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This Lecture is About ...

Image Denoising

Image

Denoiser

Noisy image Denoised image

Removal of noise from images is a heavily studied
problem in image processing

In this talk we expand on recent discoveries and
developments around this seemingly dead topic
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Our Agenda

5. Our Focus Today: Denoising for ...
= Solving general inverse problems
" |mage Synthesis
= High perceptual quality recovery
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Introduction & History
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So, Let’s Talk About ...

Image Denoising
or more accurately

Removal of White Additive Gaussian Noise from an Image

Image

Denoiser

Original Noisy image o Denoised
(clean) . image
Image ¥¢d Gaussian Noise:
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Image Denoising is Challenging

Image denoising is far from trivial task! Why?

(J Because our goal is to remove noise as much as possible while
preserving the details in the image

[ Denoising is essentially a highly ill-posed separation task

\k ‘ Image

[ Denoiser

Original Noisy image Denoised
(clean) image
Image 4 Gaussian Noise:
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Why Work on Image Denoising?

1. Practical: It is a real-world problem, arising in all cameras,

Image
Denoiser
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Why Work on Image Denoising?

1. Practical: It is a real-world problem, arising in all cameras,

2. Front-Gate to Image Processing: Being the simplest inverse
problem, it is a platform for assessing new ideas in our field, &

3. Other Uses for the Denoiser Engine: Recent work has shown
that given a denoiser, there are other fascinating uses for it
that go far beyond noise removal
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Why Assume Gaussian Noise?

(d The Gaussian case is more common and much more important

1 When considering a Poisson noise,

= High count of photons — The distribution gets closer and closer
to the Gaussian case

" Low-count Poisson-distributed image can be converted to a Gaussian-noisy
one by Anscomb - Variance Stabilizing Transform

d Many of the developed ideas
for the Gaussian case can be
converted to other noise models jg

0 MMSE denoisers for the Originai °
Gaussian case are of extreme (clean)
theoretical value (see later) Image
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Image Denoising: Little bit of History

Roughly speaking, there are ~25,000 papers* on this subject,
offering algorithms, theoretical analysis and so much more

My speculation

* Search done on June 15tin WoS, topic: ((image or video ) and
(denoising or (noise and remov) or clean))
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Image Denoising: Little bit of History

Citing Articles:

bon - 10504 This research comes from all over the globe

China: 45284 , : |

Germany: 29272

France: 35585

England: 24090

Canada: 18325

Spain: 17880

Israel: 13988

Australia: 13358

Switz.: 12504

Japan: 12389

Italy: 11754

Netherland:10455

India: 8830

Finland: 7842

Korea: 7558

Belgium: 5027

Singapore: 4964

Brazil: 4849

Taiwan: 4134

Iran: 3112 L. . .

russia: 2595 | .. and it is heavily cited
Michael Elad
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The Classic Era
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Design of Image Denoising Algorithms

How can we design a denoiser?

The classic Bayesian approach (1960-2014):

= Model image content with a prior expression (e.g., forcing smoothness,
sparsity, low-rank, self-similarity, ... ), and

= Formulate the denoising task as an optimization problem

—

% = min ||x — y||?+
X .. Design an iterative
Likelihood : :
or a direct algorithm
y : Given noisy image for getting X fromy

X : Denoised result
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Image Denoising: Evolution

Sparsity Methods
NCSR BM3D Patch-Methods

L,-based Robust PDE-Methods
KSVD Kernel-Regr.

Regularization statistics Anisotropic Diffusion EPLL
Wiener Hubber-Markov Beltrami

c £ § Jf £ 8

1970 1975 /1980 1985 /1990 1995 2000 / 2005 2010 2@15

Heuristic: Lo Fa -
Bilateral  Self-Similarity

Heuristic
- Wavelet Methods MR
Spatially Thresholding NLM-PCA NL-LR

adaptive Cycle-Spinning NLM
filtering S SURE
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End of an Era?

