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This Lecture is About ...

Fields/Topics appearing
in this Talk:

Image Denoising

Image

Image processing - Restoration
Optimization

Machine Learning

Deep Learning

Sparse Representation

Linear Algebra

Probability Theory & Statistics
Stochastic Differential Equations
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Denoiser

Noisy image Denoised image

Removal of noise from images is a heavily studied
problem in image processing

CO000000

In this talk we expand on recent discoveries and
developments around this seemingly dead topic

A Disclaimer:
This talk is self-contained
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Our Agenda

Part | <

5. Our Focus Today: Denoising for ...
= Solving general inverse problems

P " < = |mage Synthesis
art = High perceptual quality recovery
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So, Let’s Talk About ...

Image Denoising
or more accurately

Removal of White Additive Gaussian Noise from an Image

’.

Image } “ \

Denoiser s | ”‘“‘*

Original Denoised
(clean) image
Image
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Image Denoising is Challenging

Image denoising is far from trivial task! Why?

J Because our goal is to remove noise as much as possible while preserving the
details in the image

d Denoising is essentially a highly ill-posed separation task

e 4
Original Denoised
(clean) _ image
Image # Gaussian Noise:

. N(0,0%1)
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Why Work on Image Denoising?

1. Practical: It is a real-world problem, arising in all cameras,

Noisy [
image
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Why Work on Image Denoising?

1. Practical: It is a real-world problem, arising in all cameras,

2. Front-Gate to Image Processing: Being the simplest inverse problem, it is a platform
for assessing new ideas in our field, &

3. Other Uses for the Denoiser Engine: Recent work has shown that given a denoiser,
there are other fascinating uses for it that go far beyond noise removal

Noisy [{ ‘“ //
image Image \I

/

Denoiser

’“”m“ DenoBed
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Why Assume Gaussian Noise?

(1 The Gaussian case is more common and much more important
1 When considering a Poisson noise,
= High count of photons — The distribution gets closer and closer to the Gaussian case

= Low-count Poisson-distributed image can be converted to a Gaussian- n0|sy one by
Anscomb - Variance Stabilizing Transform s

d Many of the developed ideas
for the Gaussian case can be
converted to other noise models

Original

L MMSE denoisers for the
Gaussian case are of extreme (clean)
Image

theoretical value (see later)
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Image Denoising: Little bit of History

Roughly speaking, there are ~28,000 papers* on this subject,
offering algorithms, theoretical analysis and so much more

* Search done on April 9t 2022 in WoS, topic: ((image or video )
and (denoising or (noise and remov) or clean))

= | Michael Elad
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Image Denoising: Little bit of History

Citing Articles:

USA: 140524 .

China: 45284 This research comes from all over the globe

Germany: 29272

France: 35585

England: 24090

Canada: 18325

Spain: 17880

Israel: 13988

Australia: 13358

Switz.: 12504

Japan: 12389

Italy: 11754

Netherland:10455

India: 8830

Finland: 7842

Korea: 7558

Belgium: 5027

Singapore: 4964

Brazil: 4849

Taiwan: 4134

Iran: 3112 L. . .

russia: 2595 | ... and it is heavily cited
Michael Elad
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Design of Image Denoising Algorithms

How can we designh a denoiser?

The classic Bayesian approach (1960-2014):

* Model image content with a prior expression (e.g., forcing smoothness, sparsity, low-
rank, self-similarity, ... ), and

" Formulate the denoising task as an optimization problem

—

R = min ||x — y||*+

X Design an iterative or
Likelihood

a direct algorithm for

y : Given noisy image get’ung < from y

X : Denoised result
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Image Denoising: Evolution

Sparsity Methods
NCSR BM3D Patch-Methods

L,-based Robust PDE-Methods
KSVD Kernel-Regr.

Regularization statistics Anisotropic Diffusion e
Wiener Hubber-Markov Beltrami

¢ £  § fwi 4

1970 1975 /1980 1985 1990 1995 2000 / 2005 2010 2@15

Heuristic: - Low-Rank
Heuristic Bilateral ~ Self-Similarity

: Wavelet Methods WNNM
Spatially Thresholding NLM-PCA T
adaptive Cycle-Spinning NLM .

filtering G5M SURE NL-Bayes
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End of an Era?

This evolution of algorithms and the tendency of different methods to
perform very similarly has led to a feeling that “Denoising is Dead”

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4, APRIL 2010

Is Denoising Dead?

Priyam Chatterjee, Student Member, IEEE, and Peyman Milanfar, Fellow, IEEE

Abstract—Image denoising has been a well studied problem in
the field of image processing. Yet researchers continue to focus at-
tention on it to better the current state-of-the-art. Recently pro-
posed methods take different approaches to the problem and yet
their denoising performances are comparable. A pertinent ques-
tion then to ask is whether there is a theoretical limit to denoising
performance and, more importantly, are we there yet? As camera
manufacturers continue to pack increasing numbers of pixels per
unit area, an increase in noise sensitivity manifests itself in the form
of a noisier image. We study the performance bounds for the image
denoising problem. Qur work in this paper estimates a lower bound
on the mean squared error of the denoised result and compares the
performance of current state-of-the-art denoising methods with
this bound. We show that despite the phenomenal recent progress
in the quality of denoising algorithms, some room for improve-
ment still remains for a wide class of general images, and at certain
signal-to-noise levels. Therefore, image denoising is not dead—yet.

Index Terms—Bayesian Cramér-Rao lower bound (CRLB),
bias, bootstrapping, image denoising, mean squared error.

