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This Lecture is About … 
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Image Denoising
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Noisy image Denoised image

Image 
Denoiser

Removal of noise from images is a heavily studied 
problem in image processing

In this talk we expand on recent discoveries and 
developments around this seemingly dead topic



Our Agenda
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1. Brief Introduction & History

2. Our Focus Today: Denoising for …
▪ Image Synthesis
▪ High perceptual quality recovery

3. Summary
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So, Let’s Talk About … 
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Image Denoising

or more accurately

Removal of White Additive Gaussian Noise from an Image 

5

+

Gaussian Noise: 

ℕ 0, σ2𝐈

Original 
(clean) 
Image

Noisy image Denoised 
image

Image 
Denoiser
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Why Assume Gaussian Noise?
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❑ The Gaussian case is more common and much more important

❑ When considering a Poisson noise,

▪ High count of photons – The distribution gets closer and closer 
to the Gaussian case

▪ Low-count Poisson-distributed image can be converted to a Gaussian-noisy 
one by Anscomb - Variance Stabilizing Transform

❑ Many of the developed ideas 
for the Gaussian case can be 
converted to other noise models

❑ MMSE denoisers for the 
Gaussian case are of extreme 
theoretical value (see later)
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Image Denoising: Evolution
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Heuristic 
Spatially
adaptive 
filtering 

Year

1970      1975      1980      1985      1990      1995      2000      2005      2010     2015

Sparsity Methods 
NCSR   BM3D    

KSVD

Heuristic: 
Bilateral

PDE-Methods

Anisotropic Diffusion
TVBeltrami

Robust 
statistics 

Hubber-Markov

Wavelet
Thresholding

Cycle-Spinning
GSM SURE

Patch-Methods 
Kernel-Regr.

EPLL

Self-Similarity 
Methods

NLM
NL-Bayes

NLM-PCA

Low-Rank 

WNNM

NL-LR

L2-based 
Regularization

Wiener



Image Denoising: A Paradigm Shift
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How can we design a denoiser?

By modeling image content and leveraging it for noise filtering:

Or by simply using: 
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Piecewise Smoothness

Scale InvarianceSparse Representation

Non-Local Self-Similarity

Low Rank

Low dimensionalityGMM

C
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Supervised Training
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n
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Observe that with this 
trend, all the knowledge 

and knowhow accumulated  
carefully over decades in 

image processing became 
obsolete – is it true? 



Image Denoising: Recent Evolution
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Year

Denoising Auto-
Encoder

(Cho) 
ICML 2013

2012      2013      2014      2015      2016      2017      2018      2019      2020      2021

Learned Prox
(Meinhardt et. al)

ICCV 2017

DnCNN
(Zhang et. al)
IEEE-TIP 2017

FFDNet (blind) 
(Zhang et. al)
IEEE-TIP 2018

GCBD 
GAN-based  
(Chen et. al)
CVPR 2018

Initial Steps - MLP
(Burger et. al)

CVPR 2012
TNRD

(Chen & Pock) 
IEEE-TPAMI 2016

Deep Shrinkage
Isogawa et. al
IEEE-SPL 2017 CNLNet

(Lefkimmiatis) 
CVPR 2017

Deep Image Prior
(Ulyanov & Vedaldi)

CVPR 2018
Noise2Void 
(Krull et. al)
CVPR 2019

CBDNet -
blind

(Guo et. al)
CVPR 2019

Attention-CNN
(Tian et. al)

Neural Networks 
2020

Batch 
Renormalization

(Tian et. al)
Neural Networks 

2020
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Our Focus Today: 
Recent Discoveries
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Our Focus Today
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Noisy 
image y

Denoised 
image ොx

Image Denoiser 
D y, σ

σ

Recent findings on using denoisers for other tasks:

❑ Discovery 0: Solving general inverse problems [2013-]

❑ Discovery 1: Image Synthesis [2019-]

❑ Discovery 2: High perceptual quality recovery [2021-]

We turn to describe these results 



Discovery 1: Image Synthesis
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❑ In recent years, and with the deep-learning 
revolution, there is a growing interesting is 
synthesizing images “out of thin air”

❑ The popular tool of interest is called GAN –
Generative Adversarial Network, built of two 
competing networks – a generator and a critique

❑ Why synthesize? Because 

▪ We can, and it is fascinating 

▪ It testifies that we have seized the distribution 
of images, and 

▪ It could be used 
for other needs 

❑ Could we synthesize 
images differently? 
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Discovery 1: Image Synthesis
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Question: Given a denoiser D y, σ
how can one synthesize images with it? 

