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Removal of noise from images is a heavily studied 
problem in image processing

In this talk we expand on recent discoveries and 
developments around this seemingly dead topic

Fields/Topics appearing 
in this Talk:

❑ Image processing - Restoration
❑ Optimization
❑ Machine Learning
❑ Deep Learning
❑ Sparse Representation
❑ Linear Algebra
❑ Probability Theory & Statistics
❑ Stochastic Differential Equations

A Disclaimer:
This talk is self-contained



Our Agenda

1. Brief Introduction & History
2. Image Denoising: The Classic Era

3. The Deep Learning Revolution
4. Synergy: Classic + Deep Learning

5. Our Focus Today: Denoising for …
▪ Solving general inverse problems 
▪ Image Synthesis
▪ High perceptual quality recovery

6. Summary
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So, Let’s Talk About … 

Image Denoising

or more accurately

Removal of White Additive Gaussian Noise from an Image 
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Image Denoising is Challenging 

Image denoising is far from trivial task! Why?

❑ Because our goal is to remove noise as much as possible while preserving the 
details in the image 

❑ Denoising is essentially a highly ill-posed separation task 
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Why Work on Image Denoising?

1. Practical: It is a real-world problem, arising in all cameras, 
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Why Work on Image Denoising?

1. Practical: It is a real-world problem, arising in all cameras, 

2. Front-Gate to Image Processing: Being the simplest inverse problem, it is a platform 
for assessing new ideas in our field, & 

3. Other Uses for the Denoiser Engine: Recent work has shown that given a denoiser, 
there are other fascinating uses for it that go far beyond noise removal
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Why Assume Gaussian Noise?

❑ The Gaussian case is more common and much more important

❑ When considering a Poisson noise,

▪ High count of photons – The distribution gets closer and closer to the Gaussian case

▪ Low-count Poisson-distributed image can be converted to a Gaussian-noisy one by 
Anscomb - Variance Stabilizing Transform

❑ Many of the developed ideas 
for the Gaussian case can be 
converted to other noise models

❑ MMSE denoisers for the 
Gaussian case are of extreme 
theoretical value (see later)
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Image Denoising: Little bit of History
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Roughly speaking, there are ~28,000 papers* on this subject, 
offering algorithms, theoretical analysis and so much more

* Search done on April 9th 2022 in WoS, topic: ((image or video ) 
and (denoising or (noise and remov) or clean))
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Image Denoising: Little bit of History
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This research comes from all over the globe
Citing Articles:

USA:      140524

China:     45284

Germany:   29272

France:    35585

England:   24090

Canada:    18325

Spain:     17880

Israel:    13988

Australia: 13358

Switz.:    12504

Japan:     12389

Italy:     11754

Netherland:10455

India:      8830

Finland:    7842

Korea:      7558

Belgium:    5027

Singapore:  4964

Brazil:     4849

Taiwan:     4134

Iran:       3112

Russia:     2595 … and it is heavily cited
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The Classic Era
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Design of Image Denoising Algorithms

How can we design a denoiser?

The classic Bayesian approach (1960-2014): 

▪Model image content with a prior expression (e.g., forcing smoothness, sparsity, low-
rank, self-similarity, … ), and 

▪Formulate the denoising task as an optimization problem
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ොx = min
x

x − y 2+ρ x

y : Given noisy image
ොx : Denoised result

Likelihood Prior
Design an iterative or 
a direct algorithm for 
getting ොx from y
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Image Denoising: Evolution
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Year

L2-based 
Regularization

PDE-MethodsRobust 
statistics 

Heuristic 
Spatially 
adaptive 
filtering 

Wavelet

Sparsity Methods 

1970      1975      1980      1985      1990      1995      2000      2005      2010     2015

NCSR   BM3D    
KSVD

Heuristic: 
Bilateral

Thresholding
Cycle-Spinning

Wiener
Anisotropic Diffusion

TVBeltramiHubber-Markov

GSM SURE

Patch-Methods 
Kernel-Regr.