I. INTRODUCTION

MAGE dcnomnﬂ has been a wull smdu.d problt_m in

erature on such performance limits exists for some of the moi
complex image processing problems such as image registratic
[7], [8] and super-resolution [9]-[12]. Performance limits {
object or feature recovery in images in the presence of poin
wise degradation has been studied by Treibitz er al. [13].
their work, the authors study the effects of noise among othg
degradations and formulate expressions for the optimal filterin|
parameters that define the resolution limits to recovering ar
given feature in the image. While their study is practical,
does not define statistical performance limits to denoisin
general images. In [14], Voloshynovskiy et al. briefly analy
the performance of MAP estimators for the denoising problen
However, our bounds are developed in a much more gener
setting and, to the best of our knowledge, no comparable stud
currently exists for the problem of denoising. The prese
study will enable us to understand how well the state-of-the-a
denoising algorithms perform as compared to these limit
From a practical perspective, it will also lead to understandin
the fundamental limits of increasing the number of sensors
the imaging system with acceptable image quality being mad
possible by noise suppression algorithms.

Before we analyze image denoising statistically, we first d
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CVPR 2011

Natural Image Denoising: Optimality and Inherent Bounds

Anat Levin

and Boaz Nadler

Department of Computer Science and Applied Math
The Weizmann Institute of Science

Abstract

The goal of natural image denoising is to estimate a
clean version of a given noisy image, utilizing prior knowl-
edge on the statistics of natural images. The problem has
been studied intensively with considerable progress made
in recent years. However, it seems that image denoising
algorithms are starting to converge and recent algorithms
improve over previous ones by only fractional dB values. It
is thus important to understand how much more can we still
improve natural image denoising algorithms and what are
the inherent limits imposed by the actual statistics of the
data. The challenge in evaluating such limits is that con-
structing proper models of natural image statistics is a long
standing and yet unsolved problem.

To overcome the absence of accurate image priors, this
paper takes a non parametric approach and represents the
distribution of natural images using a huge set of 10'°
patches. We then derive a simple statistical measure which
provides a lower bound on the optimal Bayesian minimum
mean sqz/are error (MMSE) Tlus tmpose_v a [lml[ on the

ever, it seems that the performance of denoising algorithms
is starting to converge. Recent techniques typically improve
over previous ones by only fractional dB values. In some
cases the difference between the results of competing algo-
rithms is so small and inconclusive, that one actually has to
successively toggle between images on a monitor to visually
compare their denoising quality. This raises the question of
whether the error rates of current denoising algorithms can
be reduced much further, or whether there are inherent lim-
itations imposed by the statistical structure of natural im-
ages? The goal of this paper is to derive a lower bound on
the best possible denoising error under a well defined sta-
tistical framework. Such a bound can help us understand
if there is hope to significantly improve the current state-
of-the-art image denoising with even better algorithms, or
whether we have nearly approached the fundamental limits.

Understanding the limits of natural image denoising is
also important as an instance of a more fundamental com-
puter and human vision challenge: modeling the statistics
of natural images and understanding the inherent limits of
their statistical power. Several works attempted to estimate
the entropy of natural images However. there is




End of an Era?

And so, somewhere around 2010-2012, the general
feeling in our community was that ...

We are currently touching the ceiling in denoising
performance and chances of improving them are very slim

e

There is no point in devising new denoising methods

e

Work in this field has diminishing returns

Well, We Were Wrong !

Michael Elad
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End of an Era?

Wrong ? How?

The past decade has taught us that image denoising is still

[very much alive and kicking}

due to several branches of novel activity on:

" QObtaining better performing denoisers with deep learning

= New frontiers in denoising:
o Better adaptation to image content
o Denoising strategies that go beyond PSNR
o Identifying alternative methods for designing/training denoisers
o Extending the denoising task to realistic noise, and

= Discovering new ways for leveraging denoisers for other needs

Michael Elad
The Computer-Science Department
The Technion
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Design of Algorithms: Take 2

How can we ALTERNATIVELY design a denoiser?

The machine learning approach (2012-Now):

= Gather a LARGE dataset of clean images {xy }h-+
= Add AWGN these images: {yx = Xy + nk}llle

= Define a parametric denoising machine Dg(y)

= Train Dg(m) by setting its parameters 0:

N
min z”Xk — Do (y1) 1%
k=1 e

Xk

Michael Elad
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Image Denoising: A Paradigm Shift

Learning

How can we desigh a denoiser?

By modeling image content and leveraging it for noise filtering:

: Scal Invar
SPa gl RePl"esenfa‘thl‘) cale Invariance @
Piecewise Smoothness
Ce Lo dimensionali
Non-Local Self-Similarity @ ow dimensionality

Observe that with this

trend, all the knowledge

and knowhow accumulated carefully

Supervised Training over decades in image processing
became TOTALLY OBSOLETE

Michael Elad
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Image Denoising: Recent Evolution

Initial Steps - MLP Deep Shrinkage Deep Image Prior
(Burger et. al) Isogawa et. al (Ulyanov & Vedald Noise2Void

CVPR 2012 |EEE-SPL 2017 CNLNet CVPR 2018 (Krull et. al)
TNRD (Lefkimmiatis;
(Chen & Pock) CVPR 2017
|EEE-TPAMI 2016

x £ § ¥4

CVPR 2019

2012 2013 2014 2015 20164/ 017 218 2719

FFDNet (blin
(Zhang et. /

DnCNN - 1egETiP 2

Encoder |EEE-TIP 2017
(Cho) Learnea rrox GAN-baseu

ICML 2013 (Meinhardt et. al) (Chen et. al)

ICCV 2017 CVPR 2018
= | Michael Elad
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Batch
Renormalization
(Tian et. al)
Neural Networks

2020
Neural NCLVVUl no
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Image Denoising: Return of the Classics

1 In recent years deep learning is ruling the image
denoising domain, pushing aside all the classical
methods, along with their great achievements

d Recently, however, we do see a synergy
between the two paradigms

[ Recall: In building a supervised deep learning
denoiser solution, we operate along the following lines:

Gather Define an Define a cost Train and hope
training data » architecture for » function (loss) » for good
to use the Denoiser to optimize generalization

Michael Elad 23
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Image Denoising Architectures

So, how do we choose an architecture for a given task?