Answer: Use D y, σ as a Projector onto the image manifold

Practical Implication: Iterated use of D ∙, σ with varying σ

D ∙, σ1
Simple 

Operation D ∙, σ2
Simple 

Operation
Simple 

Operation
noise



Discovery 1: Image Synthesis
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Here is the core idea in a nutshell:

Our goal: draw a sample from the distribution of images P x

▪ Start with a random noise image ොx0

▪ Climb to a more probable image by the iterative equation:

… and this way we got an iterated algorithm that keeps calling to a 
denoiser, and is guaranteed to obtain a sample from P x

This is known (Miyasawa `61) as the 
Score Function and it is approximately 

proportional to ොxk − D ොxk, σ
for a small value of σ

ොxk+1 = ොxk + a ∙ 𝛻logP ොxk (Langevin Dynamics)

This suggests an implicit 
relation between MMSE 
denoisers and Priors:  
D x, σ  P x

+b ∙ zk



Discovery 1: Image Synthesis
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In practice, instead of the plain Langevin with a fixed (and 
small) value of σ we use the Annealed Langevin Algorithm 
that considers a sequence of blurred priors: 

P x + v for   v~ℕ 0, σk
2𝐈

= P x ۪c ∙ exp −
1

2σ2
x 2

with   σ0 > σ1 > σ2 ⋯ > σN > 0

The core idea: start by drawing
from a wider distribution and 
gradually narrow it, leading to 
a faster sampling performance



Discovery 1: Image Synthesis

Michael Elad
The Computer-Science Department
The Technion

16

Does it work? Here are some results

Kadkhodaie & Simoncelli

Song & 
Ermon



15

Discovery 1: Image Synthesis
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Claim: diffusion-based methods are 
the best in image synthesis

BigGAN (FID 6.95)        Diffusion (FID 4.59)
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Discovery 1: Image Synthesis
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Surely, you have heard of …
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Discovery 1: Image Synthesis
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Surely, you have heard of …



MMSE Result 

E{x|y}

Discovery 2: Targeting Perceptual Quality
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Suppose that we need to denoise the following image:

Should we be 
pleased with this 
result? It seems 
to be a bit … 
blurry, no? Why? 

OriginalNoisy (σ = 100) Denoised image

Image 
Denoiser

σ

Image 
Manifold

Noisy 
Image

Minimum Mean-
Squared-Error 

(MMSE) denoisers 
are great for MSE 

result, but their 
result falls outside 

the manifold



Discovery 2: Targeting Perceptual Quality
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Question: How can we denoise an image 
while targeting “High Perceptual Quality”? 

Answer: Denoise by sampling from the posterior P x|y

Practical Implication: We consider 2 methods

▪ Training a deep denoiser via CGAN, or

▪ Iterated use of an MMSE denoiser D ∙, σ

These methods 
produce a multitude 
of possible solutions 



Discovery 2: Targeting Perceptual Quality
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Let’s have a closer look at the Stochastic Image Denoiser:

Task: Draw a sample from P x|y where [y = x + n, n~ℕ 0, σ0
2𝐈 ]

▪ Start with a random noise image ොx0

▪ Climb to a more probable image by the iterative equation:

= ොxk −D ොxk, σ + 𝛻logP y|ොxk

ොxk+1 = ොxk + a ∙ 𝛻logP ොxk|y + b ∙ zk Langevin with a 
conditional Score

= 𝛻logP ොxk + 𝛻logP y|ොxk

Bayes rule 

A Gaussian Distribution ?Approx. Score



Discovery 2: Targeting Perceptual Quality
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𝛻logP ොxk|y =

Let’s have a closer look at the Stochastic Image Denoiser:

▪ As we use the Annealed Langevin algorithm, there are two noise 
signals to consider: 

o Measurement’s noise:  n~ℕ 0, σ0
2𝐈

o Synthetic annealing noise:  v~ℕ 0, σk
2𝐈 for σ0 > σ1 > σ2 ⋯ > σN > 0

▪ Implication: We recover 
a sequence of gradually less 
noisy images ොxk where their 
noise v is assumed to be a portion of n

𝛻logP ොxk|y = ොxk − D ොxk, σ + 𝛻logP y|ොxk

= ොxk −D ොxk, σk +
y − ොxk

σ0
2 − σk

2



Discovery 2: Targeting Perceptual Quality
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Stochastic Image Denoiser:  
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▪ We start from a noisy image (𝜎 ≈ 150 in this example)

▪ Then gradually denoise it using (conditional) annealed Langevin dynamics
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Discovery 2: Targeting Perceptual Quality
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Stochastic Image Denoiser:  



Discovery 2: Targeting Perceptual Quality

Michael Elad
The Computer-Science Department
The Technion

26

Let’s have a closer look at the Conditional GAN Denoiser:

❑ Typical design approach: Optimize a distortion measure (e.g. MSE) between 
the denoised and the ideal images

❑ Adversarial loss could be added to 
improve the perceptual quality

❑ However, when used together, 
we get a compromise between
distortion and perceptual quality

Denoiser

Denoised
Noisy

Clean

MSE ,

Critic

λ Ladv( )+



Discovery 2: Targeting Perceptual Quality
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❑ For ill-posed restoration tasks, perceptual 
quality performance comes at the expense 
of its distortion [Blau & Michaeli 2017]

❑ We aim for best perceptual quality

❑ The posterior distribution attains perfect 
perceptual quality, compromising 3dB 
compared to the MMSE [Blau & Michaeli 2017]