EPLL

Self-Similarity 
Methods

NLM
NL-Bayes

NLM-PCA

Low-Rank 

WNNM

NL-LR
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End of an Era? 
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CVPR 2011

This evolution of algorithms and the tendency of different methods to 
perform very similarly has led to a feeling that “Denoising is Dead”   
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End of an Era?
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And so, somewhere around 2010-2012, the general 
feeling in our community was that …

We are currently touching the ceiling in denoising 
performance and chances of improving them are very slim

There is no point in devising new denoising methods

Work in this field has diminishing returns

Well, We Were Wrong !

Michael Elad
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End of an Era?
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The past decade has taught us that image denoising is still

very much alive and kicking 

due to several branches of novel activity on:

▪ Obtaining better performing denoisers with deep learning 
▪ New frontiers in denoising: 

o Better adaptation to image content
o Denoising strategies that go beyond PSNR
o Identifying alternative methods for designing/training denoisers
o Extending the denoising task to realistic noise, and

▪ Discovering new ways for leveraging denoisers for other needs

Michael Elad
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The Deep Learning 
Revolution

18Michael Elad
The Computer-Science Department
The Technion



Design of Algorithms: Take 2

How can we ALTERNATIVELY design a denoiser?

The machine learning approach (2012-Now): 

▪ Gather a LARGE dataset of clean images xk k=1
N

▪ Add AWGN these images: yk = xk + nk k=1
N

▪ Define a parametric denoising machine Dθ y

▪ Train Dθ ∎ by setting its parameters θ: 
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min
θ



k=1

N

xk − Dθ yk
2

+

nk k=1
N

xk k=1
N yk k=1

N
ොxk k=1

N

Denoiser
Dθ yk

σොxk
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Image Denoising: A Paradigm Shift

How can we design a denoiser?

By modeling image content and leveraging it for noise filtering:

Or by simply using: 
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Observe that with this 
trend, all the knowledge 

and knowhow accumulated  carefully 
over decades in image processing 

became TOTALLY OBSOLETE
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Image Denoising: Recent Evolution
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Year

Denoising Auto-
Encoder

(Cho) 
ICML 2013

2012      2013      2014      2015      2016      2017      2018      2019      2020      2021

Learned Prox
(Meinhardt et. al)

ICCV 2017

DnCNN
(Zhang et. al)
IEEE-TIP 2017

FFDNet (blind) 
(Zhang et. al)
IEEE-TIP 2018

GCBD 
GAN-based  
(Chen et. al)
CVPR 2018

Initial Steps - MLP
(Burger et. al)

CVPR 2012
TNRD

(Chen & Pock) 
IEEE-TPAMI 2016

Deep Shrinkage
Isogawa et. al
IEEE-SPL 2017 CNLNet

(Lefkimmiatis) 
CVPR 2017

Deep Image Prior
(Ulyanov & Vedaldi)

CVPR 2018
Noise2Void 
(Krull et. al)
CVPR 2019

CBDNet -
blind

(Guo et. al)
CVPR 2019

Attention-CNN
(Tian et. al)

Neural Networks 
2020

Batch 
Renormalization

(Tian et. al)
Neural Networks 

2020
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Synergy:
Classics + Deep Learning
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Image Denoising: Return of the Classics

❑ In recent years deep learning is ruling the image 
denoising domain, pushing aside all the classical 
methods, along with their great achievements 

❑ Recently, however, we do see a synergy 
between the two paradigms 

❑ Recall: In building a supervised deep learning 
denoiser solution, we operate along the following lines:
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Gather 
training data 

to use

Define an 
architecture for 

the Denoiser

Define a cost 
function (loss) 

to optimize

Train and hope 
for good 

generalization
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Image Denoising Architectures
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So, how do we choose an architecture for a given task?

Option 1 - Copy an existing network that has shown good results in earlier work 
(VGG, U-Net, ...), and slightly modify it

Option 2 – Pile and Guess a series of steps that mix known pieces such as 
convolutions, fully connected layer, batch-norm, ReLU, pooling, stride, skips, 
upscale/downscale, connections, ... and add new “tricks”

Option 3 – Neural Architecture 
Search (NAS)

Michael Elad
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Image Denoising Architectures 
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Here are several paper examples from CVPR/NIPS 2019 
that illustrate these architectures