Option 1 - Copy an existing network that has shown good results in earlier work
(VGG, U-Net, ...), and slightly modify it

Option 2 — Pile and Guess a series of steps that mix known pieces such as
convolutions, fully connected layer, batch-norm, RelLU, pooling, stride, skips,
upscale/downscale, connections, ... and add new “tricks”

Option 3 — Neural Architecture
Search (NAS)

g
3
&
@
o
o
]
P
)

Input layer =———» C] —> P2

Ly Michael Elad '\]ZTTI.,:;L Pnnll]:;g size
¥ The Computer-Science Department 6148
The Technion

sampling
. Neuron Neuron
number number
Flatten 100 B
Ing s1ze
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Image Denoising Architectures

Here are several paper examples from CVPR/NIPS 2019
that illustrate these architectures

Meta-SR: A Magnification-Arbitrary Network  Noise2Void - Learning Denoising from Single Noisy Images

“12  Haoyuan ] ) Alexander Krull*?, Tim-Oliver Buchholz?, Florian Jug : Toward Blind Noise
I Univ Model-blind Video D¢ : krull@mpi-cbg.de omanvwal

2 Center for Research 2 Authors contributed equally
Jihm

Xuecai Hu

ographs
Thibaud Ehret MPI-CBG/PKS (CSBD), Dresden, Germany

aroroaviay, SroJg caviidll, Lranve VIS TINULS T DTl T v auind

. Gabriele Facciq | Zhang34
Dual Residual N . L
CN CVPR 2019: U-Net-based with 3.8e6 params Shenzhen;
. Université F y, Alibaba Group

thibaud.ehret@ens—-cachan.fr mzuo, yanzifei}@hit.edu.cn 'ning

p LiuT . 51zhang@comp.polyu.edu.hk
e s CVPR 2019: DnCNN-based with 5.5e5 params
raduate School of ue van Gool? I

VFIN ZULY. -wased with 5.3e6 params

{ryu, suganuma, zhun, okatani}@vision.is.toho

Il 1 U, 17 L 11 £ iUl 1vily b VY LL VL LIS

. . mofte, vangool}@vision.ee.ethz.ch
. . T Ail 2
CVPR 20109: Blg network with ~8e5 params ity ﬁr{;?mi\a Group, ETH Zurich, Switzerland, “Microsoft, USA

o 1i, marc.pollefeys}@inf.ethz.ch

CVPR 2019: [ NIPS 2019: U-Net-based with 1.1e6 params e network with 4e6 params

= | Michael Elad 25
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Alternative Architecture Design

(d Message: One can do far better in choosing architectures by relying on unfolding
algorithms from the classics of image processing

[ The benefits in such architectures:

= They are far more concise yet just as effective as leading methods
= They are easier to train because they are lighter

= They have the potential to break current performance barriers

= They may bring better understanding and explainability

= They enable better adaptation to out of distribution images

(1 Here are few representative examples:

= Rethinking the CSC Model [Simon & Elad, NeurIPS "19]

= LIDIA: Non-Local & Multi-Scale Denoising [Vaksman, Milanfar & Elad, CVPR (NTIRE) "20]
= Deep KSVD Denoising [Scetbon, Milanfar & Elad, IEEE-TIP "21]

= PatchCraft: Non-Local Video Denoising [Vaksman, Elad & Milanfar, ICCV "21]

= | Michael Elad
¥ The Computer-Science Department
The Technion
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Paper #1: Deep K-SVD

1 In 2006, we developed a new and highly effective image denoising alg. by relying
on sparsity of image patches and a learned dictionary

 This was state-of-the-art for a while, until beaten by competition (BM3D, NCSR,
TNRD, WNNM, ...)

( Over the years, various
improvements of it came
up — e.g. exploiting joint
sparsity [Mairal et. al. ‘09] Or
leveraging the EPLL

AY
[SU|a m et. al. 15] Abstract—We address the image denoising problem, where we intend to concentrate on one specific approach towards the
zero-mean white and homogeneous Gaussian additive noise is to  image denoising problem that we find to be highly effective and
be removed from a given image. The approach taken is based

D A n d re C e n t I We d e C i d e d A . e promising: the use of sparse and redundant representations over
) y on sparse and redundant representations over trained dictio- -

naries. Using the K-SVD algorithm, we obtain a dictionary that trained dictionaries.

to revisit this metho d describes the image content effectively. Two training options are US"’% redunc?a‘m I'E[.?I‘EE.SEHIIHIDHS and sparsity as driving
oo considered: using the corrupted image itself, or training on a forces for denoising of signals has drawn a lot of researc
corpus of high-quality image database. Since the K-SVD is limited gattention in the past dec
in handling small image patches, we extend its deployment to
arbitrary image sizes by defining a global image prior that forces
sparsity over patches in every location in the image. We show how

Image Denoising Via Sparse and Redundant
Representations Over Learned Dictionaries

Michael Elad and Michal Aharon

wavelet coefficients was considered, leading to the celebrated
algorithm [1]-[9]. One reason to turn to redundant

e | Michael Elad such Bayesian treatment leads to a simple and effective denoising Tepresentations was the desire to have the shift invariance 27
The Computer-Science Department algorithm. This leads to a state-of-the-art denoising performance, property [10]. Also, with the growing realization that regular
The Technion equivalent and sometimes surpassing recently published leading separable 1-D wavelets are inappropriate for handling images,

alternative denoising methods. several new tailored multiscale and directional redundant



Paper #1: Deep K-SVD

1 In 2006, we developed a new and highly effective image denoising alg. by relying
on sparsity of image patches and a learned dictionary

 This was state-of-the-art for a while, until beaten by competition (BM3D, NCSR,

TNRD, WNNM, ...)

