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Noise Removal

Why denoising?

A simple testing ground for novel concepts in signal processing.

Can be generalized to other, more complicated applications.
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The Generative Model

D ∈ Rn×m is a dictionary with normalized columns.

D

m

n
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The Generative Model

Each element i in α is non zero with probability pi � 1.
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The Generative Model

The non-zero elements of the sparse representation, denoted by αs , are
sampled from a Gaussian distribution αs |s ∼ N

(
0, σ2αI|s|

)
.

D α
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The Generative Model

The product Dα leads to a signal x.

D α

=
x

m

n
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The Generative Model

We are given noisy measurements y = Dα + ν, where ν is a white
Gaussian noise ν ∼ N

(
0, σ2νIn

)
.

D α

=
x

m

n
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The Generative Model – Results

The prior probability of a support (Bernoulli):
p(s) =

∏
i∈s pi

∏
j /∈s (1− pj).

When the support is known, y and αs are jointly Gaussian
y = Dsαs + ν, leading to1

y|s is Gaussian: y|s ∼ N (0,Cs).
y|αs , s is Gaussian: y|αs , s ∼ N

(
Dsαs , σ

2
ν In
)
.

αs |y, s is Gaussian: αs |y, s ∼ N
(

1
σ2
ν
Q−1

s DT
s y,Q

−1
s

)
.

Cs = σ2αDsD
T
s + σ2νIn, Qs =

1

σ2α
I|s| +

1

σν
DT

s Ds

1Turek, Javier S., Irad Yavneh, and Michael Elad, 2011. ”On MMSE and MAP
denoising under sparse representation modeling over a unitary dictionary.”
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Bayesian Estimators

The goal: Estimate α given the noisy measurements y,
i.e. denoise the signal.

Many estimators can be proposed. We focus our attention on three:

1 The oracle estimator.

2 The Maximum A-posteriori Probability (MAP) estimator.

3 The Minimum Mean Square Error (MMSE) estimator.
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The Oracle Estimator

Assumes knowledge of the support s.

αs |y, s is Gaussian =⇒ it’s MAP and MMSE estimators are identical.

Oracle Estimator

α̂Oracle
s = E {αs |s, y} =

1

σ2ν
Q−1s DT

s y

Cannot be obtained in practice.

We will use it as a basic building block later in this talk.
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The MAP Estimator

Instead of approximating the representation α, we approximate the
support itself.

MAP Support Estimator

ŝMAP = arg max
s

p (s|y)

= arg max
s

p (s) p (y|s)

= arg max
s
−1

2
yTC−1s y − 1

2
log det (Cs)

+
∑
i∈s

log (pi ) +
∑
j 6∈s

log (1− pj)

s ∈{0, 1}m

The sparse representation α̂MAP, is obtained using the oracle estimator on
the recovered support: α̂MAP = α̂Oracle

sMAP
.
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The MMSE Estimator

The Minimum Mean Square Error (MMSE) estimator minimizes the MSE
of the estimator.

MMSE Estimator

α̂MMSE = arg min
α̂(y)

E
{
‖α̂ (y)−α‖22

∣∣∣y}

= E {α|y}

= Es|y
{
Eα|y,s {α|y, s}

}
=

∑
s∈{0,1}m

p (s|y) α̂Oracle
s

The MMSE is the sum of all the possible oracle estimators, weighted by
the probability of the support.

The MMSE estimator is not sparse at all!
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The MMSE and Map Estimators

Both estimators are practically impossible to obtain.

MAP – compute the posterior probability of each of the 2m supports
and pick the most probable one.
MMSE – compute the posterior probability of each support and use
them as weights for all the possible oracle estimators.

How is this issue resolved?

MAP – use an approximation algorithm (greedy or relaxed) to recover
a likely support, and then use the oracle.
MMSE – usually avoided.

Can we do better?
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Random OMP

A modified version of the OMP algorithm.

OMP: picks the atom most correlated with the current residual.
RandOMP: weights the unpicked atoms according to their correlation
with the residual, and chooses randomly.

Repeated many times leading to a variety of solutions.

Averages the solutions to retrieve a final estimate.

Asymptotically converges with the MMSE estimator when:

The dictionary is unitary.
The cardinality of the sparse representation is 1.

Empirically achieves better MSE than OMP even when these
conditions are not met.

Other methods exist (Schniter, P. et al. 2008 ”Fast Bayesian matching
pursuit”)

Elad, Michael, and Irad Yavneh, 2009. ”A plurality of sparse representations is
better than the sparsest one alone.”
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MMSE Approximation Methods

Why do these methods work?

p(s|y) has an exponential nature. ⇒ The estimator is dominated by a
small set of solutions.