NIPS 2019: U-Net-based with 7e6 params 

CVPR 2019: DnCNN-based with 1.2e6 params 

CVPR 2019: Huge network with 2e6 params 

CVPR 2019: Huge network with 4e6 params NIPS 2019: U-Net-based with 1.1e6 params 

CVPR 2019: Big network with ~8e5 params 

CVPR 2019: U-Net-based with 5.3e6 params 
CVPR 2019: DnCNN-based with 5.5e5 params 

CVPR 2019: U-Net-based with 3.8e6 params 

Michael Elad
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Alternative Architecture Design 
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❑ Message: One can do far better in choosing architectures by relying on unfolding 
algorithms from the classics of image processing 

❑ The benefits in such architectures:

▪ They are far more concise yet just as effective as leading methods
▪ They are easier to train because they are lighter
▪ They have the potential to break current performance barriers
▪ They may bring better understanding and explainability
▪ They enable better adaptation to out of distribution images

❑ Here are few representative examples: 

▪ Rethinking the CSC Model [Simon & Elad, NeurIPS `19]

▪ LIDIA: Non-Local & Multi-Scale Denoising [Vaksman, Milanfar & Elad, CVPR (NTIRE) `20]

▪ Deep KSVD Denoising [Scetbon, Milanfar & Elad, IEEE-TIP `21]

▪ PatchCraft: Non-Local Video Denoising [Vaksman, Elad & Milanfar, ICCV `21] 

Michael Elad
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Paper #1: Deep K-SVD

❑ In 2006, we developed a new and highly effective image denoising alg. by relying 
on sparsity of image patches and a learned dictionary

❑ This was state-of-the-art for a while, until beaten by competition (BM3D, NCSR, 
TNRD, WNNM, …)

❑ Over the years, various 
improvements of it came 
up – e.g. exploiting joint 
sparsity [Mairal et. al. `09] or 
leveraging the EPLL 
[Sulam et. al. `15]

❑ … And recently we decided 
to revisit this method … 

Michael Elad
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Paper #1: Deep K-SVD

So, how does the original K-SVD denoiser work? 

Core idea: Assume that all patches obey sparse modeling  
min
α

α 0 s. t. 𝐃α − 𝐑i𝑦 2 ≤ T

Noisy Image Reconstructed Image

Denoise
each patch 
using OMP

Universal Dictionary

D

Michael Elad
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Paper #1: Deep K-SVD

Unfolding this Algorithm: 

▪ All patches (with full overlaps) go through the same “pursuit” in parallel

▪ OMP problematic (L0, greedy) → Use LISTA [Gregor & LeCun `00] (7 iterations): 

min
α

α 1 + 𝜆 𝐃α − 𝐑i𝑦 2
2

→ αk+1 = S𝜆 αk + c𝐃T 𝐃αk − 𝐑i𝑦 [ISTA]

▪ Each patch should get a dynamic # of non-zeros 
→ Get an adaptive  by another small network

Bottom Line: 

▪ The dictionary and few other parameters are learned in a supervised fashion

▪ Our reference: DnCNN (550K params) [Zhang, `17]. Using 45K params only, this elementary
method improve substantially over its original version, and gets very close to DnCNN

S𝜆

𝜆

−𝜆
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Paper #2: Non-Local and Multi-Scale 

❑ Two key forces that the previous work has totally failed to 
use are (i) self-similarity and (ii) multi-scale connections

❑ BM3D [Dabov et. al 2007]: A highly effective denoiser based 
on sparsity and self-similarity

❑ Core idea: Gather similar patches to 
3D blocks & sparse code them jointly 

❑ Our idea: Unfold this algorithm, 
augment it with a multi-scale
treatment, and design it via  
supervised learning  

❑ LIDIA: our recent work with 
this unfolding approach

Michael Elad
The Computer-Science Department
The Technion
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Paper #2: Non-Local and Multi-Scale 

❑ The proposed architecture implements the ideas 
mentioned above in a simple a direct way 

❑ This illustrates the performance vs. #of parameters 
for various networks

Michael Elad
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Paper #2: Non-Local and Multi-Scale 

❑ An additional and unexpected benefit: Fast and effective adaptation capability 
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Paper #2: Non-Local and Multi-Scale 

❑ An additional and unexpected benefit: Fast and effective adaptation capability 
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Summary – Synergy of Classics and Deep Does Exist

