong University, Shaanxi, China
*Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong
"DAMO Academy, Alibaba Group, Shenzhen, China
Corresponding author: dvmeng @ mail xjtu.edu.cn

NIPS 2019: U-Net-based with 7e6 params




Few Recent Examples

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Variational Denoising Network: Toward Blind Noise
Modeling and Removal

Zongsheng Yue', Hongwei Yong”, Qian Zhao', Lei Zhang®?, Deyu Meng!

' School of Mathematics and Statistics, Xi'an Jiaotong University, Shaanxi, China
*Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong
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Modulating Image Restoration with Continual Levels
via Adaptive Feature Modification Layers

Jingwen He'* Chao Dong"* Yu Qiao'*"
'ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
“The Chinese University of Hong Kong

¥ e CVPR 2019: DnCNN-based with 1.2e6 params /



Few Recent Examples

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

Xuecai Hu''? , Haoyuan Mu*?, Xiangyu Zhang”, Zilei Wang', Tieniu Tan", Jian Sun* . X
> : 52 St e vork: Toward Blind Noise

' University of Science and Technology of China
* Center for Research on Intelligent Perception and Computing, NLPR. CASIA id Removal
' Megvii Inc (Face++) ! Tsinghua University

in Zhao', Lei Zhang™, Deyu Meng!

CVPR 2019: Huge network With 2e6 params "an Jiaotong University, Shaanxi, China

“Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong
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Modulating Image Restoration with Continual Levels
via Adaptive Feature Modification Layers

Jingwen He'* Chao Dong"* Yu Qiao'*"
'ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
“The Chinese University of Hong Kong

¥ e CVPR 2019: DnCNN-based with 1.2e6 params 8



Few Recent Examples

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

Xuecai Hu''* | Haoyuan Mu* ", Xiangyu Zha
' University of Science an 3D Appearance Super-Resolution with Deep Learning
* Center for Research on Intelligent Perce
' Megvii Inc (Face++) * ,
> Yawei Li', Vagia Tsiminaki®, Radu Timofte', Marc Pollefeys*®, and Luc van Gool’
anpuur Vision Lab, ETH Zumh Switzerland
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CVPR 2019: Huge net ‘Computer Vision .md (Junmlr\ Gmup ElH Lumh Sml/grl md Mum\nn USA

{vagia.tsiminaki, marc.pollefeys}@inf.ethz.cl

Modulating Ima CVPR 2019: Huge network with 4e6 params

via Adaptive Feature Modification Layers »6 params

Jingwen He'* Chao Dong"* Yu Qiao'*"
'ShenZhen Key Lab of Computer Vision and Pattern Recognition, SIAT-SenseTime Joint Lab,
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
“The Chinese University of Hong Kong

¥ CVPR 2019: DnCNN-based with 1.2e6 params




Few Recent Examples

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

Xuecai Hu''* | Haoyuan Mu* ", Xiangyu Zha
' University of Science an 3D Appearance Super-Resolution with Deep Learning
* Center for Research on Intelligent Perce
' Megvii Inc (Face++) ! ,
; Yawei Li', Vagia Tsiminaki®, Radu Timofte', Marc Pollefeys*, and Luc van Gool’
‘Computer Vision Lab, ETH Zurich, Switzerland

tzerland, *Microsoft, USA

High-Quality Self-Supervised Deep Image Denoising
eb params

Samuli Laine Tero Karras Jaakko Lehtinen Timo Aila

NVIDIA® NVIDIA NVIDIA, Aalto University NVIDIA

NIPS 2019: U-Net-based with 1.1e6 params

“1he himese vniversity ol Hong Kong

¥ .° CVPR 2019: DnCNN-based with 1.2e6 params
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Few Recent Examples

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

' . . . ' . 1 with Deep Learnin
Dual Residual Networks Leveraging the Potential of Paired Operations P &
for Image Restoration ' .
irc Pollefeys*“, and Luc van Gool’
rich, Switzerland

Takayuki Okatani

Xing Liu Masanori Suganuma Zhun Sun’ .ee.ethz.cl
'Graduate School of Information Sciences, Tohoku University "RIKEN Center for AIP memmm  (zerland, "Microsoft, USA

!
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CVPR 2019: Big network with ~8e5 params