( Over the years, various

... And recently we decided

improvements of it came
up — e.g. exploiting joint
sparsity [Mairal et. al. ‘09] Or

leveraging the EPLL
[Sulam et. al. "15]

to revisit this method ...

Michael Elad
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Deep K-SVD Denoising

Meyer Scetbon™, Michael Elad™, Fellow, IEEE, and Peyman Milanfar, Fellow, IEEE

Abstract— This work considers noise removal from images,
focusing on the well-known K-SVD deno o algorithm. This
sparsity-based method was proposed in and for a short
while it was considered as state-of-the-art. However, over the
years it has been surpassed by other methods, including the
recent deep-learning-based newcomers. The question we address
in this paper is whether K-SVD was brought to its peak in
its original conception, or whether it can be made competitive
again. The approach we take in answering this question is to
redesign the algorithm to operate in a supervised manner. More
specifically, we propose an end-to-end deep architecture with
the exact K-SVD computational path, and train it for optimized
denoi . Our work shows how to overcome difficulties arising
in turning the K-SVD scheme into a differentiable, and thus
learnable, machine. With a small number of parameters to learn
and while preserving the original K-SVD e, the proposed
architecture 1wown to outperform the al K-SVD algo
rithm substantially, and getting closer to recent state-of-the-art
learning-based denoising methods. Adopting a broader context,
this work touches on themes around the design of deep-learning
solutions for image processing tasks, while paving a bri
between classic methods and novel deep-learning-based on

further broadeni

that it is the simplest inverse problem, in denoising has
become the entry point for many new ideas brought over the
years to the realm of image pr i Over ¢
several decades, many im
proposed and tested, formi
gradually improved performance.

A common and systematic approach for the design of

algorithms is the Bayesi:
e priors, used as regularizers within the

Maximum a Posteriori (MAP) or the Minimum
Error (MMSE) estimators. In this paper we

per. The authors of [11] defined

s sparsity over patches in every

|4 ctarte by # + tha



Paper #1: Deep K-SVD

So, how does the original K-SVD denoiser work?

Noisy Image

g

Universal Dictionary

Denoise
each patch
using OMP

Update the
Dictionary

Reconstructed Image

Core idea: Assume that all patches obey sparse modeling
minflafly s.t. [[Da—Riyll; < T

Michael Elad
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Paper #1: Deep K-SVD

Unfolding this Algorithm:

= All patches (with full overlaps) go through the same “pursuit” in parallel

= OMP problematic (L,, greedy) — Use LISTA [Gregor & LeCun "00] (7 iterations): A 52
min [lall; + 2[[Do— R;y|l3 .
- agsq = Safo + cDT(Doy — Ryy)} [ISTA] / S
= Each patch should get a dynamic # of non-zeros
— Get an adaptive A by another small network

Bottom Line:
= The dictionary and few other parameters are learned in a supervised fashion

=  Qur reference: DnNCNN (550K params) [Zhang, '17]. Using 45K params only, this elementary
method improve substantially over its original version, and gets very close to DnCNN

Michael Elad 29
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Paper #2: Non-Local and Multi-Scale

[ Two key forces that the previous work has totally failed to =
use are (i) self-similarity and (ii) multi-scale connections

( BM3D [Dabov et. al 2007]: A highly effective denoiser based
on sparsity and self-similarity

[ Core idea: Gather similar patches to 050 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16,NO. 8, AUGUST 2007

10 o] [0[o, IR LIN N IRETNNEIIAE [ mage Denoising by Sparse 3-D Transform-Domain
U Our idea: Unfold this algorithm, Collaborative Filtering

Kostadin Dabov, Student Member, IEEE, Alessandro Foi, Vladimir Katkovnik, and

augment it with a multi-scale Karen Egiazarian, Senior Member, IEEE
treatment, and design it via
Abstract—We propose a novel image denoising strategy based convey mostly the true-signal energy and discarding the rest

supe rvi se d I earn i N on an enhanced sparse representation in transform domain. The  which are mainly due to noise, the true signal can be effectively
p g enhancement of the sparsity is achieved by grouping similar 2-D .o mated. The sparsity of the representation depends on both
image fragments (e.g., blocks) into 3-D data arrays which we call

“groups.” Collaborative filtering is a special procedure developed the transform and the true-signal’s properties.

D LI D I A . O u r r e C e nt W O r k Wit h to deal with these 3-D groups. We realize it using the three suc- The multiresolution transforms can achieve good sparsity

. cessive steps: 3-D transformation of a group, shrinkage of the for spatially localized details, such as edges and singularities.

. . transform spectrum, and inverse 3-D transformation. The result Because such details are typically abundant in natural images

t h I S u nfo I d I n a ro a C h is a 3-D estimate that consists of the jointly filtered grouped image ;g convey a significant portion of the information embedded
blocks. By attenuating the noise, the collaborative filtering reveals . L . on .