❑ The right way to build solutions to imaging tasks goes as follows: 

❑ What should be taken into account for the algorithm’ design? 
▪ The degradation and noise statistics (“the physics”)
▪ Prior on the image: (i) Non-Local self similarity; (ii)  multi-scale connections; & (iii) Sparsity or other 

form of simplicity (e.g. low-rank)
▪ The objective (e.g., MMSE)

❑ More broadly, sparse modeling of data could be key 
▪ In explaining existing deep-learning architectures 
▪ In creation of new ones
▪ In bringing theoretical understanding to deep-learning

Modeling 
the Data

Algorithm 
Development

Apply 
Supervised 

Learning

Unfold 
this to a 
Network

Michael Elad
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Still Unanswered 

Open Questions: 

❑ When designing an algorithm (and thus a network) for solving inverse 
problems, should we consider MMSE or MAP? 

❑ It will be great to see this advocated rationale breaking 
existing performance barriers – this is yet to happen

❑ What about using this rationale for supporting unsupervised solutions? Recall 
the K-SVD denoising with an adapted dictionary

❑ Denoising is a regression task, like many others in computational imaging. 
However, what about recognition or synthesis tasks? 

Michael Elad
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Our Focus Today: 
Recent Discoveries
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Our Focus Today

36

Noisy 
image y

Denoised 
image ොx

Image Denoiser 
D y, σ

σ

Recent findings on using denoisers for other tasks:

❑ Discovery 1: Solving general inverse problems [2013-]

❑ Discovery 2: Image Synthesis [2019-]

❑ Discovery 3: High perceptual quality recovery [2021-]

We turn to describe these results 

Michael Elad
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Discovery 1: Solving Inverse Problems 
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Inverse Problems: Recovery of images from corrupted measurements

❑ De-Noising

❑ De-Blurring 

❑ In-Painting 

❑ De-Mosaicing

❑ Tomography 

❑ Image Scale-Up 
& super-resolution

… and more …

Michael Elad
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Discovery 1: Solving Inverse Problems 
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How can we solve inverse problems?  

We can return to the classic Bayesian approach: 

▪Model image content with a prior expression (e.g., forcing smoothness, sparsity, low-
rank, self-similarity, … ), and 

▪Formulate the inversion task as an optimization problem

ොx = min
x

Hx − y 2+ρ x

y : Given measurements
ොx : Denoised result

Likelihood Prior

▪This is known as MAP estimation
▪ It is an extension of the classic denoising, 

tailoring methods for inverse problems 
▪This approach leads to iterative algorithm for 

getting ොx from y
▪ Is there a supervised learning alternative? 

Definitely! 

Michael Elad
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Discovery 1: Solving Inverse Problems 
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Question: Given a denoiser D y, σ
how can one solve inverse problems with it? 

Answer: Use D y, σ as a regularizer

Practical Implication: Iterated use of D ∙, σ

y D ∙, σ
Simple 

Operation D ∙, σ
Simple 

Operation D ∙, σ
Simple 

Operation
Simple 

Operation
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Discovery 1: Solving Inverse Problems 
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ොx = min
x

1

2
Hx − y 2 + ρ x

Here is (roughly) the PnP Perspective in a nutshell:

▪ Recall: Inverse problems can be formulated as optimization tasks:

▪ Let’s do something “stupid” and split the unknown:

▪ Now, turn the constraint into a penalty*

▪ And solve by alternating between x and v

▪ Least-Squares: 

▪ A denoiser:

ොx = min
x,v

1

2
Hx − y 2 + ρ v s. t. x = v

ොx = min
x,v

1

2
Hx − y 2 + ρ v + β x − v 2

… and this way we got an 
iterated algorithm that 

keeps calling to a denoiser, 
for solving the inverse 

problem

* The PnP uses the Augmented 
Lagrange which is more accurate and 
less sensitive to the choice of 

ොx = min
x

1

2
Hx − y 2 + β x − v 2

ොv = min
v

ρ v + β x − v 2

Michael Elad
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Discovery 1: Solving Inverse Problems 
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ොx = min
x

1

2
Hx − y 2 + ρ x = min

x

1

2
Hx − y 2 + λxT x − D x, σ

Here is the RED Perspective in a nutshell:

Let’s start again with the formulated optimization task, 
and suggest a very specific regularization term:

… and this way we got an iterated algorithm that keeps calling to a denoiser, 
and is guaranteed to achieve the minimum

Under mild conditions* the 
gradient of this is x − D x, σ

Let’s use the 
Steepest Descent

* Differentiability, local homogeneity, passivity and symmetric Jacobian (MMSE)

ොxk+1 = ොxk − μ HT Hොxk − y + λ ොxk − D ොxk, σ

xT(𝐈 − 𝐒)x

Michael Elad
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Discovery 1: Solving Inverse Problems 
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Here are some results for Deblurring and Super-Resolution

RED: SD-TNRD 27.39dB

Michael Elad
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Discovery 1: Solving Inverse Problems 
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❑ PnP and RED are heavily 
cited and extensively 
studied, owing to their
generality and elegance

❑ Follow-up work focuses on 

▪ Proving convergence to the desired solution and tying these to properties of the permissible 
denoisers (e.g. MMSE …)

▪ Deployment in various applications

▪ Creation of new variants of these two methods … and …

❑ Unfolding all over again: PnP/RED can be used to define well-motivated architectures 
for solving general inverse problems, built around a core learned denoising engine

Michael Elad
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Discovery 2: Image Synthesis
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❑ In recent years, and with the deep-learning revolution, there is 
a growing interesting is synthesizing images “out of thin air”

❑ The popular tool of interest is called GAN – Generative 
Adversarial Network, built of two competing networks 
– a generator and a critique

❑ Why synthesize? Because 

▪ We can, and it is fascinating 

▪ It testifies that we have seized the distribution of images, and 

▪ It could be used 
for other needs 

❑ Could we synthesize 
images differently? 
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Discovery 2: Image Synthesis
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Question: Given a denoiser D y, σ
how can one synthesize images with it? 

Answer: Use D y, σ as a Projector onto the image manifold

Practical Implication: Iterated use of D ∙, σ with varying σ

D ∙, σ1
Simple 

Operation D ∙, σ2
Simple 

Operation D ∙, σ3
Simple 

Operation
noise

Michael Elad
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Discovery 2: Image Synthesis
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Here is the core idea in a nutshell:

Our goal: draw a sample from the distribution of images P x

▪ Start with a random noise image ොx0

▪ Climb to a more probable image by the iterative equation:

… and this way we got an iterated algorithm that keeps calling to a denoiser, and is 
guaranteed to obtain a sample from P x

This is known as the Score Function and 
it is approximately proportional to 

ොxk − D ොxk, σ for a small value of σ

ොxk+1 = ොxk + a ∙ 𝛻logP ොxk (Langevin Dynamics)

This suggests an implicit relation 
between MMSE denoisers and 
Priors:  D x, σ  P x

+b ∙ zk

Michael Elad
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Discovery 2: Image Synthesis
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In practice, instead of the plain Langevin with a fixed 
(and small) value of σ we use the Annealed Langevin 
Algorithm that considers a sequence of blurred priors: 

P x + v for   v~ℕ 0, σk
2𝐈

= P x ۪c ∙ exp −
1

2σ2
x 2

with   σ0 > σ1 > σ2 ⋯ > σN > 0

The core idea: start by drawing
from a wider distribution and 
gradually narrow it, leading to 
a faster sampling performance

Michael Elad
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Discovery 2: Image Synthesis
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Does it work? Here are some results

Kadkhodaie & Simoncelli

Song & 
Ermon

Michael Elad
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Discovery 2: Image Synthesis

Claim: diffusion-based methods are 
the best in image synthesis

BigGAN (FID 6.95)        Diffusion (FID 4.59)

49Michael Elad
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MMSE Result 

E{x|y}

Discovery 3: Targeting Perceptual Quality
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Suppose that we need to denoise the following image:

Should we be 
pleased with this 
result? It seems 
to be a bit … 
blurry, no? Why? 

OriginalNoisy (σ = 100) Denoised image

Image 
Denoiser

σ

Image 
Manifold

Noisy 
Image

Minimum Mean-
Squared-Error (MMSE) 
denoisers are great for 

MSE result, but their 
result falls outside the 

manifold
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Discovery 3: Targeting Perceptual Quality
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Question: How can we denoise an image 
while targeting “High Perceptual Quality”? 