This evolution of algorithms and the tendency of different methods to
perform very similarly has led to a feeling that “Denoising is Dead”

NSACTIONS ON IMAGE PROCESSING

[s Denoising Dead?

Privam Chatte wdent Member, IEEE, and Peyman Milanfar, Fellow, IEEI

Abstract—Image denoising has been a well studied problem in  crature on such performance limits exists for some of the more
the field of image processin t researchers continue to focus at- complex image processing problems such as ima saislration
tention on it to better the current state-of-the-art. Recently p
posed methods take different approaches to the problem and yet
their denoising performances are comparuble, A pertinent ques-
tion then to ask is whether there is a theoretical limit to denoising 3 1 3
performance and, more importantly, are we there yet? As camera  their work, the authors study the effects of noise
manufacturers continue to pack in ing numbers of pixels per degradations and formulate expressions for the optimal filtering
unit area, an increase in noise sensitivity manifests itself in the form  parameters 1 define the resolution limits to recovering any
of w noisier imuge. We study the performance bounds for the image  oiven feature in the While their study is prac “:.." it
denoising problem, Our work in this paper estimates a lower bound
on the mean squared errvor of the denoised result and compares the
performance of current state-of-the-art denoising methods with
this bound. We show that despite the phenomenal recent progress > mance of MAP estimators for the denoising problem
in the quality of denoising algorithms, some room for improve- re developed in @ much more general
ment still remains for a wide class of general images, and at certain
signal-to-noise levels. Therefore, image denoising is not dead—yet. ntly exists for the problem of denoising. The present

(8] and super-resolution [9}-|12]. Performance limits to
object or feature recovery in images in the presence of point

wise degradation has been studied by Treibitz ef al. |

does not define statistical performance limits to denoising

general images. In [14], Voloshynovskiy e7 al. briefly analyze

Index Terms—Bayesian Cramér-Rao lower bound (CRLB), y will ena s to understand how well the state-of-the-art
bias, bootstrapping, image denoising, mean squared error, denoising alg ms perform as compared to these limits
From a practical perspective, it will also lead to understanding

I :

the fundamental limits of increasing the number of sensors in

[. INTRODUCTION

the ima system with acceptable quality being made

possible by noise suppressic orithms

MAGE denoising has be a well-studied problem

fnnaes 0 ze image denoising statistically, we first de
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End of an Era?

This evolution of algorithms and the tendency of different methods to
perform very similarly has led to a feeling that “Denoising is Dead”

ANSACTIONS ON IMAGE PROCESSING, VOL. 19.NO 4. APRY

[s Dy

Privam Chatterjee, Student M

Abstract—Image denoising has been a well studied
the field of image processing. Yet researchers conti
tention on it to better the current state-of-the-g
posed methods take different approaches to the prob
their denoising performances are comparable, A pers
tion then to ask is whether there is a theoretical limit
performance and, more importantly, are we there yet
manufacturers continue to pack increasing numbers ¢
unit area, an increase In noise sensitivity manifests itself
of i noisier imauge. We study the performance bounds f
denoising problem, Our work in this paper estimates a |
on the mean squared errvor of the denoised result and o
performance of current state-of-the-art denoising m
this bound. We show that despite the phenomenal recy
in the quality of denoising algorithms, some room f
ment still remains for a wide class of general images, ar
signal-to-noise levels, Therefore, image denoising is nol

Index Terms—Bayesian Cramér-Rao lower bour
bias, bootstrapping, image denoising, mean squared e

[. INTRODUCTION

MAGE denoising has been a well-studied |

o 3
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Natural Image Denoising: Optimality and Inherent Bounds

Anat Levin  and

Boaz Nadler

Department of Computer Science and Applied Math

The Weizmann Institute of Science

Abstract

goal of natural image denoising 1s (o estimate a

clean version of a given noisy image, utilizing prior knowi-
: y - )

edge on the stalistics of nature ‘8. * problem ha

been studied intensively with considerabi¢ Progress made

v recent vears. However, it seems that image denoising
rorithms are starting to converee and recent U'!",:'-'.""'_"M 3
improve over previous ones by only fractional dB values. i
i thus important to understand how much more can we sill
M ProV namvral image denoising ..'Jl!jl‘l.'..' hms and what ar
the inherent limits imposed by the actual statistics of the
data. The challenge in evaluating such limits is 1
structing proper models of natural image statistics is a long
standing and yet unsolved probiem