. therein, these transforms have found a significant application
even the finest details shared by grouped blocks and, at the same | . o S )

time, it preserves the essential unique features of each individual {0r image denoising. Recently, a number of advanced denoising

block. The filtered blocks are then returned to their original methods based on multiresolution transforms have been de-

e Michael Elad positions. Because these blocks are overlapping, for each pixel, veloped, relying on elaborate statistical dependencies between
. /e obtain many different estimates which need to be combined. ffici f ically over 1 o.. translation-in-
The Computer-Science Department we obialn man; ¢ tmat fo be combin coefficients of typically overcomplete (e.g., translation-in
p- P Aggregation is a partllc.u'lar averaging pmcﬁd“.r e w hlc.h isexploited o0t and multiply-oriented) transforms. Examples of such
The Technion to take advantage of this redundancy. A significant improvement

image denoising methods can be seen in [1]-[4].

is obtained by a specially developed collaborative Wiener filtering.



Paper #2: Non-Local and Multi-Scale

[ Two key forces that the previous work has totally failed to =
use are (i) self-similarity and (ii) multi-scale connections

( BM3D [Dabov et. al 2007]: A highly effective denoiser based
on sparsity and self-similarity —

SRR

[ Core idea: Gather similar patches to 050 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16,NO. 8, AUGUST 2007

E{DR [T SRS EIS N CRUTINNNUME [ma0e Denoising by Sparse 3-D Transform-Domain
U Our idea: Unfold this algorithm, Collaborative Filtering

augment it with a multi-scale T —

treatment, and design it via

supervised learning Gregory Vaksman Michael Elad Peyman Milanfar

CS Department - The Technion Google Research Google Research

grishav@campus.technion.ac.il melad@google.com milanfar@google.com

LIDIA: Lightweight Learned Image Denoising with Instance Adaptation

J LIDIA: our recent work with
this unfolding approach Abstract

Image denoising is a well studied problem with an exten-

s | Michael Elad sive activity that has spread over several decades. Leading
The Computer-Science Department classical denoising methods are typically designed to ex-

The Technion ploit the inner structure in images by modeling local over-

lapping patches, and operating in an unsupervised fashion.




Paper #2: Non-Local and Multi-Scale

Extract
overlapping
patches

Filtering Combine
eoe overlapping
network |, 3 patches

Reconstructed
image
/W X N

Weight
net {\«V :
1 — O

J The proposed architecture implements the ideas oncn
mentioned above in a simple a direct way 2" FFDNet
NLMS
] L] o
U This illustrates the performance vs. #of parameters S N
for various networks 29 ML

O UNLNet
OLKSVD
O TNRD

e | Michael Elad ; .
¥ The Computer-Science Department Kikikitiiis o Padiasridllih
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Paper #2: Non-Local and Multi-Scale

1 An additional and unexpected benefit: Fast and effective adaptation capability

Beijing is an impc world ¢

culture, diplomac

technology. A me; - >cond | st Chinese
and is the nation’s cultura ) al center
of China's largest state

companies in the world, 2

major hub for the national highway, expres:

Capital International Ai

[18 , @ f 2 , the bway network i
Combining both modern and rraditional architecn

witha 1 history dating back three millennia. As the la
Beijing has been the 2 f the country for

(a) Clean text (704 x

1l and global power city, and one
and nomy, education, la

city b technology ega A - nd hir i Y > second | st Chinese city b
15] Itis & : n i tics 5 i i > nal s C and political center.[15] It is

and houses the la
companies in t r ell as the world's four biggest
major hub for the nal ay, expressway, railway, and high
Capital International Ai 1 has been the nd busiest in the worl
s subway netwo s the bus
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Paper #2: Non-Local and Multi-Scale

1 An additional and unexpected benefit: Fast and effective adaptation capability
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Summary — Synergy of Classics and Deep Does Exist

1 The right way to build solutions to imaging tasks goes as follows:

Unfold Apply
this to a Supervised
Network Learning

Modeling Algorithm

the Data Development

(1 What should be taken into account for the algorithm’ design?
* The degradation and noise statistics (“the physics”)
" Prior on the image: (i) Non-Local self similarity; (ii) multi-scale connections; & (iii) Sparsity or other
form of simplicity (e.g. low-rank)
= The objective (e.g., MMSE)

 More broadly, sparse modeling of data could be key
" |n explaining existing deep-learning architectures
" |n creation of new ones
" |n bringing theoretical understanding to deep-learning
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The Computer-Science Department
The Technion®




Still Unanswered

Open Questions:
(1 When designing an algorithm (and thus a network) for solving inverse
problems, should we consider MMSE or MIAP?

1 It will be great to see this advocated rationale breaking
existing performance barriers — this is yet to happen

 What about using this rationale for supporting unsupervised solutions? Recall
the K-SVD denoising with an adapted dictionary

1 Denoising is a regression task, like many others in computational imaging.
However, what about recognition or synthesis tasks?

S | Michael Elad 34
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Our Focus Today:
Recent Discoveries
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Our Focus Today

Recent findings on using denoisers for other tasks:

M Discovery 1: Solving general inverse problems [2013-]
[ Discovery 2: Image Synthesis [2019-]
[ Discovery 3: High perceptual quality recovery [2021-]

We turn to describe these results

Noisy Image Denoiser M \J PenoisAed
image y D(y, o) (L /ﬁm | image X

Michael Elad 36
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Discovery 1: Solving Inverse Problems

Inverse Problems: Recovery of images from corrupted measurements

De-Blurring
In-Painting

De-Mosaicing

Tomography

N N Ny B

Image Scale-Up
& super-resolution

... and more ...

Michael Elad
The Computer-Science Department
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Discovery 1: Solving Inverse Problems

How can we solve inverse problems?

