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1 INTRODUCTION

Figure 1: Pairs of measurements and recovered images with a 20-step DDRM on super-resolution,
delubrring, inpainting, and colorization, with or without noise, and with unconditional generative
models. The images are not accessed during training.

Many interesting tasks in image restoration can be cast as linear inverse problems. A recent family
of approaches for solving these problems uses stochastic algorithms that sample from the posterior
distribution of natural images given the measurements. However, efficient solutions often require
problem-specific supervised training to model the posterior, whereas unsupervised methods that are
not problem-specific typically rely on inefficient iterative methods. This work addresses these issues
by introducing Denoising Diffusion Restoration Models (DDRM), an efficient, unsupervised pos-
terior sampling method with generative models. Motivated by variational inference, DDRM takes
advantage of a pre-trained denoising diffusion generative model for solving any linear inverse prob-
lem. We demonstrate DDRM’s versatility on several image datasets for super-resolution, deblurring,
inpainting, and colorization under various amounts of measurement noise. DDRM outperforms the
current leading unsupervised methods on the diverse ImageNet dataset in reconstruction quality, per-
ceptual quality, and runtime, being 5× faster than the nearest competitor. DDRM also generalizes
well for natural images out of the distribution of the observed ImageNet training set.

2 BACKGROUND

Linear Inverse Problems. A general linear inverse problem is posed as
y = Hx+ z, (1)

where we aim to recover the signal x ∈ Rn from measurements y ∈ Rm. H ∈ Rm×n is a known
degradation matrix, and z ∼ N (0, σ2

yI) is an i.i.d. additive Gaussian noise with known variance.

The underlying structure of x can be represented via a generative model, denoted as pθ(x). Given y
and H , a posterior over the signal can be posed as: pθ(x|y) ∝ pθ(x)p(y|x), where the “likelihood”
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Figure 2: Illustration of our DDRM method for a specific inverse problem (super-resolution + de-
noising). We can use unsupervised DDPM models as a good solution to the DDRM objective.

term p(y|x) is defined via Equation 1. Recovering x can be done by sampling from this poste-
rior (Bardsley, 2012), which may require many iterations to produce a good sample. Alternatively,
one can also approximate this posterior by learning a model via amortized inference (i.e., supervised
learning); the model learns to predict x given y, generated from x and a specific H .

Denoising Diffusion Probabilistic Models. Structures learned by generative models have been
applied to various inverse problems and often outperform data-independent structural constraints
such as sparsity (Bora et al., 2017). In particular, diffusion models have demonstrated impres-
sive unconditional generative modeling performance on images (Dhariwal & Nichol, 2021). Dif-
fusion models (Sohl-Dickstein et al., 2015) are generative models with a Markov chain structure
xT → xT−1 → . . . → x1 → x0 (where xt ∈ Rn), which has the following joint distribution:

pθ(x0:T ) = p
(T )
θ (xT )

T−1∏
t=0

p
(t)
θ (xt|xt+1).

After drawing x0:T , only x0 is kept as the sample of the generative model. To train a diffusion
model, a fixed, factorized variational inference distribution is introduced:

q(x1:T |x0) = q(T )(xT |x0)

T−1∏
t=0

q(t)(xt|xt+1,x0),

which leads to an evidence lower bound (ELBO) on the maximum likelihood objective.

3 DENOISING DIFFUSION RESTORATION MODELS

Inverse problem solvers based on posterior sampling often face a dilemma: unsupervised approaches
apply to general problems but are inefficient, whereas supervised ones are efficient but can only
address specific problems. To this end, we introduce Denoising Diffusion Restoration Models
(DDRM), an unsupervised solver for general linear inverse problems, capable of handling such
tasks with or without noise in the measurements. DDRM is efficient and exhibits competitive per-
formance compared to popular unsupervised solvers (Romano et al., 2017; Pan et al., 2020; Kawar
et al., 2021). For any linear inverse problem, we define the DDRM model as

pθ(x0:T |y) = p
(T )
θ (xT |y)

T−1∏
t=0

p
(t)
θ (xt|xt+1,y),

where x0 is the final diffusion output. In order to perform inference, we consider the following
factorized variational distribution conditioned on y:

q(x1:T |x0,y) = q(T )(xT |x0,y)

T−1∏
t=0

q(t)(xt|xt+1,x0,y).