To overcome the absence of accurate
‘1‘»\1/ T {‘,:-L"' o noen !'.ll"lt"',.’{‘(‘ll I llll"'.l""“'"J‘» ’I’
distribution of nawral images using a hug
;"I“‘L nes [!'_ l":( n llyk rne d \l‘v,”"-'fyt \I‘II‘I‘.’.'A"\ ;«]" measire n “‘..‘.L 'I-'
provides a lower bound on the optimal Bavesian minimum

mean square error (MMSE). This imposes a limit

west possible results of

ever, it seems that the performance of denoising aigonthms

15 slarh erge. Recent techn s typically improve
over previous ones by only fractional dB values. In some
cases the difference between the results of competing algo-
rithms is so small and inconclusive, that one actually has to

Iy

successively toggle between images on a monitor to visually

compare their denoising quality. This raises the question of
whether the error rates of current denoising algorithms car
be reduced much further, or whether there are inherent lim-
ttations imposed by the statistical structure of natural 1m
ages? The goal of this paper 1s to derive a lower bound

the best possible denoising error under a well defined sta
tistical framework. Such a bound can help us understand
if there 1s hope to significantly improve the current state
of-the-art 1m noising with even better algorithms, or
ctherv

Understar

also important as an instance of a more fundamental com

have ncarly approached the fundamental Timat

o the limits of natural image denoisin

puter and human vision challenge: modeling the statistics
of natural images and understanding the mherent limits of
their statistical power. Several works attempted to estimate

the entropy However, there 1s

CVPR 2011



End of an Era?

And so, somewhere around 2010-2012, the general
feeling in our community was that ...

We are currently touching the ceiling in denoising
performance and chances of improving them are very slim

e

There is no point in devising new denoising methods

e

Work in this field has diminishing returns

Well, We Were Wrong !
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End of an Era?

Wrong ? How?

The past decade has taught us that image denoising is still

[very much alive and kicking}

due to several branches of novel activity on:

= QObtaining better performing denoisers with deep learning

= New frontiers in denoising:
o Better adaptation to image content
o Denoising strategies that go beyond PSNR
o Identifying alternative methods for designing/training denoisers
o Extending the denoising task to realistic noise, and

= Discovering new ways for leveraging denoisers for other needs

Michael Elad 17
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Design of Algorithms: Take 2

How can we ALTERNATIVELY design a denoiser?

1 "

U k‘u‘,.-‘-’ -

. . 1 Salmer -

The machine learning approach (2012-Now): EL5 s e
I - e T
= Gather a LARGE dataset of clean images {x} }R-4 o :,J.‘:‘*é mlf ﬂ:—v-{‘ T

= Add AWGN these images: {yx = xx + nk}llLl
» Define a parametric denoising machine Dg(y)
= Train Dg(m) by setting its parameters 0:

I\
min > [xi — Do (312
k=1

o

é nk}lljzl 19
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Image Denoising: A Paradigm Shift

How can we design a denoiser?

By modeling image content and leveraging it for noise filtering:

n . Scale Invariance
9 Sparse Representation @
v
> Plecewise Smoothness
. o . Low dimensionalit
Non-Local Self-Similarity @ Y
Observe that with this
trend, all the knowledge
téo and knowhow accumulated
- . .. carefully over decades in
i Supervised Training image processing became
- TOTALLY OBSOLETE

Michael Elad 20
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Image Denoising: Recent Evolution

Initial Steps - MLP Deep Shrinkage Deep Image Prior
(Burger et. al) Isogawa et. al (Ulyanov & Vedald  Noise2Void
CVPR 2012 |EEE-SPL 2017 CNLNet CVPR 2018 (Krull et. al)
TNRD (Lefkimmiatis, CVPR 2019
(Chen & Pock) CVPR 2017

