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Deep Learning 
is Everywhere 

 Our focus: computational imaging tasks  
such as denoising, restoration, segmentation, super-resolution … 

 

 Deep-learning based solutions have taken a leading role in our 
field, due to their impressive performance and ease of design  
 

 The general feeling among younger researchers: No need to 
understand anything anymore – the learning takes care of that 



   Deep-Learning Working Path  
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In building supervised deep learning solutions in computational 
imaging we operate along the following lines:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This talk is about item #3: The choice of the architectures  

Define the 
problem to 
be solved 

 

Gather 
training data 

to use 

Define an 
architecture for 

the solution 

Define a cost 
function (loss) 

to optimize 

Choose your 
optimization 

strategy  

Train and 
hope for good 
generalization 
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So, how do we choose an architecture for a given task?  
 

Option 1 - Copy an existing network that has shown good results in 
earlier work (VGG, U-Net, ...), and slightly modify it 
 

Option 2 – Pile and Guess a series of steps that mix known pieces 
such as convolutions, fully connected layer, batch-norm, ReLU, 
pooling, stride, skips,  
upscale/downscale,  
connections, ... 
and maybe add  
new “tricks” 
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Here are several paper examples from CVPR/NIPS 2019  
that illustrate these architectures 

NIPS 2019: U-Net-based with 7e6 params  
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Here are several paper examples from CVPR/NIPS 2019  
that illustrate these architectures 

NIPS 2019: U-Net-based with 7e6 params  

CVPR 2019: DnCNN-based with 1.2e6 params  
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Here are several paper examples from CVPR/NIPS 2019  
that illustrate these architectures 

NIPS 2019: U-Net-based with 7e6 params  

CVPR 2019: DnCNN-based with 1.2e6 params  

CVPR 2019: Huge network with 2e6 params  
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Here are several paper examples from CVPR/NIPS 2019  
that illustrate these architectures 

NIPS 2019: U-Net-based with 7e6 params  

CVPR 2019: DnCNN-based with 1.2e6 params  

CVPR 2019: Huge network with 2e6 params  

CVPR 2019: Huge network with 4e6 params  
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Here are several paper examples from CVPR/NIPS 2019  
that illustrate these architectures 

NIPS 2019: U-Net-based with 7e6 params  

CVPR 2019: DnCNN-based with 1.2e6 params  

CVPR 2019: Huge network with 2e6 params  

CVPR 2019: Huge network with 4e6 params  

NIPS 2019: U-Net-based with 1.1e6 params  
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Here are several paper examples from CVPR/NIPS 2019  
that illustrate these architectures 

NIPS 2019: U-Net-based with 7e6 params  

CVPR 2019: DnCNN-based with 1.2e6 params  

CVPR 2019: Huge network with 2e6 params  

CVPR 2019: Huge network with 4e6 params  

NIPS 2019: U-Net-based with 1.1e6 params  

CVPR 2019: Big network with ~8e5 params  
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Here are several paper examples from CVPR/NIPS 2019  
that illustrate these architectures 

NIPS 2019: U-Net-based with 7e6 params  

CVPR 2019: DnCNN-based with 1.2e6 params  

CVPR 2019: Huge network with 2e6 params  

CVPR 2019: Huge network with 4e6 params  

NIPS 2019: U-Net-based with 1.1e6 params  

CVPR 2019: Big network with ~8e5 params  

CVPR 2019: U-Net-based with 5.3e6 params  
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Here are several paper examples from CVPR/NIPS 2019  
that illustrate these architectures 

NIPS 2019: U-Net-based with 7e6 params  

CVPR 2019: DnCNN-based with 1.2e6 params  

CVPR 2019: Huge network with 2e6 params  

CVPR 2019: Huge network with 4e6 params  

NIPS 2019: U-Net-based with 1.1e6 params  

CVPR 2019: Big network with ~8e5 params  

CVPR 2019: U-Net-based with 5.3e6 params  

CVPR 2019: DnCNN-based with 5.5e5 params  
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Here are several paper examples from CVPR/NIPS 2019  
that illustrate these architectures 

NIPS 2019: U-Net-based with 7e6 params  

CVPR 2019: DnCNN-based with 1.2e6 params  

CVPR 2019: Huge network with 2e6 params  

CVPR 2019: Huge network with 4e6 params  

NIPS 2019: U-Net-based with 1.1e6 params  

CVPR 2019: Big network with ~8e5 params  

CVPR 2019: U-Net-based with 5.3e6 params  

CVPR 2019: DnCNN-based with 5.5e5 params  

CVPR 2019: U-Net-based with 3.8e6 params  
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Bottom line:  
 

 This brute-force approach for choosing the architecture  
seems to work rather well 

 However, this approach typically tends to very heavy and 
cumbersome networks 

 Lacking more insight, this approach produces black-boxes that 
are likely to hit a performance barrier soon (if not already) 

  
Main Question #1 in this Talk:  

 

Can we do better in choosing  
our architectures ?  