Jaakko Lehtinen Timo Aila

Samuli Laine Tero Karras
NVIDIA, Aalto University NVIDIA

NVIDIA® NVIDIA
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NIPS 2019: U-Net-based with 1.1e6 params
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Few Recent Examples

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

. . . . ' . 1 with D Learnin
Dual Residual Networks Leveraging the Potential of Paired Operations CEPoAR &
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Toward Convolutional Blind Denoising of Real Photographs
Xing Liu Masanori Suganu
'Graduate School of Information Science Shi Guo'™**, Zifei Yan'™ ! Kai Zhang'”, Wangmeng Zuo'*, Lei Zhang?*
'Harbin Institute of Technology, Harbin; “Peng Cheng Laboratory, Shenzhen;
* The Hong Kong Polytechnic University, Hong Kong: ‘DAMO Academy, Alibaba Group

CVPR 2019: Big ne SRR S I

Samuli Laine CVPR 2019: U-Net-based with 5.3e6 params

NVIDIA®
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“1he himese vniversity ol Hong Kong

¥ . CVPR 2019: DNCNN-based with 1.2e6 params
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Few Recent Examples

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

Model-blind Video Denoising Via Frame-to-frame Training h with Deep Learning

Thibaud Ehret Axel Davy Jean-Michel Morel Y :
Gabriele Facciolo Pablo Arias sing of Real Photographs

CMLA, ENS Cachan, CNRS
Université Paris-Saclay, 94235 Cachan, France Vangmeng Zuo'*, Lei Zhang?*

1g Cheng Laboratory, Shenzhen;
ng; 'DAMO Academy, Alibaba Group

CVPR 2019: DnCNN-based with 5.5e5 params i feilehit

Samuli Laine CVPR 2019: U-Net-based with 5.3e6 params
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Few Recent Examples

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Meta-SR: A Magni

Noise2Void - Learning Denoising from Single Noisy Images

Model-blin¢ oy kg , 5 e :
Alexander Krull™=, Tim-Oliver Buchholz®, Florian Jug ep Learning
l cru 2y - i
Thibaud Ehs < Authors contributed equally
Ga Photographs
MPI-CBG/PKS (CSBD), Dresden, Germany

CVPR 2019: U-Net-based with 3.8e6 params [ e Zm

ng; 'DAMO Academy, Alibaba Group

CVPR 2019: DnCNN-based with 5.5e5 params zifei}@hit.

Samuli Laine CVPR 2019: U-Net-based with 5.3e6 params
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Main Question #1

Bottom line:

1 This brute-force approach for choosing the architecture
seems to work rather well

1 However, this approach typically tends to very heavy and
cumbersome networks

1 Lacking more insight, this approach produces black-boxes that
are likely to hit a performance barrier soon (if not already)

Main Question #1 in this Talk:

Can we do better in choosing
our architectures ?

| ool 15
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Main Question #2:

Lets move to something seemingly totally different ...

(J Massive research activity in image processing during the past 3-5
decades has brought vast knowledge and knowhow

[ The entrance of supervised deep-learning solutions in the past
decade seems to have bypassed this knowledge altogether,
offering a highly effective and totally different alternative path
towards the design of solution for imaging tasks

Main Question #2 in this Talk:

Has the classic knowledge in Image processing
became obsolete in the era of deep-learning?

p— ™
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On a Personal Note

M Allow me to be more specificand slightly more personal:

" |nthe past 20 years | have been working quite extensively on the
sparse representation model for visual data

= Key idea: signals can be effectively represented as a sparse
combination of atoms from a given dictionary

=  We and many others have shown the applicability of this model
to various tasks, both in image processing and in other domains

= | strongly believe that this model is key in explaining many of our
algorithms/processes for handling data in general

1 So, here is a refined version of Question 2:

Is the knowledge on sparse modeling of data
useless in the era of deep-learning?

P .
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This Lecture

This Lecture focuses on the Above Two
Seemingly Unrelated Questions

Question 1: Is there a systematic way to design deep-
learning architectures?

Question 2: What about all the accumulated
knowledge in image processing over the past 50 years?
Has it become obsolete?