IEEE-TPAMI 2016

: ¢ £ f K

2012 2013 2014 2015 2016/ 017 218 2719 2020 WO021

FFDNet (blin
h ol CBDNet ; Batch
DnCNN g @ blind Renormalization
Denoising Auto- (Zhang et. « IEEE-TIP 2( (Guo|  Attent (Tian et. al)
Encoder IEEE-TIP 2017 GCBL  (ypR (Tiar Neural Networks
(Cho) Learnea rrox GAN-baseu Neural N 2020
ICML 2013 (Meinhardt et. al) (Chen et. al) eurazog(;wu. no
JLL 20 CVPR 2018
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Svynergy:
Classics + Deep Learning




Image Denoising: Return of the Classics

 In recent years deep learning is ruling the

image denoising domain, pushing aside  cZ00niy
, : ArEneur
all the classical methods, along with u%d
. . eep:/\ w\ : \ ..':'Z.'—.'.' n\r
their great achievements seb

] Recently, however, we do see a synergy
between the two paradigms

1 Recall: In building a supervised deep learning
denoiser solution, we operate along the following lines:

Gather Define an Define a cost Train and hope
training data » architecture for » function (loss) » for good
to use the Denoiser to optimize generalization

Michael Elad pk]
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Image Denoising Architectures

So, how do we choose an architecture for a given task?

Option 1 - Copy an existing network that has shown good results in
earlier work (VGG, U-Net, ...), and slightly modify it

Option 2 — Pile and Guess a series of steps that mix known pieces
such as convolutions, fully connected layer, batch-norm, RelLU,
pooling, stride, skips,
upscale/downscale,
connections, ...

and add new “tricks”

Option 3 — Neural

number number

Architecture Search I U —

Kernel size Pooling size
16x1x49 4

Su% | Michael Elad 24
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Image Denoising Architectures

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Meta-SR: A Magni

Noise2Void - Learning Denoising from Single Noisy Images

Model-bling X ; :
Alexander Krull'#, Tim-Oliver Buchholz*, Florian Jug ep Learning
I 4 rull@mpi-cha.d
Thibaud Ehi = Authors contributed equally
Ga Photographs
MPI-CBG/PKS (CSBD), Dresden, Germany

CVPR 2019: U-Net-based with 3.8e6 params g .

ng: ‘DAMO Academy, Alibaba Group

CVPR 2019: DnCNN-based with 5.5e5 params vz fei}ehit

Samuli Laine CVPR 2019: U-Net-based with 5.3e6 params

NVIDIA® Ji

NIPS 2019: U-Net-based with 1.1e6 params

“1he thmese vniversity ol Hong Kong

peg #"ACh CVPR 2019 DnCNN-based with 1.2e6 params 25
€ Corrrporcer oercrroe ooporr
¥ The Technion




Alternative Architecture Design

( Message: Do far better in choosing architectures by relying on
unfolding algorithms from the classics of image processing

] The benefits in such architectures:

= They are far more concise yet just as effective as leading methods
= They are easier to train because they are lighter

= They have the potential to break current performance barriers

= They may bring better understanding and explainability

= They enable better adaptation to out of distribution images

(1 Here are few representative examples:

= Rethinking the CSC Model [Simon & Elad, NIPS *19]

= Non-Local & Multi-Scale Denoising [Vaksman, Milanfar & Elad, CVPR (NTIRE) *20]
= Deep KSVD Denoising [Scetbon, Milanfar & Elad, IEEE-TIP "21]

= PatchCraft: Non-Local Video Denoising [Vaksman, Elad & Milanfar, ArxiV "21]

= | Michael Elad 26
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Our Focus Today

Recent findings on using denoisers for other tasks:

M Discovery 1: Solving general inverse problems [2013-]
U Discovery 2: Image Synthesis [2019-]
[ Discovery 3: High perceptual quality recovery [2021-]

We turn to describe these results

Denoised

Noisy Image Denoiser Vi
4‘&%1:5“- image )/Z

image y ? D(y, o)

Michael Elad 28
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Discovery 1: Solving Inverse Problems

Inverse Problems: Recovery of images from corrupted measurements

De-Blurring
In-Painting
De-Mosaicing

Tomography

S N Wy B

Image Scale-Up
& super-resolution

... and more ...