❑ We propose to sample from the posterior
via a Conditional GAN mechanism (PSCGAN)

x ∼ PX y ∼ PY|X=x
Samples from PX|Y=y

Perception

Distortion
Less Distortion

B
etter visu

al q
u

ality

Alg. 1

Alg. 2

Alg. 4

Alg. 3

Possible 
Region

Impossible 
Region

MMSE

3dB



Discovery 2: Targeting Perceptual Quality
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Noisy Image y Randomized
Denoiser
Dθ y, z

DenoisedRandom 
noise z

Original

Critic
Cω x, y

Noisy
Image y

The PSCGAN Architecture:

Why use y in the critic? Without it, 
we check only the perceptual quality 
of the denoised result. With it, we 
also assess its denoising validity
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What about the Loss?

❑ CGAN optimization leads to posterior sampling [Adler et al. 2018]:

min
θ

max
ω

𝔼X,Y Cω x, y − 𝔼Dθ,Y,Z
[Cω(Dθ, y)]

❑ However, this requires an unavailable balanced dataset to train on 
(many x’s for each y and many y’s for each x)

❑ On the other hand, we would like to avoid a penalty of the form 

𝔼X,Y,Z x − Dθ y, z 2
2

❑ Our remedy: adding an MMSE oriented penalty term:

𝔼X,Y x − 𝔼z Dθ y 2
2

❑ This gives the MMSE result “for free” (averaging many instances)
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CGAN: 
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Oh … and One Last Thing
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What about Inverse Problems?
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❑ Goal: Recovery from corrupted measurements

De-Noising      De-Blurring 

In-Painting       De-Mosaicing

Tomography    Image Scale-Up 
& super-resolution

❑ Can we suggest a “sampler” from 
P x|y for handling all these 
problems, in order to obtain “perfect looking” results? 

❑ Answer: Yes! Use Langevin dynamics again, in an adapted form  

y = Hx + n

Advances in Neural Information Processing Systems (NeurIPS)



What about Inverse Problems?
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❑ The idea is similar to our high-perceptual denoising, with necessary 
changes for considering the degradation operator H …

❑ Starting naively, using Bayes theorem, we need to calculate 

𝛻log P xi|y = 𝛻log P xi + 𝛻log P y|xi

❑ We know that y = Hx + n and xi = x + vi and thus:

𝛻logP y|xi = 𝛻logP y − Hxi|xi =

𝛻logP Hx + n − Hx − Hvi|xi = 𝛻logP n − Hvi|xi

❑ However, … while n − Hvi is a simple Gaussian, it’s dependency 
on xi in non-trivial, so how do we proceed from here? 



What about Inverse Problems?
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❑ Step 1: Use SVD for decoupling the measurements H = UΣVT:

UTy = UT UΣVT xi − vi + n

yT k = σkxT k − σkvT k + nT k

❑ Thus, we can apply the Langevin dynamics algorithm on 
xT = VTxi given yT = UTy and sample from the conditional

❑ Bottom line: An MMSE denoiser is used for a novel solution of 
inverse problems, this time targeting best perceptual quality 

y = Hx + n

= ΣVT xi − vi + UTn

Decouple xT k  vT k by choosing  
vT k to be a portion of nT k



What about Inverse Problems?
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Noisy Inpainting: A portion missing and noise with 𝜎0 ≈ 25
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What about Inverse Problems?
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Super resolution: downscaling by 4 with additive noise of 𝜎0 ≈ 25



What about Inverse Problems?
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Super resolution: downscaling by 4 with additive noise of 𝜎0 ≈ 12

Original Degraded Samples from our algorithm Mean



What about Inverse Problems?
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Deblurring: uniform 5 × 5 blur with additive noise of 𝜎0 ≈ 25



What about Inverse Problems?
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Compressive sensing (12.5%) with additive noise of 𝜎0 ≈ 25

Original Degraded Samples from our algorithm Mean



Back to Inverse Problems
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And just to remind you …

The proposed diffusion-based sampling scheme, while quite 
appealing, suffers from several key shortcomings:

❑ It is rather  S L O W (many denoising activations)

❑ It is limited (as of now) to specific families of images

❑ Relying on SVD is cumbersome

See our recent work that answers (some of) these challenges: 

53

Advances in Neural Information Processing Systems (NeurIPS)
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Time to Summarize
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What Have we Seen Today? 
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Suppose that we are given an MMSE denoiser D y

solving ANY 
inverse 

problem 
(PnP/RED)

solving ANY 
inverse problem 

with high 
perceptual quality

synthesizing 
natural-
looking 
images

denoising images 
while targeting 
high perceptual  

quality

All the above are achieved by 
simply applying D y iteratively

W E   C A N   U S E   𝐃 𝐲 F O R   . . . .   



Summary
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1. There are so many opportunities and challenges in 
better understanding, designing, and proposing 
creative usage of image denoisers 

2. Despite the fact that this has not been a talk about 
Deep-Learning, the presence of this field in the 
topics covered is prominent

Image Denoising

… Not What You Think
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