We argue that the two questions are strongly
interconnected, and there is a common answer to both




This Lecture

This Lecture focuses on the Above Two
Seemingly Unrelated Questions

Our Claim: We can do far better in choosing deep-learning
architectures by relying systematically on the classics of image
processing and sparse representations for their formation

The benefits in such architectures:

1. They are far more concise yet just as effective as leading methods
2. They are easier to train because they are lighter

3. They have the potential to break current performance barriers

4. They may bring better understanding and explainability

5. This gives a good feeling that our past work has not been in vain

| ool 19
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This Lecture

This Lecture focuses on the Above Two
Seemingly Unrelated Questions

M In this talk | would like to demonstrate the above by describing
VERY BRIEFLY three of our recent papers, all addressing the
image denoising problem:

= Deep KSVD Denoising [Scetbon, Milanfar & Elad, arXiv:1909.13164, Sep. "19]
= Non-Local & Multi-Scale Denoising [Vaksman, Milanfar & Elad, arXiv:1911.07167, Nov. 19]
= Rethinking the CSC Model [Simon & Elad, NIPS *19]

(1 Our message: classic image denoising algorithms can be turned
into differentiable and relatively concise schemes and those can be
trained in a supervised fashion, leading to excellent results

p— ™
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Deep KSVD Denoising

M. Scetbon, M. Elad, and P. Milanfar, Deep K-SVD Denoising, '
arXiv:1909.13164, Sep. "19 Meyer Scetbon




Paper #1: Deep K-SVD

1 In 2006, we developed a new and highly effective image denoising
alg. by relying on sparsity of image patches and a learned dictionary

(1 This was considered as state-of-the-art for whole 2 minutes
until beaten by competition (BM3D, NCSR, TNRD, WNNM, ...)

d Over the years, various improvements of it came up — e.g. exploiting

joint sparsity
[Mairal et. al. "09] Or

leveraging the EPLL

[Sulam et. al. "15]

... And recently we
decided to revisit
this method ...

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 12, DECEMBER 200¢

Image Denoising Via Sparse and Redundant
Representations Over Learned Dictionaries

Michael Elad and Michal Aharon

Abstract—We address the image denoising problem, where
zero-mean white and homogeneous Gaussian additive noise is to
be removed from a given image. The approach taken is based
on sparse and redundant representations over trained dictio-
naries. Using the K-SVD algorithm, we obtain a dictionary that
describes the image content effectively. Two training options are
considered: using the corrupted image itself, or training on a
corpus of high-quality image database. Since the K-SVD is limited
in handling small image patches, we extend its deployment to
arbitrary image sizes by defining a global image prior that forces
sparsity over patches in every location in the image. We show how
such Bavesian treatment leads to a simple and effective denoising
algorithm. This leads to a state-of-the-art denoising performance,
equivalent and sometimes surpassing recently published leading
alternative denoising methods.

we intend to concentrate on one specific approach towards the
image denoising problem that we find to be highly effective and
promising: the use of sparse and redundant representations over
trained dictionaries

Using redundant representations and sparsity as driving

forces for denoising of signals has drawn a lot of research

attention in the past decade or so. At first, sparsity of the unitary

wavelet coefficients was considered, leading to the celebrated
shrinkage algorithm [1]-]{9]. One reason to tum to redundant
representations was the desire to have the shift invariance
property |10]. Also, with the growing realization that regular

separable 1-D wavelets are inappropriate for handling images,

several new tailored muluscale and directional redundant



Paper #1: Deep K-SVD

So, how does the original K-SVD denoiser work?

4 Universal Dictionary )
Noisy Image I Reconstructed Image
— pdate the
Dictionary
X | Denoise 1 D -
g - each patch
o) using OMP
- - J

Core idea: Assume that all patches obey sparse modeling
minflaflo s.t. Do —Riyll; =T
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So, how does the original K-SVD denoiser work?