Michael Elad
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Discovery 1: Solving Inverse Problems

How can we solve inverse problems?

We can return to the classic Bayesian approach:

= Model image content with a prior expression (e.g., forcing smoothness,
sparsity, low-rank, self-similarity, ... ), and

= Formulate the inversion task as an optimization problem

- = This is known as MAP estimation

= |t is an extension of the classic
path for denoising, tailoring
methods for inverse problems

= This approach leads to iterative
algorithm for getting X fromy

" |s there a supervised learning
alternative? Definitely!

= | Michael Elad 30
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X : Denoised result




Discovery 1: Solving Inverse Problems

Question: Given a denoiser D(y, o)
how can one solve inverse problems with it?

Plug-and-play priors for model based reconstruction 382

C ~hlharn
¥ " 1) """

The little engine that could: Regularization by denoising (RED) 261

Answer: Use D(y, o) as a regularizer

Practical Implication: Iterated use of D(+, 0)

Simple _ Simple _ Simple
y‘ Operation ‘ D(’G) ‘ Operation ‘ D(’G) ‘I

= | Michael Elad 31
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Discovery 1: Solving Inverse Problems

Here is (roughly) the PnP Perspective in a nutshell:
= Recall: Inverse problems can be formulated as optimization tasks:

1
% = min—=||Hx — y||? + p(x) _
X 2 Y P ... and this way we
got an iterated

1
% = min—|[Hx — ylI +p(v) s.t. x=v algorithm that

= Let’s do something “stupid” and split the unknown:

= Now, turn the constraint into a penalty* keeps calling to a
denoiser,

for solving the
inverse problem

1
X = min=||Hx — y||? + p(v) + B||x — v||?
X,V 2
= And solve by alternating between x and v
1
= Least-Squares: X = minz IHx — y||? + Bl|x — v||?
X

= Adenoiser: ¥ = minp(v) + Bl||x — v||?
Vv

= | Michael Elad 32
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Discovery 1: Solving Inverse Problems

Here is the RED Perspective in a nutshell:

Let’s start again with the formulated optimization task,
and suggest a very specific regularization term:

1 1
f = min=||Hx — y||? + p(x) = min= ||Hx — y||? + Ax"[x — D(x, 0)]
X 2 X 2 _ J

. e
Let’s use the Under mild conditions* the
Steepest Descent gradient of this is [x — D(x, 0)]

Rer1 = K — WHT(HR — y) + A[R& — DRy, 0)]]

... and this way we got an iterated algorithm that keeps calling to a denoiser,
and is guaranteed to achieve the minimum

* Differentiability, local homogeneity, passivity and symmetric Jacobian (MMSE)

Michael Elad 33
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Discovery 1: Solving Inverse Problems

Here are some results for Deblurring and Super-Resolution

Michael Elad ¢) P*-TNRD 26.61dB d) RED: SD-TNRD 27.39dB
¥ The Computer-Science Department
The Technion
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Discovery 1: Solving Inverse Problems

Plug-and-play priors for model based reconstruction

d PnP and RED are heavily
cited and extensively
studied, owing to their
generality and elegance

The little engine that could: Regularization by denoising (RED)

 Follow-up work focuses on

=  Proving convergence to the desired solution and tying these to
properties of the permissible denoisers (e.g. MMSE ...)