Answer: Denoise by sampling from the posterior P x|y

Practical Implication: We consider 2 methods

▪ Training a deep denoiser via CGAN, or

▪ Iterated use of an MMSE denoiser D ∙, σ

These methods 
produce a multitude 
of possible solutions 

Michael Elad
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Discovery 3: Targeting Perceptual Quality
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Let’s have a closer look at the Stochastic Image Denoiser:

Task: Draw a sample from P x|y where [y = x + n, n~ℕ 0, σ0
2𝐈 ]

▪ Start with a random noise image ොx0

▪ Climb to a more probable image by the iterative equation:

= ොxk −D ොxk, σ + 𝛻logP y|ොxk

ොxk+1 = ොxk + a ∙ 𝛻logP ොxk|y + b ∙ zk Langevin with a 
conditional Score

= 𝛻logP ොxk + 𝛻logP y|ොxk

Bayes rule 

Looks like a simple Gaussian DistributionApprox. Score

Michael Elad
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𝛻logP ොxk|y

Let’s have a closer look at the Stochastic Image Denoiser:

▪ As we use the Annealed Langevin algorithm, there are two noise signals 
to consider: 

o Measurement’s noise:  n~ℕ 0, σ0
2𝐈

o Synthetic annealing noise:  v~ℕ 0, σk
2𝐈 for σ0 > σ1 > σ2 ⋯ > σN > 0

▪ Implication: We recover a sequence of gradually less noisy images ොxk
where their noise v is assumed to be a portion of n

𝛻logP ොxk|y = ොxk − D ොxk, σ + 𝛻logP y|ොxk

= ොxk −D ොxk, σk +
y − ොxk

σ0
2 − σk

2
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Stochastic Image Denoiser:  
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▪ We start from a noisy image (𝜎 ≈ 150 in this example)

▪ Then gradually denoise it using (conditional) annealed Langevin dynamics
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Stochastic Image Denoiser:  
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Let’s have a closer look at the Conditional GAN Denoiser:

❑ Typical design approach: Optimize a distortion measure (e.g. MSE) between 
the denoised and the ideal images

❑ Adversarial loss could be added to improve the 
perceptual quality

❑ However, when used together, we get a compromise 
between distortion and perceptual quality

Denoiser

Denoised
Noisy

Clean

MSE ,

Critic

λ Ladv( )+
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❑ For ill-posed restoration tasks, perceptual quality 
performance comes at the expense of its distortion 
[Blau & Michaeli 2017]

❑ We aim for best perceptual quality

❑ The posterior distribution attains perfect perceptual 
quality, compromising 3dB compared to the MMSE

❑ We propose to sample from the posterior via a 
Conditional GAN mechanism (PSCGAN)

x ∼ PX y ∼ PY|X=x
Samples from PX|Y=y

Perception

Distortion
Less Distortion

B
etter visu

al q
u

ality

Alg. 1

Alg. 2

Alg. 4

Alg. 3

Possible 
Region

Impossible 
Region

MMSE
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Noisy Image y Randomized
Denoiser
Dθ y, z

DenoisedRandom 
noise z

Original

Critic
Cω x, y

Noisy
Image y

The PSCGAN Architecture:

Why use y in the critic? Without it, we 
check only the perceptual quality of the 
denoised result. With it, we also assess 
its denoising validity
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What about the Loss?

❑ CGAN optimization leads to posterior sampling [Adler et al. 2018]:

min
θ

max
ω

𝔼X,Y Cω x, y − 𝔼Dθ,Y,Z
[Cω(Dθ, y)]

❑ However, this requires an unavailable balanced dataset to train on 
many x’s for each y and many y’s for each x

❑ On the other hand, we would like to avoid a penalty of the form:     𝔼X,Y,Z x − Dθ y, z 2
2

❑ Our remedy: adding an MMSE oriented penalty term of the form: 𝔼X,Y x − 𝔼z Dθ y 2
2

❑ This gives the MMSE result “for free” (averaging many instances)

Michael Elad
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CGAN: 
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Oh … and One Last Thing
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Back to Inverse Problems

62

❑ Goal: Recovery from corrupted measurements

De-Noising      De-Blurring 

In-Painting       De-Mosaicing

Tomography    Image Scale-Up 
& super-resolution

❑ Can we suggest a “sampler” from P x|y for handling 
all these problems, for getting “perfect looking” results? 