4 Universal Dictionary )
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—_— pdate the
Dictionary
Denoise 1 D - d
» each patch
using OMP
J

Core idea: Assume that all patches obey sparse modeling
minflaflo s.t. Do —Riyll; =T




Paper #1: Deep K-SVD

Unfolding this Algorithm:

= All patches (with full overlaps) go through the same “pursuit” in parallel

=  OMP problematic (L,, greedy) — Use LISTA [Gregor & LeCun "00] (7 iterations):

min [jal; + AlDa — R;y|l3 AS,
- agyq = Safog + cDT(Doy — Ryy)} [ISTA]
= Each patch should get a dynamic # of non-zeros —A S
— Get an adaptive A by another small network / A
Bottom Line:

= The dictionary and few other parameters are learned in a supervised fashion
= Qur reference method to compare with is DnCNN (550K params) [Zhang, "17]
= Using 45K params, this elementary method gets within 0.1-0.2dB to DnCNN

F [ ]
‘poo® 25
] ‘...

M) i



Non-Local & Multi-Scale
Denoising

G. Vaksman, M. Elad and P. Milanfar, Low-Weight and
Learnable Image Denoising, arXiv:1911.07167, Nov. ‘19 Grisha Vaksman




Paper #2: Non-Local and Multi-Scale

1 Two key forces that the previous work has totally failed to
use are (i) self-similarity and (ii) multi-scale connections

(d BM3D [Dabov et. al 2006]: A highly effective denoiser based
on sparsity and self-similarity

 Its core idea: Gather similar patches to 3D
blocks and sparse code them jointly

[ Our idea: Unfold this algorithm and
augment it with a multi-scale -
treatment, and design its =
parameters via supervised learning =

 This work has been inspired by
[Lefkimmiatis “17] and [Lefkimmiatis "18] =




Paper #2: Non-Local and Multi-Scale

Extract
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Noisy image
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. image
2'nd scale age

patches

 The proposed architecture
implements the ideas mentioned
above in a simple a direct way

M This illustrates the performance vs.
#of parameters for various networks




Paper #2: Non-Local and Multi-Scale

Extract
overlapping

Combine
overlapping
patches

Weight
net

Reconstructed
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M xN

Weight
net

 The proposed architecture
implements the ideas mentioned
above in a simple a direct way

M This illustrates the performance vs.
#of parameters for various networks




Paper #2: Non-Local and Multi-Scale

(1 Bottom Line: Using 60K learned parameters (instead of 550K), this
method gets within 0.05-0.1dB to DnCNN

d An additional benefit: Fast and effective adaptation capability




Paper #2: Non-Local and Multi-Scale

(1 Bottom Line: Using 60K learned parameters (instead of 550K), this
method gets within 0.05-0.1dB to DnCNN

(d An additional benefit: Fast and effective adaptation capability
——

(a) Clean astronomical (b) Noisy with o = 50 (¢) Denoised (d) Denoised
(800 x 570) (before adaptation) (after adaptation)
PSNR = 26.44dB PSNR = 28.04dB

(e) Clean (f) Noisy (g) Denoised (h) Denoised
(before adaptation) (after adaptation)




Rethinking the CSC Model

D. Simon and M. Elad, Rethinking the CSC Model for =
Natural Images, NIPS 2019 Dror Simon



Paper #3: Rethinking CSC

Remember the earlier Pursuit task and ISTA?

min llally + 21Da — Ryll3 > s = Syla + DT (Da ~ R} |

Why work on patches? Lets apply this on the whole image!

min flally + ZDa— Y13 - aesr = Sy{oge + DT (Dege =V}
04

Great, but who is D in this case?

-

This brings us to the Convolutional Sparse Coding (CSC) Model




Paper #3: Rethinking CSC

(d CSC assumes a structured dictionary: D is built of m small filters

O Thus, multiplication by D and DT amount to convolutions

 Great! So lets apply LISTA
on this pursuit and train
it in a supervised way for
best denoising results

M This is exactly the idea in
[Giryes et. al. ‘18] and their
results are (at best)
getting close to BM3D

U So, are we stuck?

\
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Paper #3: Rethinking CSC

[ Dror’s idea: Use the CSC while deploying an MMSE estimation
(1 Observation 1: The CSC dictionary has a horrible coherence
(1 Observation 2: Denoising could be improved by moving to MMSE

(1 Observation 3: Subsampling the dictionary, solving the pursuit for
all offsets, and averaging the results — you get MMSE approx.