= Deployment in various applications
=  Creation of new variants of these two methods ... and ...
(1 PnP/RED can be used to define well-motivated architectures
for solving general inverse problems, built around a core
learned denoising engine

= | Michael Elad 35
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Discovery 2: Image Synthesis

O In recent years, and with the deep-learning
revolution, there is a growing interesting is
synthesizing images “out of thin air”

[ The popular tool of interest is called GAN —
Generative Adversarial Network, built of two
competing networks — a generator and a critique

O Why synthesize? Because

= We can, and it is fascinating

® |t testifies that we have seized the distribution
of images, and

= |t could be used
for other needs

O Could we synthesize
images differently?

Michael Elad N
The Computer-Science Departm
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Discovery 2: Image Synthesis

Question: Given a denoiser D(y, o)
how can one synthesize images with it?

Generative modeling by estimating gradients of the data distribution

Improved techniques for training score-based generative models

Solving linear inverse problems using the prior implicit in a denoiser

Answer: Use D(y, o) as a Projector onto the image manifold

Practical Implication: Iterated use of D(+, o) with varying o

. Simpl Simpl Simp!
noise mmp e 4 D(-,0,) g e D(';Gz)

Operation Operation

= | Michael Elad 37
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Discovery 2: Image Synthesis

Here is the core idea in a nutshell:

Our goal: draw a sample from the distribution of images P(x)

= Start with a random noise image X,
= Climb to a more probable image by the iterative equation:

Xik+1 = Xk + a - VlogP(Xy) +b -z, (Langevin Dynamics)
= J

This is known as the Score This suggests an implicit
Function and it is approximately relation between MMSE
proportional to [X — D(Xy, 0)] denoisers and Priors:

for a small value of ¢ D(x,0) <> P(x)

... and this way we got an iterated algorithm that keeps calling to a
denoiser, and is guaranteed to obtain a sample from P(x)

= | Michael Elad 38
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Discovery 2: Image Synthesis

In practice, instead of the plain Langevin with a fixed (and
small) value of o we use the Annealed Langevin Algorithm
that considers a sequence of blurred priors:

P(x+v) for V~N(O, Gﬁl)

= P(x) ®c-exp {— o IIxII?} ‘

with 60 > 04 >0, - >on>0

The core idea: start by drawing
» from a wider distribution and
gradually narrow it, leading to

a faster sampling performance

*= | Michael Elad
¥ The Computer-Science Department
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Discovery 2: Image Synthesis

Does it work? Here are some results

-~

Kadkhodaie & Simoncelli ; %05\-1FLM§¢«‘-¢!.~.»\;«"~'..\..lu.x..a

2IGEEEES

Michael Elad 40
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Discovery 2: Image Synthesis

Claim: diffusion-based methods are Diffusion Models Beat GANs on Image Synthesis
the best in image synthesis

Prafulla Dhariwal® \h x Nichol®
OpenAl
prafullafopenai.com

Abstract

We show that diffesion models can achieve image sample quality superior to the
current stite-of-the-art generative models. We achieve this on unconditional im-
age synthesis by finding a better architecture through a series of ablat

conditional image synt , we further improve sample quality with class

ance: a simple, compute-ethcient met o truding off ||1\|'|\1l_\ for Nde £
gradients from a classifier. We ac n FID of 2.97 on Ima ot 128 < 128,
1.59 on ImageNet 256 256, and n ImageNet 512x512 we match
BigGAN-de en with as few as 28 vard passes per sample, all while main

» of the dis 1n|»ul on I inally, we find l|| it classifier g nul

BigGAN (FID 6.95) Diffusion (FID 4.59)

Michael Elad
The Computer-Science Department
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Discovery 3: Targeting Perceptual Quality

Suppose that we need to denoise the following image:

Image

Denoiser

B 1 g

Noisy (o = 100) o Denoised image Origina

Minimum Mean-

Image
Manifold Squared-Error
(MMSE) denoisers
are great for MSE
result, but their
result falls outside
the manifold

Michael Elad 42
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Should we be
pleased with this
result? It seems
to be a bit ...
blurry, no? Why?

MMSE Result
E{x|y}




Discovery 3: Targeting Perceptual Quality

Question: How can we denoise an image
while targeting “High Perceptual Quality”?