   Main Question #2:  
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Lets move to something seemingly totally different …  
 

 Massive research activity in image processing during the past 3-5 
decades has brought vast knowledge and knowhow 

 

 The entrance of supervised deep-learning solutions in the past 
decade seems to have bypassed this knowledge altogether, 
offering a highly effective and totally different alternative path 
towards the design of solution for imaging tasks 
 

Main Question #2 in this Talk:  
 

Has the classic knowledge in Image processing  
became obsolete in the era of deep-learning?  



   On a Personal Note  

17 

 Allow me to be more specific and slightly more personal: 
 In the past 20 years I have been working quite extensively on the  

sparse representation model for visual data 
 Key idea: signals can be effectively represented as a sparse  

combination of atoms from a given dictionary 
 We and many others have shown the applicability of this model  

to various tasks, both in image processing and in other domains 
 I strongly believe that this model is key in explaining many of our 

algorithms/processes for handling data in general 
 

 So, here is a refined version of Question 2:  
 

Is the knowledge on sparse modeling of data 
useless in the era of deep-learning?  
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This Lecture focuses on the Above Two 
Seemingly Unrelated Questions  

Question 1: Is there a systematic way to design deep-
learning architectures?  

 
Question 2: What about all the accumulated 

knowledge in image processing over the past 50 years? 
Has it become obsolete? 

 
We argue that the two questions are strongly 

interconnected, and there is a common answer to both 



   This Lecture   

19 

Our Claim: We can do far better in choosing deep-learning 
architectures by relying systematically on the classics of image 

processing and sparse representations for their formation 
 

The benefits in such architectures: 
 

1. They are far more concise yet just as effective as leading methods 
2. They are easier to train because they are lighter 
3. They have the potential to break current performance barriers 
4. They may bring better understanding and explainability  
5. This gives a good feeling that our past work has not been in vain 

This Lecture focuses on the Above Two 
Seemingly Unrelated Questions  
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 In this talk I would like to demonstrate the above by describing  
VERY BRIEFLY three of our recent papers, all addressing the  
image denoising problem: 

 

 Deep KSVD Denoising [Scetbon, Milanfar & Elad, arXiv:1909.13164, Sep. `19] 

 Non-Local & Multi-Scale Denoising [Vaksman, Milanfar & Elad, arXiv:1911.07167, Nov.`19]   

 Rethinking the CSC Model [Simon & Elad, NIPS `19] 
 

 Our message: classic image denoising algorithms can be turned  
into differentiable and relatively concise schemes and those can be 
trained in a supervised fashion, leading to excellent results 

This Lecture focuses on the Above Two 
Seemingly Unrelated Questions  
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Deep KSVD Denoising 

M. Scetbon, M. Elad, and P. Milanfar, Deep K-SVD Denoising,  
arXiv:1909.13164, Sep. `19 Meyer Scetbon 



   Paper #1: Deep K-SVD 
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 In 2006, we developed a new and highly effective image denoising 
alg. by relying on sparsity of image patches and a learned dictionary 

 This was considered as state-of-the-art for whole 2 minutes  
until beaten by competition (BM3D, NCSR, TNRD, WNNM, …) 

 Over the years, various improvements of it came up – e.g. exploiting 
joint sparsity  
[Mairal et. al. `09] or  
leveraging the EPLL  
[Sulam et. al. `15] 

 … And recently we  
decided to revisit  
this method …  
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So, how does the original K-SVD denoiser work?  

 
 
 
 
 
 
 
 
 

Core idea: Assume that all patches obey sparse modeling  
min

α
α 0  s. t.  𝐃α − 𝐑i𝑦 2 ≤ T 

Noisy Image Reconstructed Image 

Denoise  
each patch 
using OMP 

Universal Dictionary 

Update the 
Dictionary 

D 
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Unfolding this Algorithm:  

 All patches (with full overlaps) go through the same “pursuit” in parallel 

 OMP problematic (L0, greedy)  Use LISTA [Gregor & LeCun `00] (7 iterations):      

      min
α

 α 1 + 𝜆 𝐃α − 𝐑i𝑦 2
2     

          αk+1 = S𝜆 αk + c𝐃T 𝐃αk − 𝐑i𝑦  [ISTA] 

 Each patch should get a dynamic # of non-zeros  
 Get an adaptive  by another small network 

 

Bottom Line:  

 The dictionary and few other parameters are learned in a supervised fashion 

 Our reference method to compare with is DnCNN (550K params) [Zhang, `17] 

 Using 45K params, this elementary method gets within 0.1-0.2dB to DnCNN  

S𝜆 

𝜆 

−𝜆 
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Non-Local & Multi-Scale 
Denoising 