In the remainder of the section, we construct suitable variational problems given H and σy and
connect them to unconditional diffusion generative models. To simplify notations, we will construct
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the variational distribution q such that q(xt|x0) = N (x0, σ
2
t I) for noise levels 0 = σ0 < σ1 <

σ2 < . . . < σT .

Now we are ready to introduce specific forms of DDRM that are suitable for inverse problems.
Similar to SNIPS (Kawar et al., 2021), we consider the singular value decomposition (SVD) of H ,
and perform the diffusion in its spectral space. The idea behind this is to tie the noise present in
the measurements y with the diffusion noise in x1:T , ensuring that the diffusion result x0 is faithful
to the measurements. By using the SVD, we identify the data from x that is missing in y, and
synthesize it using a diffusion process. In conjunction, the noisy data in y undergoes a denoising
process. For example, in inpainting with noise (e.g., H = diag([1, . . . , 1, 0, . . . , 0]), σy ≥ 0), the
spectral space is simply the pixel space, so the model should generate the missing pixels and denoise
the observed ones in y. For a general linear H , its SVD is given as

H = UΣV ⊤ (2)

where U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices, and Σ ∈ Rm×n is a rectangular diagonal
matrix containing the singular values of H , ordered descendingly. As this is the case in most useful
degradation models, we assume m ≤ n, but our method would work for m > n as well. We denote
the singular values as s1 ≥ s2 ≥ . . . ≥ sm, and define si = 0 for i ∈ [m + 1, n]. We use the
shorthand notations for values in the spectral space: x̄(i)

t is the i-th index of the vector x̄t = V ⊤xt,
and ȳ(i) is the i-th index of the vector ȳ = Σ†U⊤y (where † denotes the Moore–Penrose pseudo-
inverse). Because V is an orthogonal matrix, we can recover xt from x̄t exactly by left multiplying
V . For each index i in x̄t, we define the variational distribution as:

q(T )(x̄
(i)
T |x0,y) =

{
N (ȳ(i), σ2

T − σ2
y

s2i
) if si > 0

N (x̄
(i)
0 , σ2

T ) if si = 0
(3)

q(t)(x̄
(i)
t |xt+1,x0,y) =


N (x̄

(i)
0 +

√
1− η2σt

x̄
(i)
t+1−x̄

(i)
0

σt+1
, η2σ2

t ) if si = 0

N (x̄
(i)
0 +

√
1− η2σt

ȳ(i)−x̄
(i)
0

σy/si
, η2σ2

t ) if σt <
σy

si

N ((1− ηb)x̄
(i)
0 + ηbȳ

(i), σ2
t −

σ2
y

s2i
η2b ) if σt ≥ σy

si

(4)

where η ∈ (0, 1] is a hyperparameter controlling the variance of the transitions, and η and ηb may
depend on σt, si, σy. We then define DDRM with trainable parameters θ as follows:

p
(T )
θ (x̄

(i)
T |y) =

{
N (ȳ(i), σ2

T − σ2
y

s2i
) if si > 0

N (0, σ2
T ) if si = 0

(5)

p
(t)
θ (x̄

(i)
t |xt+1,y) =


N (x̄

(i)
θ,t +

√
1− η2σt

x̄
(i)
t+1−x̄

(i)
θ,t

σt+1
, η2σ2

t ) if si = 0

N (x̄
(i)
θ,t +

√
1− η2σt

ȳ(i)−x̄
(i)
θ,t

σy/si
, η2σ2

t ) if σt <
σy

si

N ((1− ηb)x̄
(i)
θ,t + ηbȳ

(i), σ2
t −

σ2
y

s2i
η2b ) if σt ≥ σy

si
.

(6)

where we use the symbol xθ,t to represent this prediction of x0 made by a model.

Once we have defined p
(t)
θ and q(t) by choosing σ1:T , η and ηb, we can learn model parameters θ

by maximizing the resulting ELBO objective (in Appendix, Equation 8). However, this approach is
not desirable since we have to learn a different model for each inverse problem (given H and σy),
which is not flexible enough for arbitrary inverse problems. Fortunately, this does not have to be the
case. In the following statement, we show that an optimal solution to DDPM / DDIM can also be an
optimal solution to a DDRM problem, under reasonable assumptions used in prior work (Ho et al.,
2020; Song et al., 2021).