We can return to the classic Bayesian approach:

=" Model image content with a prior expression (e.g., forcing smoothness, sparsity, low-
rank, self-similarity, ... ), and

" Formulate the inversion task as an optimization problem

- " This is known as MAP estimation
" |t is an extension of the classic denoising,
R = min ||Hx — y||?+ tailoring methods for inverse problems
* Likelihood = This approach leads to iterative algorithm for

y : Given measurements getting X from y _ . .
2 - Denoised result " |s there a supervised learning alternative?

Definitely!

= | Michael Elad 38
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Discovery 1: Solving Inverse Problems

Question: Given a denoiser D(y, 0)
how can one solve inverse problems with it?

F’qu and rala\,r pnmq for mmdel haqed reconstruction

Ill—l— [ - 1 ~ - I - || F n-—-..lll' Sl L Y o =L

Answer: Use D(y, o) as a regularizer

Practical Implication: Iterated use of D(:, o)

y Simpl-e - D(-,6) - Simpl-e - D(-,6) =) Simpl-e --

Operation Operation

= | Michael Elad 39
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Discovery 1: Solving Inverse Problems

Here is (roughly) the PnP Perspective in a nutshell:
= Recall: Inverse problems can be formulated as optimization tasks:
1
X = minz IHx — ylI* + p(x)
X
= Let’s do something “stupid” and split the unknown: ... and this way we got an
o — min% IHx — y|I2 + p(v) s.t. x=v iterated algorithm that
=Y keeps calling to a denoiser,
for solving the inverse
problem

= Now, turn the constraint into a penalty*
%= min_[IHx — yI12 + p(v) + Bllx v
= And solve by alternating between x and v
= Least-Squares: R = mXin% IHx — y||? + Bl|x — v||?

= A denoiser: ¥ = min p(v) + Bllx — v||?
Vv

Michael Elad 40
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Discovery 1: Solving Inverse Problems

Here is the RED Perspective in a nutshell:

Let’s start again with the formulated optimization task,
and suggest a very specific regularization term:

1 1
% = min=||Hx — y||? + p(x) = min= ||Hx — y||? + A&x"[x — D(x, 0)]
X 2 x 2 g W

’ ~"
Let’s use the Under mild conditions* the
Steepest Descent gradient of this is [x — D(x, 0)]

Ricrr = Rk — 1 [HT (& — ) + ARy — DRy, 0)]]

... and this way we got an iterated algorithm that keeps calling to a denoiser,
and is guaranteed to achieve the minimum

* Differentiability, local homogeneity, passivity and symmetric Jacobian (MMSE)

Michael Elad 41
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Discovery 1: Solving Inverse Problems

Here are some results for Deblurring and Super-Resolution

A .‘ i‘

(b) Input 20.83dB ) RED: SD-Median filter 25.87dB (a) Bicubic 20.68dB

-

) NCSR 28.39dB ) P3-TNRD 28.43dB ) RED: FP-TNRD 28.82dB (c) P>-TNRD 26.61dB (d) RED: SD-TNRD 27.39dB
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Discovery 1: Solving Inverse Problems

Plug-and-play priors for model based reconstruction

L PnP and RED are heavily  [E/iyStiesy ey
C|ted and extens'vely 2013 Global Conference on Signal and Information Processing, 945-948
StUdled' owing to their The little engine that could: Regularization by denoising (RED)
generality and elegance i

1 Follow-up work focuses on

= Proving convergence to the desired solution and tying these to properties of the permissible
denoisers (e.g. MMSE ...)

= Deployment in various applications
=  Creation of new variants of these two methods ... and ...

[ Unfolding all over again: PnP/RED can be used to define well-motivated architectures
for solving general inverse problems, built around a core learned denoising engine

S | Michael Elad 43
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Discovery 2: Image Synthesis

[ In recent years, and with the deep-learning revolution, there is
a growing interesting is synthesizing images “out of thin air”

 The popular tool of interest is called GAN — Generative
Adversarial Network, built of two competing networks
— a generator and a critique

d Why synthesize? Because
= We can, and it is fascinating

= |t testifies that we have seized the distribution of images, and

= |t could be used
for other needs

1 Could we synthesize
images differently?

Michael Elad
The Computer-Science Department
The Technion
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Discovery 2: Image Synthesis

Question: Given a denoiser D(y, o)
how can one synthesize images with it?

Simple
Operation Operation

S | Michael Elad 45
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Discovery 2: Image Synthesis

Here is the core idea in a nutshell:
Our goal: draw a sample from the distribution of images P(x)
= Start with a random noise image X,
= Climb to a more probable image by the iterative equation:
Rk+1 = Xk + a -\VlogP(ka)/+b - Zx  (Langevin Dynamics)
This suggests an implicit relation
“ between MMSE denoisers and

Priors: D(x,0) <> P(x)

This is known as the Score Function and
it is approximately proportional to
|Xi — D(Xy, 0)] for a small value of o

... and this way we got an iterated algorithm that keeps calling to a denoiser, and is
guaranteed to obtain a sample from P(x)

Michael Elad 46
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Discovery 2: Image Synthesis

In practice, instead of the plain Langevin with a fixed
(and small) value of 0 we use the Annealed Langevin
Algorithm that considers a sequence of blurred priors:

P(x+v) for V~N(O, 012(1)
— : L sz
= P(x) ®c-exp{—— x|}
with 60 > 04 >0, - >on >0
The core idea: start by drawing
from a wider distribution and

gradually narrow it, leading to
a faster sampling performance

= | Michael Elad
¥ The Computer-Science Department
The Technion
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Discovery 2: Image Synthesis

