Talks

Image Decomposition Via the Combination of Sparse Representations and a Variational Approach
January 10th , 2004
AMS 10th meeting “Special Session on Multiscale and Oscillatory Phenomena“ Invited Talk

The separation of image content into semantic parts plays a vital role in applications such as compression, enhancement, restoration, and more. In recent years several pioneering works suggested such separation based on variational formulation, and others using independent component analysis and sparsity. In this talk we present a novel method for separating images into texture and piecewise smooth parts, exploiting both the variational and the sparsity mechanisms, by combining the Basis Pursuit Denoising (BPDN) algorithm and the Total-Variation (TV) regularization scheme.

The basic idea in our work is the use of two appropriate dictionaries, one for the representation of textures, and the other for the natural scene parts, assumed to be piece-wise-smooth. Both dictionaries are chosen such that they lead to sparse representations over one type of image-content (either texture or piecewise smooth). The use of the BPDN with the two augmented dictionaries leads to the desired separation, along with noise removal as a by-product. As the need to choose a proper dictionary for natural scene is very hard, a TV regularization is employed to better direct the separation process. We will present several experimental results that validate the algorithm’s performance.

Joint work with Jean-Luc Starck from CEA, France, and David Donoho, Statistics- Stanford University.