Theorem 3.1. Assume that the models f (t)
θ and f

(t′)
θ are independent whenever t ̸= t′, then when

η = 1 and ηb =
2σ2

t

σ2
t+σ2

y/s
2
i

, the ELBO objective of DDRM (details in Equation 8) can be rewritten
in the form of the DDPM / DDIM objective (Song et al., 2021).
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Table 1: Noiseless 4× super-resolution and deblurring results on ImageNet 1K (256× 256).

Method 4× super-resolution Deblurring
PSNR↑ KID↓ NFEs↓ PSNR↑ KID↓ NFEs↓

Bicubic / Blurry 25.65 44.90 0 19.26 38.00 0
DGP 23.06 21.22 1500 22.70 27.60 1500
RED 26.08 53.55 100 26.16 21.21 500
SNIPS 17.58 35.17 1000 34.32 0.49 1000

DDRM 26.55 7.22 20 35.64 7.14 20
DDRM-CC 26.55 6.56 20 35.65 7.03 20

Table 2: 4× super resolution and deblurring results on ImageNet 1K (256×256). Input images have
an additive noise of σy = 0.05.

Method 4× super-resolution Deblurring
PSNR↑ KID↓ NFEs↓ PSNR↑ KID↓ NFEs↓

Bicubic / Blurry 22.55 67.86 0 18.35 75.50 0
DGP 20.69 42.17 1500 21.20 34.02 1500
RED 22.90 43.45 100 14.69 121.82 500
SNIPS 16.30 67.77 1000 16.37 77.96 1000

DDRM 25.21 12.43 20 25.45 15.24 20
DDRM-CC 25.22 10.82 20 25.46 13.49 20

4 EXPERIMENTS

We demonstrate our algorithm’s capabilities on CelebA-HQ (Karras et al., 2018), LSUN bedrooms,
and LSUN cats (Yu et al., 2015) (all 256×256 pixels), as well as ImageNet 256×256 and 512×512.
Some of the ImageNet models (taken from (Dhariwal & Nichol, 2021)) require class information.
For these models, we use the ground truth labels as input, and denote our algorithm as DDRM class
conditional (DDRM-CC). In all experiments, we use η = 0.85, ηb = 1, and a uniformly-spaced
timestep schedule based on the 1000-step pre-trained models.

We compare DDRM (with 20 and 100 steps) with other unsupervised methods that work in reason-
able time (requiring 1500 NFEs or less) and can operate on ImageNet. Namely, we compare with
RED (Romano et al., 2017), DGP (Pan et al., 2020), and SNIPS (Kawar et al., 2021). The exact setup
of each method is detailed in Appendix G. In addition, we show upscaling by bicubic interpolation
as a baseline for super-resolution, and the blurry image itself as a baseline for deblurring.

We evaluate all methods on 4× super-resolution and deblurring, on one validation set image from
each of the 1000 ImageNet classes, following (Pan et al., 2020). Table 1 shows that DDRM outper-
forms all baseline methods, in all metrics, and on both problems with only 20 steps. The only ex-
ception to this is that SNIPS achieves better KID than DDRM in noiseless deblurring, but it requires
50× more NFEs to do so. DGP and DDRM-CC use ground-truth class labels for the test images
to aid in the restoration process, and thus have an unfair advantage. DDRM’s appeal compared to
previous methods becomes more substantial when significant noise is added to the measurements.
Under this setting, DGP, RED, and SNIPS all fail to produce viable results, as evident in Table 2.

DDRM produces high quality reconstructions across all the tested datasets and problems, as can be
seen in Appendix A. As it is a posterior sampling algorithm, DDRM can produce multiple outputs
for the same input, as demonstrated in Figure 7. Moreover, the unconditional ImageNet diffusion
models can be used to solve inverse problems on out-of-distribution images with general content. In
Figure 8, we show DDRM successfully restoring 256× 256 images from USC-SIPI (Weber, 1997)
that do not necessarily belong to any ImageNet class.
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A ADDITIONAL EXPERIMENTS

We provide additional figures below showing DDRM’s versatility across different datasets, inverse
problems, and noise levels (Figures 3, 4, 5, 6 and 8). We also showcase the sample diversity provided
by DDRM in Figure 7.