α̂MMSE =
∑

s∈{0,1}m
p (s|y) α̂Oracle

s ≈
∑

s∈ω⊂{0,1}m
p (s|y) α̂Oracle

s

These methods find a “dominant” subset ω of supports and
approximate their weights (posterior probabilities).

These methods operate in a greedy fashion.

⇒ They are impractical for high dimensional signals.
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Stochastic Resonance

Definition

Originally, was suggested as an explanation to the periodic recurrence
of ice ages.

Today, broadly applied to describe a more general phenomenon where
presence of noise in a nonlinear system provides a better response.

Noise improves system performance?
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Dither – Noise Has a Constructive Value

Dither

In signal quantization, additive noise is used to create stochastic
quantization error.

For example in images, dither prevents color banding which creates
unpleasant images.
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The Proposed Algorithm

Algorithm 2: Stochastic Resonance MMSE Approximation

input : y,D, PursuitMethod, σn,K

output: α̂
for k ∈ 1...K do

nk ← SampleNoise(σn)
α̃k ← PursuitMethod(y + nk ,D)

Ŝk ← Support(α̃k)

α̂k ← α̂Oracle
ŜK

(y)

end

α̂← 1
K

∑K
k=1 α̂k
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ŜK

(y)

end

α̂← 1
K

∑K
k=1 α̂k

Dror Simon (Technion) MMSE for Sparse Prior January 9, 2019 26 / 50



The Proposed Algorithm

Algorithm 2: Stochastic Resonance MMSE Approximation

input : y,D, PursuitMethod, σn,K
output: α̂
for k ∈ 1...K do

nk ← SampleNoise(σn)
α̃k ← PursuitMethod(y + nk ,D)
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The Proposed Algorithm

Approximation In Large Dimensions

The pursuit itself is independent from the rest of the process
=⇒ Relaxation methods are just as applicable.
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The Proposed Algorithm – Does It Work?

D ∈ R50×100 a normalized random dictionary.

‖α‖0 = 1,αs ∼ N (0, 1).

ν ∼ N
(
0, σ2νI50

)
, σν = 0.2.

100 iterations of stochastic resonance.
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Unitary Case - Estimators

When D is a unitary matrix
(
DTD = I

)
, the oracle, MAP and MMSE

estimators are element-wise shrinkage operators:

c and λMAP depend on pi , σα and σν .
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s (y) = c2DT
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α̂MAP (y) = HλMAP
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(β)

HλMAP
(βi ) =
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0 else
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When D is a unitary matrix
(
DTD = I

)
, the oracle, MAP and MMSE

estimators are element-wise shrinkage operators:

MMSE

α̂MMSE
i (βi ) =

exp
(

c2

2σ2
ν
β2i

)
pi

1−pi

√
1− c2

1 + exp
(

c2

2σ2
ν
β2i

)
pi

1−pi

√
1− c2

c2βi
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Unitary Case – Estimators
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Unitary Case – Stochastic Resonance

To use our proposed algorithm we need to provide a pursuit. Algorithm 1

The MAP is attainable. =⇒ Use it!
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Unitary Case – Asymptotic Estimator

What happens as K →∞?

α̂ (β, ñ) = H− (β, ñ) =

{
c2β if |β + ñ| ≥ λ,
0 otherwise.

α̂ = lim
K→∞

1

K

K∑
k=1

α̂k = En {α̂k}

=

∫ ∞
−∞
H− (β, ñ) p (ñ) dñ

=...

=c2β

[
Q

(
λ+ β

σn

)
+ Q

(
λ− β
σn

)]

Q(x) =
∫∞
x

e−
t2

2 dt
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{
c2β if |β + ñ| ≥ λ,
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Unitary Case – Empirical Performance

How does this estimator perform?
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Stochastic Resonance vs. MMSE

Are the two the same?

Stochastic Resonance & MMSE

α̂stochastic = c2β

[
Q

(
λ+ β

σn

)
+ Q

(
λ− β
σn

)]

α̂MMSE =
exp

(
c2

2σ2
ν
β2
)

pi
1−pi

√
1− c2

1 + exp
(

c2

2σ2
ν
β2
)

pi
1−pi

√
1− c2

c2β

No... But are they close?
Empirically yes, but for the right choice of parameters.
We can set the parameters by using SURE.
More information in our paper.
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Unitary Case – Summary

y +

n

S

MAP

Oracle

Applicable when the closed form solution of the MMSE is not attainable
(i.e. when pi is not known).

What about non-unitary cases?
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The General Dictionary Case

The general case is harder to analyze.

The MAP estimator is exhaustive =⇒ use a pursuit algorithm instead.

The performance (and the analysis) depends on the pursuit used.