High Perceptual Quality Image Denoising with a Posterior Sampling CGAN

Stochastic Image Denoising by Sampling from the Posterior Distribution

Answer: Denoise by sampling from the posterior P(x|y)

Practical Implication: We consider 2 methods These methods

= Training a deep denoiser via CGAN, or > produce a multitude

" lterated use of an MMSE denoiser D(,0) of possible solutions

Su= | Michael Elad 43
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Discovery 3: Targeting Perceptual Quality

Let’s have a closer look at the Stochastic Image Denoiser:

Task: Draw a sample from P(x|y) where [y = x + n, n~N(O, G(Z)I)]
= Start with a random noise image X,

= Climb to a more probable image by the iterative equation:
Riesq1 = X + a - VlogP(Re|y) + b - 2y, « Langevin with a
- ~ J

conditional Score

J\) = VlogP(Xy) + VlogP(y|%1)
Bayes rule

= )/Zk —D(f(k, G) ~+ VlOgP(Yl)/Zk)
N ~ J - ~ /)
Approx. Score A Gaussian Distribution
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Discovery 3: Targeting Perceptual Quality

Let’s have a closer look at the Stochastic Image Denoiser:
VlogP(Xk|y) = Xk — D(Xk, 0) + VlogP(y[Xy)

= As we use the Annealed Langevin algorithm, there are two noise
signals to consider:

o Measurement’s noise: n~N(O, 0(2)1)

o Synthetic annealing noise: V~N(O, Gil) forop >0y >0, -+ >on>0
" |mplication: We recover PlogP (& |y)=
a sequence of gradually less y — Ry
noisy images Xy where their = Rk —D(Xg, o) + 52 — o2
noise v is assumed to be a portion of n 0 K
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Discovery 3: Targeting Perceptual Quality

Stochastic Image Denoiser:

= We start from a noisy image (¢ = 150 in this example)

= Then gradually denoise it using (conditional) annealed Langevin dynamics
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Discovery 3: Targeting Perceptual Quality

Stochastic Image Denoiser:

Michael Elad 47
The Computer-Science Department
The Technion



Discovery 3: Targeting Perceptual Quality

Stochastic Image Denoiser:
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Discovery 3: Targeting Perceptual Quality

Let’s have a closer look at the Conditional GAN Denoiser:

 Typical design approach: Optimize a distortion measure (e.g. MSE) between
the denoised and the ideal images

[ Adversarial loss could be added to

improve the perceptual quality

Denoised Clean
# Noisy

Critic

Denoiser

d However, when used together,
we get a compromise between
distortion and perceptual quality MSE(

)+ ALagy(Y)
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Discovery 3: Targeting Perceptual Quality

Perception

O For ill-posed restoration tasks, perceptual

quality performance comes at the expense Possible |
Region !

of its distortion [Blau & Michaeli 2017]
d We aim for best perceptual quality

[ The posterior distribution attains perfect
perceptual quality, compromising 3dB
compared to the MMSE [Blau & Michaeli 2017] Lessf)?mﬂon Distortion

d We propose to sample from the posterior
via a Conditional GAN mechanism (PSCGAN)

Alg. 3
Impossible o
Region

Ajljenb |ensia uanag

Samples from Pgjy—y
x~Px ¥y~ Pyx=x - N
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Discovery 3: Targeting Perceptual Quality

The PSCGAN Architecture:

Random
noise z

Denoised

Randomized

A\ 4

Noisy Image y

A 4

Why use y in the critic? Without it,
we check only the perceptual quality
of the denoised result. With it, we
also assess its denoising validity
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Discovery 3: Targeting Perceptual Quality

What about the Loss?
d CGAN optimization leads to posterior sampling [Adler et al. 2018]:

mein mjx IEX,Y [C(D(X) Y)] I IE“DQ,Y,Z [C(x) (DG’ Y)]