Original Low-res DDRM (20) SNIPS RED DGP

Figure 3: 4× noisy super resolution comparison with σy = 0.05.

Original Noisy DDRM (20) Denoised

Figure 4: Denoising (σy = 0.75) face images. DDRM restores more fine details (e.g. hair) than an
MMSE denoiser.
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Figure 5: Inpainting results on cat images. First two images have 50% of their pixels removed, last
two are occluded by text.
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Figure 6: Deblurring results on bedroom images. Blurred images contain noise with σy = 0.05.
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Original Grayscale Samples from DDRM-CC (100)

Figure 7: 512×512 ImageNet colorization. DDRM-CC produces various samples for multiple runs
on the same input.
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Figure 8: Results on 256 × 256 USC-SIPI images using an ImageNet model. Blurred images have
a noise of σy = 0.01.
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B DETAILS OF THE DDRM ELBO OBJECTIVE

DDRM is a Markov chain conditioned on y, which would lead to the following ELBO objec-
tive (Song et al., 2021):

Ex0∼q(x0),y∼q(y|x0)[log pθ(x0|y)] (7)

≥ − E

[
T−1∑
t=1

DKL(q
(t)(xt|xt+1,x0,y)∥p(t)θ (xt|xt+1,y))

]
+ E

[
log p

(0)
θ (x0|x1,y)

]
− E[DKL(q

(T )(xT |x0,y)∥p(T )
θ (xT |y))] (8)

where q(x0) is the data distribution, q(y|x0) follows Equation 1, the expectation on the right
hand side is given by sampling x0 ∼ q(x0), y ∼ q(y|x0), xT ∼ q(T )(xT |x0,y), and xt ∼
q(t)(xt|xt+1,x0,y) for t ∈ [1, T − 1].

C EQUIVALENCE BETWEEN “VARIANCE PRESERVING” AND “VARIANCE
EXPLODING” DIFFUSION MODELS

In our main paper, we describe our methods based on the “Variance Exploding” hyperparameters
σt, where σt ∈ [0,∞) and

q(xt|x0) = N (x0, σ
2
t I). (9)

In DDIM (Song et al., 2021), the hyperparameters are “Variance Preserving” ones αt, where αt ∈
(0, 1] and

q(xt|x0) = N (
√
αtx0, (1− αt)I). (10)

We use the colored notation xt to emphasize that this is different from xt (an exception is x0 = x0).
Using the reparametrization trick, we have that:

xt = x0 + σtϵ (11)

xt =
√
αtx0 +

√
1− αtϵ (12)

where ϵ ∼ N (0, I). We can divide by
√

1 + σ2
t in both sides of Equation 11:

xt√
1 + σ2

t

=
x0√
1 + σ2

t

+
σt√
1 + σ2

t

ϵ. (13)

Let αt = 1/(1 + σ2
t ), and let xt = xt/

√
1 + σ2

t ; then from Equation 13 we have that

xt =
√
αtx0 +

√
1− αtϵ, (14)

which is equivalent to the “Variance Preserving” case. Therefore, we can use “Variance Preserving”
models, such as DDPM, directly in our DDRM updates, even though the latter uses the “Variance
Exploding” parametrization:

1. From xt, obtain predictions ϵ and xt = xt

√
1 + σ2

t .
2. From xt and ϵ, apply DDRM updates to get xt−1.

3. From xt−1, get xt−1 = xt−1/
√
1 + σ2

t−1.

Note that although the inference algorithms are shown to be equivalent, the choice between ”Vari-
ance Preserving” and ”Variance Exploding” may affect the training of diffusion networks.

D PROOFS

Theorem 3.1. Assume that the models f (t)
θ and f

(t′)
θ are independent whenever t ̸= t′, then when

η = 1 and ηb =
2σ2

t

σ2
t+σ2

y/s
2
i

, the ELBO objective of DDRM (details in Equation 8) can be rewritten
in the form of the DDPM / DDIM objective (Song et al., 2021).
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Proof. As there is no parameter sharing between models at different time steps t, let us focus on any
particular time step t and rewrite the corresponding objective as a denoising autoencoder objective.