Does it work? Here are some results

.m&*ﬁﬁ

\W-‘ E.\“--l.- L ub'L ..-:

Kadkhodaie & Simoncelli

Michael Elad
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Diffusion Models Beat GANs on Image Synthesis

Discovery 2: Image Synthesis

Claim: diffusion-based methods are
the best in image synthesis B el Al

prafullaopenai.com alex@openai.com

Abstract

We show that diffusion models can achieve image sample quality superior to the
nt state-of-the-art generative models achieve this on unconditional im-
synthesis by finding a better architecture through a series of ablations. For
conditional image synthesis, we further improve sample quality with classifier guid-
ance: a simple, compute ent method for trading off diversity for fidelity using
gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128x 128,
4.59 on ImageNet 256x256, and 7.72 on ImageNe! x512, and we match
even with as few ¢ orward pass i all while main-
taining better coverage of the distribution. Final ind that classifier guidance
combines well with upsampling diffusion models, further i /ing FID to 3.94
on ImageNet 256256 and 3.85 on ImageNet 512x512. We release our code at
https://github.com/openai/guided-diffusion.

1 Introduction

ffusion (FID 4.59)

BigGAN (FID 6.95) D
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Discovery 3: Targeting Perceptual Quality

Suppose that we need to denoise the following image:

Image
Denoiser

Denoised image

Should we be
pleased with this
result? It seems
to be a bit ...
blurry, no? Why?

Michael Elad
The Computer-Science Department
The Technion

Image
Manifold

MMSE Result
E{x|y}

Original

Minimum Mean-
Squared-Error (MMSE)
denoisers are great for

MSE result, but their
result falls outside the
manifold
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Discovery 3: Targeting Perceptual Quality

Question: How can we denoise an image
while targeting “High Perceptual Quality”?

ngh perceptual quahty image denomﬂg with a posterior sampling cgan
G Ohayon G\ -z-:lr.:-:- nan, M Elad, P Milanfar
E VF Internat Conference on Compute

Answer: Denoise by sampling from the posterior P(x|y)

Practical Implication: We consider 2 methods These methods

* Training a deep denoiser via CGAN, or - produce a multitude

" lterated use of an MMSE denoiser D(,0) of possible solutions

= | Michael Elad 51
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Discovery 3: Targeting Perceptual Quality

Let’s have a closer look at the Stochastic Image Denoiser:

Task: Draw a sample from P(x|y) where [y = x + n,n~N(0, 631)]

= Start with a random noise image X,

= Climb to a more probable image by the iterative equation:
Rier1 = K +a - VlogP(Re|y) + b - 2 « Langevin with a
- ~ s

Michael Elad

Bayes rule

conditional Score

j = VlogP (%) + VlogP(y|Xy)

The Computer-Science Department

The Technion

= X —D(Xy, 0) + VlogP(y|Xy)
NG /) NG %

-
Approx. Score

"
Looks like a simple Gaussian Distribution

52



Discovery 3: Targeting Perceptual Quality

Let’s have a closer look at the Stochastic Image Denoiser:
VlogP(Xk|y) = Xk — D(Xk, 0) + VlogP(y[Xy)
=" As we use the Annealed Langevin algorithm, there are two noise signals
to consider:
o Measurement’s noise: n~N(O, G(Z)I)
o Synthetic annealing noise: V~N(O, (512(1) forog >0, >0, - >0y >0

* |Implication: We recover a sequence of gradually less noisy images Xy
where their noise v is assumed to be a portion of n

VlogP (X |y)= Xk —D(Xy, oy) + 2 2
Op — Ok

= | Michael Elad
¥ The Computer-Science Department
The Technion

53



Discovery 3: Targeting Perceptual Quality

Stochastic Image Denoiser:

= We start from a noisy image (o = 150 in this example)
* Then gradually denoise it using (conditional) annealed Langevin dynamics

Michael Elad 54
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Discovery 3: Targeting PeretuIQ_

uality
o P Sl g

Stochastic Image Denoiser:

Michael Elad
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Discovery 3: Targeting Perceptual Quality

Let’s have a closer look at the Conditional GAN Denoiser:

 Typical design approach: Optimize a distortion measure (e.g. MSE) between
the denoised and the ideal images

1 Adversarial loss could be added to improve the

perceptual quality D Denoised
oo * Noisy

Critic

Denoiser

(1 However, when used together, we get a compromise
between distortion and perceptual quality

Michael Elad 56
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Discovery 3: Targeting Perceptual Quality

Perception

[ For ill-posed restoration tasks, perceptual quality
performance comes at the expense of its distortion
[Blau & Michaeli 2017]

(1 We aim for best perceptual quality

[ The posterior distribution attains perfect perceptual
quality, compromising 3dB compared to the MMSE prm— Distortion

Less Distortion

Possible
Region !

Alg. 3
Impossible o
Region

o
0]
—~
—+
(0]
=
=,
(%]
c
L
Qo
c
L
=
<

o
Alg. 4!