1 Create a network along this idea and train it for denoising

1 Bottom line: using 63K
params, this algorithm
works as good as DnCNN
and even better
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Paper #3: Rethinking CSC

1 If the filter size is n = 11 then the stride (subsampling factor)
could be anything in the range [1,11]:

" q = 1:nosubsampling —
this is [Giryes et. al. ‘18]
all over again

" q = 11: thisis a patch-
averaging, just as in the
K-SVD denoising

» q =9/10: performs best

[ Side result: Using CSC with a stride generalizes the patch-based
method that is so popular in image processing

-5::. 36
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Wrapping Up



summary

[ The right way to build solutions to imaging tasks goes as follows:

Unfold Apply
this to a Supervised
Network Learning

Modeling Algorithm

the Data Development

(1 What should be taken into account for the algorithm’ design?
= The degradation and noise statistics (“the physics”)
= Prior on the image: (i) Non-Local self similarity; (ii) multi-scale
connections; & (iii) Sparsity or other form of simplicity (e.g. low-rank)
= The objective (e.g., MMSE)

1 More broadly, | believe that sparse modeling of data is key
= |n explaining existing deep-learning architectures
= |n creation of new ones
*" |n bringing theoretical understanding to deep-learning




Still Unanswered

Open Questions:
J When designing an algorithm (and thus a network) for solving
inverse problems, should we consider MMSE or MAP?

It will be great to see this advocated rationale breaking
existing performance barriers — this is yet to happen

d What about using this rationale for supporting unsupervised
solutions? Recall the K-SVD denoising with an adapted dictionary

1 We mentioned in the beginning that this talk focuses on
regression tasks in computational imaging. What about
recognition or synthesis tasks?

p— ™
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s this Becoming a Trend?

BTW, take a look at this recent work by Mairal

Revisiting Non Local Sparse Models for Image Restoration

Jruno Lecouat * Jean Ponce * Julien Mairal |
[nria Inria [nria
bruno.lecouat@inria.fr jean.ponce@inria.fr julien.mairal@inria.fr

January 29, 2020

Abstract

We propose a differentiable algorithm for image restoration inspired by the success of sparse models
and self-similarity priors for natural images. Our approach builds upon the concept of joint sparsity
between groups of similar image patches, and we show how this simple idea can be implemented in
a differentiable architecture, allowing end-to-end training. The algorithim has the advantage of being
interpretable, performing sparse decompositions of image patches, while being more parameter efficient
than recent deep learning methods. We evaluate our algorithm on grayscale and color denoising, where we
achieve competitive results, and on demoisaicking, where we outperform the most recent state-of-the-art
deep learning model with 47 times less parameters and a much shallower architecture




s this Becoming a Trend?

... this recent paper

Algorithm Unrolling: Interpretable, Efficient Deep
Learning for Signal and Image Processing

Vishal Monga, Senior Member, IEEE, Yuelong Li, Member, IEEE, and Yonina C. Eldar, Fellow, IEEE

Abstract—Deep neural networks provide unprecedented per-
formance gains in many real world problems in signal and
image processing. Despite these gains, future development and
practical deployment of deep networks is hindered by their black-
box nature, i.e., lack of interpretability, and by the need for
very large training sets. An emerging technique called algorithm
unrolling or unfolding offers promise in eliminating these issues
by providing a concrete and systematic connection between
iterative algorithms that are used widely in signal processing and
deep neural networks. Unrolling methods were first proposed to
develop fast neural network approximations for sparse coding.
More recently, this direction has attracted enormous attention
and is rapidly growing both in theoretic investigations and
practical applications. The growing popularity of unrolled deep
networks is due in part to their potential in developing efficient,
high-performance and vet interpretable network architectures

from reasonahle size trainine sets. In this article. we review

model based analytic methods. In contrast to conventional
iterative approaches where the models and priors are typically
designed by analyzing the physical processes and handcrafting,
deep learning approaches attempt to automatically discover
model information and incorporate them by optimizing net-
work parameters that are learned from real world training sam-
ples. Modern neural networks typically adopt a hierarchical
architecture composed of many layers and comprise a large
number of parameters (can be millions), and are thus capable
of learning complicated mappings which are difficult to design
explicitly. When training data is sufficient, this adaptivity
enables deep networks to often overcome model inadequacies,
especially when the underlying physical scenario is hard to

characterize precisely.
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More on these (including these slides
and the relevant papers) can be found in
http://www.cs.technion.ac.il/~elad