Case I For t > 0, the only term in Equation 8 that is related to f
(t)
θ (which is used to make the

prediction xθ,t) is:

DKL(q
(t)(xt|xt+1,x0,y)∥p(t)θ (xt|xt+1,y))

= DKL(q
(t)(x̄t|xt+1,x0,y)∥p(t)θ (x̄t|xt+1,y))

=

n∑
i=1

DKL(q
(t)(x̄

(i)
t |xt+1,x0,y)∥p(t)θ (x̄

(i)
t |xt+1,x0,y)), (15)

where the first equality is from the orthogonality of V ⊤ and the second equality is from the fact that
both q(t) and p

(t)
θ over the spectral space are Gaussians with identical diagonal covariance matrices

(so the KL divergence can factorize).

Here, we will use a simple property of the KL divergence between univariate Gaussians (Kingma &
Welling, 2013):

If p = N (µ1, V1), q = N (µ2, V2), then

DKL(p∥q) =
1

2
log

V2

V1
+

V1 + (µ1 − µ2)
2

2V2
− 1

2
.

Since we constructed p
(t)
θ and q(t) to have the same variance, Equation 15 is a total squared error

with weights for each dimension of x̄t (the spectral space), so the DDPM objective (which is a total
squared error objective in the original space) is still a good approximation. In order to transform it
into a denoising autoencoder objective (equivalent to DDPM), the weights have to be equal. Next,
we will show that our construction of η = 1 and ηb = 2σ2

t /(σ
2
t + σ2

y/s
2
i ) satisfies this.

All the indices i will fall into one of the three cases: si = 0, σt < σy/si, or σt > σy/si.

• For si = 0, the KL divergence is
(x̄

(i)
θ,t−x̄

(i)
0 )2

2σ2
t

, where we recall x̄θ,t = V ⊤f
(t)
θ (xt+1).

• For σt <
σy

si
, the KL divergence is also

(x̄
(i)
θ,t−x̄

(i)
0 )2

2σ2
t

.

• For σt ≥ σy

si
, we have defined ηb as a solution to the following quadratic equation (the

other solution is 0, which is irrelevant to our case since it does not make use of information
from y):

(σ2
t +

σ2
y

s2i
)η2b − 2σ2

t ηb = 0; (16)

reorganizing terms, we have that:

(σ2
t +

σ2
y

s2i
)η2b − 2σ2

t ηb + σ2
t = σ2

t

σ2
t (1− ηb)

2 = σ2
t η

2
b − 2σ2

t ηb + σ2
t = σ2

t −
σ2
y

s2i
η2b

(1− ηb)
2

σ2
t −

σ2
y

s2i
η2b

=
1

σ2
t

, (17)

So the KL divergence is

(1− ηb)
2

2(σ2
t −

σ2
y

s2i
η2b )

(x̄
(i)
θ,t − x̄

(i)
0 )2 =

(x̄
(i)
θ,t − x̄

(i)
0 )2

2σ2
t

.
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Therefore, regardless of how the cases are distributed among indices, we will always have that:

DKL(q
(t)(x̄t|xt+1,x0,y)∥p(t)θ (x̄t|xt+1,y)) =

n2∑
i=1

(x̄
(i)
θ,t − x̄

(i)
0 )2

2σ2
t

=
∥x̄θ,t − x̄0∥22

2σ2
t

=
∥f (t)

θ (xt+1)− x0∥
2

2

2σ2
t

.

Case II For t = 0, we will only have two cases (si = 0 or σt <
σy

si
), and thus, similar to Case I,

log p
(0)
θ (x̄0|x1,y) =

n2∑
i=1

log p
(0)
θ (x̄

(i)
0 |x1,y) ∝

n2∑
i=1

(x̄
(i)
θ,0 − x̄

(i)
0 )2 = ∥x̄θ,0 − x̄0∥22 = ∥f (0)

θ (x1)− x0∥
2

2
,

as long as we have a constant variance for p(0)θ . Thus, every individual term in Equation 8 can be
written as a denoising autoencoder objective, completing the proof.

E MEMORY EFFICIENT SVD

Here we explain how we obtained the singular value decomposition (SVD) for different degradation
models efficiently.

E.1 DENOISING

In denoising, the corrupted image is the original image with additive white Gaussian noise. There-
fore, H = I and all the SVD elements of H are simply the identity matrix I , which in turns makes
their multiplication by different vectors trivial.