(1 We propose to sample from the posterior via a
Conditional GAN mechanism (PSCGAN)

Samples from Pxy—y

x~Px ¥y~ Pyx=x -

= | Michael Elad
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Discovery 3: Targeting Perceptual Quality

The PSCGAN Architecture:

Random
noise z

Denoised

Randomized

\ 4

\ 4

Why use y in the critic? Without it, we E )
check only the perceptual quality of the :
denoised result. With it, we also assess Original

its denoising validity

Michael Elad 58
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Discovery 3: Targeting Perceptual Quality

What about the Loss?
d CGAN optimization leads to posterior sampling [Adler et al. 2018]:

mein m(f):lx ]EX,Y [C(JL) (X, Y)] I ]EDe,Y,Z [C(JL) (DG’ Y)]

d However, this requires an unavailable balanced dataset to train on

many X’s for each y and many y’s for each x

(. J N\ J
Y Y

Impossible !! Easy

(d On the other hand, we would like to avoid a penalty of the form: [EX’Y’Z[”X — Dg(y, z)ll%]

d  Our remedy: adding an MMSE oriented penalty term of the form: [EX,Y[IIX — E,[Dgly] II%]

[ This gives the MMSE result “for free” (averaging many instances)
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Discovery 3: Targeting Perceptual Quality

Z.
<
O
O
70!
Q‘ B

DnCNN

Michael Elad
The Computer-Science Department
The Technion




Michael Elad

Oh ... and One Last Thing
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Back to Inverse Problems

4 Goal: Recovery from corrupted NEENIE0E NS
De-Blurring
De-Mosaicing

Tomography

 Can we suggest a “sampler” from P(x|y) for handling
all these problems, for getting “perfect looking” results?

J Answer: Yes! Use Langevin dynamics again, in an adapted form

Snips: Solving noisy inverse problems stochastically

Denoising Diffusion Restoration Models

= | Michael Elad 62
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Back to Inverse Problems

1 The idea is similar to our high-perceptual denoising, with necessary changes for
considering the degradation operator H ...

 Starting naively, using Bayes theorem, we need to calculate
Vlog P(y[x;)
L We know that y = Hx + n and thus:
VlogP(y|x;) = VlogP(y — Hx;[x;) =
VlogP(Hx + n — Hx — Hv;|x;) = VlogP(n — Hv;|x;)

L However, ... while n — Hv; is a simple Gaussian, it’s dependency
on X; in non-trivial, so how do we proceed from here?

= | Michael Elad
¥ The Computer-Science Department
The Technion
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Back to Inverse Problems

O Step 1: Use SVD for decoupling the measurements H = UZV!:

UTy = UT|UzVT(x; — v;) + n| = ZVT(x; — v;) + UTn = 2% — 2% + np = yp
\“—y=Hx+n—

mm) v [k] = o, %r[K] — 0y Vr[K] + np[K]

Decouple X7[k] <> V[k] by choosing
Vr|K] to be a portion of ny[K]

 Thus, we can apply the Langevin dynamics algorithm on
% = VIx; given yr = Uly and sample from the conditional

] Bottom line: An MMSE denoiser is used for a novel solution of inverse
problems, this time targeting best perceptual quality

S | Michael Elad 64
¥ The Computer-Science Department
The Technion




Back to Inverse Problems

Noisy Inpainting: A portion missing and noise with gy = 25

Observed Clean

Sample

Sample

Michael Elad
The Computer-Science Department
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Back to Inverse Problems

Super resolution: downscaling by 4 with additive noise of gy = 25

Original Low-res Samples from our algorithm

Michael Elad 66
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Back to Inverse Problems

Super resolution: downscaling by 4 with additive noise of gy = 12

Original Degraded Samples from our algorithm Mean

Michael Elad 67
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Back to Inverse Problems

Deblurring: uniform 5 X 5 blur with additive noise of gy = 25

| . ? 3c . |

Original Blurred Samples from our algorithm Mean std
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Back to Inverse Problems

Compressive sensing (12.5%) with additive noise of gy = 25

\ o 8 s i s

Original Degraded Samples from our algorithm Mean

Michael Elad
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Back to Inverse Problems

Compressive sensing (12.5%) with additive noise of gy = 25

[ : s 7
x

Original Degraded

Samples from our

Michael Elad - ! 3 , 69
The Computer-Science Department Original Degraded  Sample std
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Back to Inverse Problems

And just to remind you ...

The proposed diffusion-based sampling scheme, while quite appealing, suffers from
several key shortcomings:

M Itis rather SL O W (many denoising activations)
It is limited (as of now) to specific families of images
 Relying on SVD is cumbersome

See our recent work that answers (most of) these challenges:

Denoising Diffusion Restoration Models
B Kawar, M Elad, S Ermon, J Song
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Time to Summarize

Michael Elad
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What Have we Seen Today?

[ Suppose that we are given an MMSE denoiser D(y) }
N

WE CAN USE D(y) FOR .... j

solving ANY ) synthesizing denoising images solving ANY
NENE natural- » while targeting inverse problem
problem looking high perceptual » with high

(PnP/RED) ) images quality ) errceptual qualityj

(. J \_ ‘
All the above are achieved by
simply applying D(y, o) iteratively

Michael Elad
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summary

Image Denolsing

... Not What You Think
.

1. There are so many opportunities and challenges in
better understanding, designing, and proposing
creative usage of image denoisers

2. Despite the fact that this has not been a talk about

Deep-Learning, the presence of this field in the
topics covered is prominent

Michael Elad
The Computer-Science Department
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Thank You

d The content of this lecture relies on ~10 papers that my group has worked on and
published in the past several years

d Getting these results was enabled due to the amazing people | had the pleasure of
collaborating with:

Yaniv Romano Bahjat Kawar Guy Ohayon

N

Peyman Milaﬁfar

héo Adra‘i"
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Thank You All for Attending

And special thanks to the organizers of this event:

1 Zhong-Zhi Bai (Chinese Academy of Sciences, China)
 Walter Gander (ETH Zurich, Switzerland)

1 Yu-Mei Huang (Lanzhou University, China)

d Lu Wang (Chinese Academy of Sciences, China)

d Wen-Ting Wu (Beijing Institute of Technology, China)

In dedication to Gene H. Golub
(February 29, 1932 - November 16, 2007)
The occasion of his 90th birthday
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