We separate to two cases:

The generative model’s parameters are known.
The generative model’s parameters are not known.
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General Case – Known Parameters

The parameters are known =⇒ use them.

Replace the arithmetic mean in the proposed algorithm with a
weighted sum.

Similar to FBMP.

But unlike FBMP - no greedy measures required.
=⇒ Applicable for large dimensions.

In our paper we prove it is equivalent to a Monte Carlo importance
sampling simulation.

=⇒ Asymptotically converges to the MMSE!
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General Case – Known Parameters

D ∈ R50×100 a normalized random dictionary.

‖α‖0 = 1,αs ∼ N (0, 1).

ν ∼ N
(
0, σ2νI50

)
, σν = 0.2.

35 iterations of stochastic resonance.
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General Case – Unknown Parameters

Parameters’ values are lacking.

=⇒ the same MMSE is no longer
attainable.

How can we estimate a support? Use any pursuit (MAP
approximation).

How can we obtain the oracle estimator? Simply use least squares

α̂ (s, y)oracle =
(
DT

s Ds

)−1
DT

s y.
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General Case – Unknown Parameters

y +

n

S
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Oracle

Dror Simon (Technion) MMSE for Sparse Prior January 9, 2019 42 / 50



General Case – Unknown Parameters

y +

n

S

Pursuit
Algo.

Least
Squares

Dror Simon (Technion) MMSE for Sparse Prior January 9, 2019 42 / 50



General Case – Unknown Parameters

D ∈ R50×100 a normalized random dictionary.

‖α‖0 = 1,αs ∼ N (0, 1).

ν ∼ N
(
0, σ2νI50

)
, σν = 0.2.

100 iterations of stochastic resonance.

Dror Simon (Technion) MMSE for Sparse Prior January 9, 2019 43 / 50



General Case – Unknown Parameters

D ∈ R50×100 a normalized random dictionary.

‖α‖0 = 1,αs ∼ N (0, 1).

ν ∼ N
(
0, σ2νI50

)
, σν = 0.2.

100 iterations of stochastic resonance.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
n

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
SE

1e 3 SR Estimators
MAP
SR
MMSE

Dror Simon (Technion) MMSE for Sparse Prior January 9, 2019 43 / 50



General Case – Unknown Parameters

D ∈ R50×100 a normalized random dictionary.

‖α‖0 = 1 pi = 0.05,αs ∼ N (0, 1).

ν ∼ N
(
0, σ2νI50

)
, σν = 0.2.

100 iterations of stochastic resonance.

Dror Simon (Technion) MMSE for Sparse Prior January 9, 2019 43 / 50



General Case – Unknown Parameters

D ∈ R50×100 a normalized random dictionary.

‖α‖0 = 1 pi = 0.05,αs ∼ N (0, 1).

ν ∼ N
(
0, σ2νI50

)
, σν = 0.2.

100 iterations of stochastic resonance.

Use bounded noise formulation for the pursuit:

(OMP) min
α
‖α‖0 s.t. ‖y −Dα‖2 ≤ ε,

(BP) min
α
‖α‖1 s.t. ‖y −Dα‖2 ≤ ε.
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Image Denoising

Method Used:

Dataset containing facial images.

Trained a Trainlet5 dictionary on clean facial images.

Pursuit used: Subspace Pursuit (SP)6.

Experiment:

Added noise to an unseen image.

Use the dictionary and SP to denoise. Tune L parameter to obtain
optimal denoising performance.

Use SR algorithm using the same SP configuration used in the
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Image Denoising – Results

Noisy image.
PSNR=16.1 dB.

Subspace Pursuit.
PSNR=26.88 dB.

Stochastic
Resonance.

PSNR=28.76 dB.

Clean Image.

∼ 2dB better.
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Image Denoising – Results

Subspace pursuit vs. stochastic resonance

10 20 30 40 50 60
25

30

35

P
S

N
R

SP
SR

Dror Simon (Technion) MMSE for Sparse Prior January 9, 2019 47 / 50



Outline

1 Bayesian Framework
The Generative Model
Bayesian Estimators

2 MMSE Approximation
Previous Work

3 Stochastic Resonance
Can Noise Help Denoising?

4 Our Proposed Method
The Algorithm
Unitary Case Analysis
The General Dictionary Case
Image Denoising

5 Conclusions

Dror Simon (Technion) MMSE for Sparse Prior January 9, 2019 48 / 50



Conclusions

MMSE estimator is desired, but involves an exhaustive computation.

MAP is hard as well, but many approximation methods are available.
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achieve an MMSE estimator approximation.

MMSE estimator approximation is attainable, even for large
dimensions.
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Conclusions

Thank You
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