E.2 INPAINTING

In inpainting, H retains a known subset of size k of the image’s pixels. This is equivalent to
permuting the pixels such that the retained one are placed at the top, then keeping the first k entries.
Therefore,

H = IΣP , (18)

where P is the appropriate permutation matrix, Σ is a rectangular diagonal matrix of size k×n with
ones in its main diagonal, and I is the identity matrix. Since permutation matrices are orthogonal,
Equation 18 is the SVD of H .

We can multiply a given vector by P and P T by storing the permutation itself rather than the matrix.
Σ can multiply a vector by simply slicing it. Therefore, by storing the appropriate permutation and
the number k, we can apply each element of the SVD with Θ(n) space complexity.

E.3 SUPER RESOLUTION

For super resolution, we assume that the original image of size d × d (i.e. n = 3d2) is downscaled
using a block averaging filter by r in each dimension, such that d is divisible by r. In this scenario,
each pixel in the output image is the average of an r × r patch in the input image, and each such
patch affects exactly one output pixel. Therefore, any output pixel is given by (Hx)i = kTpi,
where k is a vector of size r2 with 1

r2 in each entry, and pi is the vectorized i-th r × r patch. More
formally, if P1 is a permutation matrix that reorders a vectorized image into patches, then

H =
(
I ⊗ kT

)
P1,

where ⊗ is the Kronecker product, and I is the identity matrix of size d
r × d

r . In order to obtain the
SVD of H , we calculate the SVD of kT :

kT = UkΣkV
T
k .

Using properties of the Kronecker product, we observe

H =
(
I ⊗ kT

)
P1 =

(
(III)⊗

(
UkΣkV

T
k

))
P1 (19)
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= (I ⊗Uk) (I ⊗Σk)
(
I ⊗ V T

k

)
P1.

The Kronecker product of two orthogonal matrices is an orthogonal matrix. Therefore, I ⊗Uk and
I ⊗ V T

k are orthogonal. Observe that the matrix I ⊗Σk has one non-zero value ( 1
r2 ) in each row.

By applying a simple permutation on its columns, these values can be reordered to be on the main
diagonal. We denote the appropriate permutation matrix by P2, and obtain

H = UΣV T , (20)

where U = I ⊗ Uk is orthogonal, Σ = (I ⊗Σk)P
T
2 is a rectangular diagonal matrix with non-

negative entries, and V T = P2

(
I ⊗ V T

k

)
P1 is orthogonal. As such, Equation 20 is the SVD of

H . By storing the permutations and the SVD elements of kT , we can simulate each element of the
SVD of H with Θ(n) space complexity, without directly calculating the Kronecker products with
I .

E.4 COLORIZATION

The grayscale image is obtained by averaging the red, green, and blue channels of each pixel. This
means that every output pixel is given by (Hx)i = kTpi, where kT =

(
1
3

1
3

1
3

)
and pi is the

3-valued i-th pixel of the original color image. The SVD of H is obtained exactly the same as in
the super resolution case, with separate pixels replacing separate patches.

E.5 DEBLURRING

We focus on separable blurring, where the 2D blurring kernel is K = rcT , which means c is
applied on the columns of the image, and rT is applied on its rows. The blurred image can be
obtained by B = AcXAT

r , where Ac and Ar apply a 1D convolution with kernels c and r,
respectively. Alternatively, b = Hx, where x is the vectorized image X , b is the vectorized blurred
image B, and H is the matrix applying the 2D convolution K. It can be shown that H = Ar⊗Ac,
where ⊗ is the Kronecker product. In order to calculate the SVD of H , we calculate the SVD of
Ar and Ac:

Ar = UrΣrV
T
r , Ac = UcΣcV

T
c .

Using the properties of the Kronecker product, we observe

H = Ar ⊗Ac =
(
UrΣrV

T
r

)
⊗
(
UcΣcV

T
c

)
= (Ur ⊗Uc) (Σr ⊗Σc) (Vr ⊗ Vc)

T
.