[ However, this requires an unavailable balanced dataset to train on
(many x’s for each y and many y’s for each x)

d On the other hand, we would like to avoid a penalty of the form

Exyz|llx — Dg(y, 2)I15]
O Our remedy: adding an MMSE oriented penalty term:

Exy|llx — E,[Dglylll3]
[ This gives the MMSE result “for free” (averaging many instances)
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Discovery 3: Targeting Perceptual Quality

Michael Elad 52
The Computer-Science Department
The Technion



Discovery 3: Targeting Perceptual Quality

CGAN:
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Oh ... and One Last Thing
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Back to Inverse Problems

J Goal: Recovery from corrupted measurements

De-Blurring
De-Mosaicing

Tomography y

J Can we suggest a “sampler” from
P(x|y) for handling all these £
problems, in order to obtain “perfect looking” results?

J Answer: Yes! Use Langevin dynamics again, in an adapted form

SNIPS: Solving Noisy Inverse Problems Stochastically
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Back to Inverse Problems

1 The idea is similar to our high-perceptual denoising, with necessary
changes for considering the degradation operator H ...

[ Starting naively, using Bayes theorem, we need to calculate
Vlog P(y[x;)
J We know that y = Hx + n and thus:
VlogP(y|x;) = VlogP(y — Hx;[x;) =
VlogP(Hx + n — Hx — Hv;|x;) = VlogP(n — Hv;|x;)

L However, ... while n — Hv; is a simple Gaussian, it’s dependency
on X; in non-trivial, so how do we proceed from here?
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Back to Inverse Problems

O Step 1: Use SVD for decoupling the measurements H = UZV!:

UTy = UT[UZVT (x; — v;) + n] = ZVT(x; — v{) + UTn
\—y=Hx+n—

mmmm) y[k] = opXr[k] — oy ¥r[k] + np[K]

Decouple X7[k] <> V[k]| by choosing
Vr|K] to be a portion of ny[K]

M Thus, we can apply the Langevin dynamics algorithm on
% = VIx; given yr = Uly and sample from the conditional

1 Bottom line: An MMSE denoiser is used for a novel solution of
inverse problems, this time targeting best perceptual quality
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Back to Inverse Problems

Noisy Inpainting: A portion missing and noise with gy = 25

»
"’.
2 b .
s

Observed Clean

Sample

Sample

' — )
. : .
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Back to Inverse Problems

Super resolution: downscaling by 4 with additive noise of gy = 25

_MAAAAAAA

! ’/' =W - //‘x - f= = o e ¥ -
SN SVS 'm A [/ /

)

Y= -

o= e = |
GG s D) ) B

st
- o~ o Lol ©o LA - v -~ - o » - - - - -~ - | -
|
| \
- _ - S

Samples from our algorithm

-~

Original Low-res

Mean
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Back to Inverse Problems

Super resolution: downscaling by 4 with additive noise of gy = 12

Original Degraded Samples from our algorithm Mean
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Back to Inverse Problems

Deblurring: uniform 5 X 5 blur with additive noise of o, = 25

Original Blurred Samples from our algorithm Mean std
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Back to Inverse Problems

Compressive sensing (12.5%) with additive noise of gy = 25

Orlgmal Degraded Samples from our algorlthm Mean
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Back to Inverse Problems

Compressive sensing (12.5%) with additive noise of gy = 25

Original 1S .1‘ l-k ﬁ .. 3

Original Degraded  Sample Mean
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Back to Inverse Problems

And just to remind you ...

The proposed diffusion-based sampling scheme, while
quite appealing, suffers from several key shortcomings:

 Itis rather SL O W (many denoising activations)
It is limited (as of now) to specific families of images
J Relying on SVD is cumbersome
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Time to Summarize
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summary

Image Denoising

... Not What You Think
G-

1. There are so many opportunities and challenges in
better understanding, designing, and proposing
creative usage of image denoisers

2. Despite the fact that this has not been a talk about

Deep-Learning, the presence of this field in the
topics covered is prominent

Michael Elad 64
The Computer-Science Department
The Technion