❑ Answer: Yes! Use Langevin dynamics again, in an adapted form  

y = Hx + n
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❑ The idea is similar to our high-perceptual denoising, with necessary changes for 
considering the degradation operator H …

❑ Starting naively, using Bayes theorem, we need to calculate 

𝛻log P xi|y = 𝛻log P xi + 𝛻log P y|xi

❑ We know that y = Hx + n and thus:

𝛻logP y|xi = 𝛻logP y − Hxi|xi =

𝛻logP Hx + n − Hx − Hvi|xi = 𝛻logP n − Hvi|xi

❑ However, … while n − Hvi is a simple Gaussian, it’s dependency 
on xi in non-trivial, so how do we proceed from here? 
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❑ Step 1: Use SVD for decoupling the measurements H = UΣVT:

UTy = UT UΣVT xi − vi + n

yT k = σkxT k − σkvT k + nT k

❑ Thus, we can apply the Langevin dynamics algorithm on 
xT = VTxi given yT = UTy and sample from the conditional

❑ Bottom line: An MMSE denoiser is used for a novel solution of inverse 
problems, this time targeting best perceptual quality 

y = Hx + n

= ΣVT xi − vi + UTn

Decouple xT k  vT k by choosing  
vT k to be a portion of nT k

Michael Elad
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Noisy Inpainting: A portion missing and noise with 𝜎0 ≈ 25

C
le
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O

b
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p
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m
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Super resolution: downscaling by 4 with additive noise of 𝜎0 ≈ 25
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Super resolution: downscaling by 4 with additive noise of 𝜎0 ≈ 12

Original Degraded Samples from our algorithm Mean
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Deblurring: uniform 5 × 5 blur with additive noise of 𝜎0 ≈ 25
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Compressive sensing (12.5%) with additive noise of 𝜎0 ≈ 25

Original Degraded Samples from our algorithm Mean
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Compressive sensing (12.5%) with additive noise of 𝜎0 ≈ 25

Original Degraded Samples from our algorithm Mean
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Back to Inverse Problems

And just to remind you …

The proposed diffusion-based sampling scheme, while quite appealing, suffers from 
several key shortcomings:

❑ It is rather  S L O W (many denoising activations)

❑ It is limited (as of now) to specific families of images

❑ Relying on SVD is cumbersome

See our recent work that answers (most of) these challenges: 
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Time to Summarize
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What Have we Seen Today? 

Suppose that we are given an MMSE denoiser D y

solving ANY 
inverse 

problem 
(PnP/RED)

solving ANY 
inverse problem 

with high 
perceptual quality

synthesizing 
natural-
looking 
images

denoising images 
while targeting 
high perceptual  

quality

All the above are achieved by 
simply applying D y, σ iteratively

W E   C A N   U S E   𝐃 𝐲 F O R   . . . .   
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Summary
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1. There are so many opportunities and challenges in 
better understanding, designing, and proposing 
creative usage of image denoisers 

2. Despite the fact that this has not been a talk about 
Deep-Learning, the presence of this field in the 
topics covered is prominent

Image Denoising

… Not What You Think
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Thank You 
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Peyman Milanfar  

Yaniv Romano

Grisha Vaksman Meyer Scetbon

Bahjat Kawar Guy Ohayon

Theo Adrai

❑ The content of this lecture relies on ~10 papers that my group has worked on and  
published in the past several years

❑ Getting these results was enabled due to the amazing people I had the pleasure of 
collaborating with: 



Thank You All for Attending

And special thanks to the organizers of this event:
❑ Zhong-Zhi Bai (Chinese Academy of Sciences, China) 
❑ Walter Gander (ETH Zurich, Switzerland) 
❑ Yu-Mei Huang (Lanzhou University, China) 
❑ Lu Wang (Chinese Academy of Sciences, China) 
❑ Wen-Ting Wu (Beijing Institute of Technology, China) 
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In dedication to Gene H. Golub 
(February 29, 1932 - November 16, 2007) 

The occasion of his 90th birthday