(21)

The Kronecker product preserves orthogonality. Therefore, Equation 21 is a valid SVD of H ,
with the exception of the singular values not being on the main diagonal, and not being sorted
descendingly. We reorder the columns so that the singular values are on the main diagonal and
denote the corresponding permutation matrix by P1. We also sort the values descendingly and
denote the sorting permutation matrix by P2, and obtain the following SVD:

H = UΣV T , (22)

where U = (Ur ⊗Uc)P
T
2 , Σ = P2 (Σr ⊗Σc)P

T
1 P T

2 , and V T = P2P1 (Vr ⊗ Vc)
T .

For every matrix of the form M = N ⊗L, it holds that Mx is the vectorized version of LXNT .
By using this property and applying the relevant permutation, we can simulate multiplying a vector
by U , V , UT , or V T without storing the full matrix. The space complexity of this approach is
Θ(n), which is required for computing the SVD of Ar and Ac, as well as storing the permutations.

F ABLATION STUDIES ON HYPERPARAMETERS

η and ηb. Apart from the timestep schedules, DDRM has two hyperparameters η and ηb, which
control the level of noise injected at each timestep. To identify an ideal combination, we perform
a hyperparameter search over η, ηb ∈ {0.7, 0.8, 0.9, 1.0} for the task of deblurring with σy = 0.05
in 1000 ImageNet validation images, using the model trained in (Dhariwal & Nichol, 2021). It is
possible to also consider different η values for si = 0 and σi < σy/si; we leave that as future work.
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Table 3: Ablation studies on η and ηb.

(a) PSNR (↑).

η
ηb 0.7 0.8 0.9 1.0

0.7 25.16 25.19 25.20 25.20
0.8 25.17 25.23 25.27 25.29
0.9 25.07 25.18 25.26 25.32
1.0 24.54 25.75 24.91 25.04

(b) KID ×103 (↓).

η
ηb 0.7 0.8 0.9 1.0

0.7 16.27 14.30 12.76 11.65
0.8 21.07 19.07 17.37 15.98
0.9 27.85 25.64 23.81 22.40
1.0 45.10 42.50 40.10 37.84

We report PSNR and KID results in Table 3. From the results, we observe that generally (i) as ηb
increases, PSNR increases while KID decreases, which is reasonable given that we wish to lever-
age the information from y; (ii) as η increases, PSNR increases (except for η = 1.0) yet KID
also increases, which presents a trade-off in reconstruction error and image quality (known as the
perception-distortion trade-off (Blau & Michaeli, 2018)). Therefore, we choose ηb = 1 and η = 0.85
to balance performance on PSNR and KID when we report results.

Timestep schedules. The timestep schedule has a direct impact on NFEs, as the wall-clock time
is roughly linear with respect to NFEs (Song et al., 2021). In Tables 5 and 6, we compare the
PSNR, FID, and KID of DDRM with 20 or 100 timesteps (with or without conditioning) and default
η = 0.85 and ηb = 1. We observe that DDRM with 20 or 100 timesteps have similar performance
when other hyperparameters are identical, with DDRM (20) having a slight edge in FID and KID.

G EXPERIMENTAL SETUP OF DGP, RED, AND SNIPS

Recall that we evaluated DGP (Pan et al., 2020), RED (Romano et al., 2017), and SNIPS (Kawar
et al., 2021) on 256 × 256 ImageNet 1K images, for the problems of 4× super resolution and
deblurring. OneNet (Rick Chang et al., 2017) is not included in the comparisons as it is limited
to images of size 64 × 64, and generalization to higher dimensions requires an improved network
architecture. Below we expand on the tested methods’ experimental setup.

In each of the inverse problems we show, pixel values are in the range [0, 1], and the degraded
measurements are obtained as follows: (i) for super-resolution, we use a block averaging filter to
downscale the images by the same factor in each axis; (ii) for deblurring, the images are blurred by
a 9 × 9 uniform kernel; (iii) for colorization, the grayscale image is an average of the red, green,
and blue channels of the original image; (iv) and for inpainting, we mask parts of the original image
with text overlay or randomly drop 50% of the pixels. Additive white Gaussian noise can optionally
be added to the measurements in all inverse problems.

For DGP (Pan et al., 2020), we use the same hyperparameters introduced in the original paper for
MSE-biased super resolution. We note that the downscaling applied in DGP is different from the
block averaging filter that we used, and the numbers they reported are on the 128× 128 resolution.
Nevertheless, in our experiments, DGP achieved a PSNR of 23.06 on ImageNet 1K 256×256 block
averaging 4× super resolution, which is similar to the 23.30 reported in the original work. When
applied on the deblurring problem, we retained the same DGP hyperparameters as well.