G. Vaksman, M. Elad and P. Milanfar, Low-Weight and  
Learnable Image Denoising, arXiv:1911.07167 , Nov. `19 Grisha Vaksman 
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 Two key forces that the previous work has totally failed to  
use are (i) self-similarity and (ii) multi-scale connections 

 BM3D [Dabov et. al 2006]: A highly effective denoiser based  
on sparsity and self-similarity 

 Its core idea: Gather similar patches to 3D  
blocks and sparse code them jointly  

 Our idea: Unfold this algorithm and  
augment it with a multi-scale 
treatment, and design its  
parameters via supervised learning   

 This work has been inspired by 
[Lefkimmiatis `17] and [Lefkimmiatis `18] 
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 The proposed architecture  
implements the ideas mentioned  
above in a simple a direct way  

 This illustrates the performance vs.  
#of parameters for various networks 
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 The proposed architecture  
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above in a simple a direct way  

 This illustrates the performance vs.  
#of parameters for various networks 
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 Bottom Line: Using 60K learned parameters (instead of 550K), this 
method gets within 0.05-0.1dB to DnCNN  

 An additional benefit: Fast and effective adaptation capability  
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 Bottom Line: Using 60K learned parameters (instead of 550K), this 
method gets within 0.05-0.1dB to DnCNN  

 An additional benefit: Fast and effective adaptation capability  
 



32 

Rethinking the CSC Model 

D. Simon and M. Elad, Rethinking the CSC Model for 
Natural Images, NIPS 2019 Dror Simon 
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Remember the earlier Pursuit task and ISTA?  
 

min
α

 α 1 + 𝜆 𝐃α − 𝐑i𝑦 2
2     αk+1 = S𝜆 αk + c𝐃T 𝐃αk − 𝐑i𝑦  

 

Why work on patches? Lets apply this on the whole image! 
 

min
α

 α 1 + 𝜆 𝐃α − Y 2
2      αk+1 = S𝜆 αk + c𝐃T 𝐃αk − Y  

 
Great, but who is 𝐃 in this case?  

 
 

This brings us to the Convolutional Sparse Coding (CSC) Model 
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 CSC assumes a structured dictionary: 𝐃 is built of m small filters 

 Thus, multiplication by 𝐃 and 𝐃𝐓 amount to convolutions 

 Great! So lets apply LISTA  
on this pursuit and train  
it in a supervised way for  
best denoising results 

 This is exactly the idea in 
[Giryes et. al. ‘18] and  their  
results are (at best)  
getting close to BM3D  

 So, are we stuck?  
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 Dror’s idea: Use the CSC while deploying an MMSE estimation 

 Observation 1: The CSC dictionary has a horrible coherence 

 Observation 2: Denoising could be improved by moving to MMSE 

 Observation 3: Subsampling the dictionary, solving the pursuit for 
all offsets, and averaging the results  you get MMSE approx. 

 Create a network along this idea and train it for denoising 

 Bottom line: using 63K  
params, this algorithm  
works as good as DnCNN  
and even better  
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 If the filter size is n = 11 then the stride (subsampling factor) 
could be anything in the range [1,11]: 

 q = 1: no subsampling –  
this is [Giryes et. al. ‘18]  

all over again 

 q = 11: this is a patch- 
averaging, just as in the  
K-SVD denoising 

 q = 9/10: performs best 

 Side result: Using CSC with a stride generalizes the patch-based 
method that is so popular in image processing  

DCT Dictionary 



37 

Wrapping Up 
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 The right way to build solutions to imaging tasks goes as follows:  
 
 
 
 
 

 What should be taken into account for the algorithm’ design?  
 The degradation and noise statistics (“the physics”) 
 Prior on the image: (i) Non-Local self similarity; (ii)  multi-scale 

connections; & (iii) Sparsity or other form of simplicity (e.g. low-rank) 
 The objective (e.g., MMSE) 

 

 More broadly, I believe that sparse modeling of data is key  
 In explaining existing deep-learning architectures  
 In creation of new ones 
 In bringing theoretical understanding to deep-learning 

 

Modeling 
the Data 

 

Algorithm 
Development 

Apply 
Supervised 

Learning 

Unfold 
this to a 
Network 
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Open Questions:  
 

 When designing an algorithm (and thus a network) for solving 
inverse problems, should we consider MMSE or MAP?  

 It will be great to see this advocated rationale breaking  
existing performance barriers – this is yet to happen 

 What about using this rationale for supporting unsupervised 
solutions? Recall the K-SVD denoising with an adapted dictionary 

 We mentioned in the beginning that this talk focuses on 
regression tasks in computational imaging. What about 
recognition or synthesis tasks?  
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BTW, take a look at this recent work by Mairal 
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… this recent paper 
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More on these (including these slides  
and the relevant papers) can be found in 

http://www.cs.technion.ac.il/~elad  