For RED (Romano et al., 2017), we apply the iterative algorithm only in the luminance channel of
the image in the YCbCr space, as done in the original paper for deblurring and super resolution. As
for the denoising engine enabling the algorithm, we use the same diffusion model used in DDRM
to enable as fair a comparison as possible. We use the last step of the diffusion model (equivalent
to denoising with σ = 0.005), as we found it to work best empirically. We also chose the steepest-
descent version (RED-SD), and λ = 500 for best PSNR performance given the denoiser we used.
We also set σ0 = 0.01 when the measurements are noiseless, because σ0 cannot be 0 as RED divides
by it.

In super resoltion, RED is initialized with the bicubic upsampled low-res image. In deblurring, it is
initialized with the blurry image. We then run RED on the ImageNet 1K for different numbers of
steps (see Table 4), and choose the best PSNR for each problem. Namely, we show in our paper RED
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Table 4: RED results on ImageNet 1K (256 × 256) for 4× super resolution and deblurring for
different numbers of steps.

Super-res Deblurring
Steps PSNR↑ KID↓ PSNR↑ KID↓
0 25.65 44.90 19.26 38.00
20 26.05 52.51 23.49 21.99
100 26.08 53.55 25.00 26.09
500 26.00 54.19 26.16 21.21

Table 5: ImageNet 50K validation set (256×256) results on 4× super resolution with additive noise
of σy = 0.05.

Method PSNR↑ FID↓ KID↓ NFEs↓
Bicubic 22.65 64.24 50.56 0
DDRM 24.70 20.16 15.25 100
DDRM-CC 24.71 18.22 13.57 100
DDRM 24.29 17.88 13.18 20
DDRM-CC 24.30 15.92 11.47 20

on super resolution with 100 steps, and on deblurring with 500 steps. Interestingly, RED achieves
a PSNR close to its best for super resolution in just 20 steps. However, DDRM (with 20 steps) still
outperforms RED in PSNR, with substantially better perceptual quality (see Table 1).

SNIPS (Kawar et al., 2021) did not originally work with ImageNet images. However, considering
the method’s similarity to DDRM (as both operate in the spectral space of H), a comparison is
necessary. We apply SNIPS with the same underlying diffusion model (with all 1000 timesteps) as
DDRM for fairness. SNIPS evaluates the diffusion model τ times for each timestep. We set τ = 1
so that SNIPS’ runtime remains reasonable in comparison to the rest of the considered methods, and
do not explore higher values of τ . It is worth mentioning that in the original work, τ was set to 3 for
an LSUN bedrooms diffusion model with 1086 timesteps. We set c = 0.67 as it achieved the best
PSNR performance.

The original work in SNIPS calculates the SVD of H directly, which hinders its ability to han-
dle 256 × 256 images on typical hardware. In order to draw comparisons, we replaced the direct
calculation of the SVD with our efficient implementation detailed in Appendix E.

In Figure 3 and Table 2, we show that DGP, RED, and SNIPS all fail to produce viable results when
significant noise is added to the measurements. For these results, we use the same hyperparame-
ters used in the noiseless case for all algorithms (except σy where applicable). While tuning the
hyperparameters may boost performance, we do not explore that option as we are only interested
in algorithms where given H and σy, the restoration process is automatic. To further demonstrate
DDRM’s capabilities and speed, we evaluate it on the entire 50, 000-image ImageNet validation set
in Tables 5 and 6, reporting Fréchet Inception distance (FID; Heusel et al. (2017)) as well as KID,
as enough samples are available.

We used the same hyperparameters for noisy and noiseless versions of the same problem for DGP,
RED, and SNIPS, as tuning them for each version would compromise their unsupervised nature.
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Table 6: ImageNet 50K validation set (256 × 256) results on deblurring with additive noise of
σy = 0.05.

Method PSNR↑ FID↓ KID↓ NFEs↓
Blurry 18.05 93.36 74.13 0
DDRM 24.23 22.30 16.23 100
DDRM-CC 24.21 20.06 14.20 100
DDRM 24.60 21.60 15.65 20
DDRM-CC 24.61 19.66 13.94 20
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