Publications Other

Books

1.   M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, Springer, 2010. A Matlab-package that reproduces the book's figures and contains most of the discussed algorithms is available here. software

Book Chapters

1.  E. Zisselman, A. Adler, and M. Elad, Compressed Learning for Image Classification: A Deep Neural Network Approach, in "Processing, Analyzing and Learning of Images, Shapes and Forms: Part 1", Edited by Ron Kimmel and Xu-Cheng Tai, Elsevier, North Holland, 2018.
2.  M. Elad, Five Lectures on Sparse and Redundant Representations Modelling of Images, in "Mathematics in Image Processing", Edited by Hongkai Zhao, AMS Publishing. 2010.
3.  M. Protter and M. Elad, Super-Resolution With Probabilistic Motion Estimation, in "Super-Resolution Imaging", Edited by Peyman Milanfar, CRC 2010.
4.  S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, Simultaneous Demosaicking and Resolution Enhancement From Under-Sampled Image Sequences, in "Single-Sensor Imaging: Methods and Applications for Digital Cameras", Edited by Rastislav Lukac, CRC Press, 2008.

Arxiv

1.  Y. Romano, A. Aberdam, J. Sulam and M. Elad, Adversarial Noise Attacks of Deep Learning Architectures - Stability Analysis via Sparse Modeled Signals, 1805.11596, November 2018.
2.  E. Zisselman, J. Sulam, and M. Elad, A Local Block Coordinate Descent Algorithm for the Convolutional Sparse Coding Model, 1811.00312, November 2018
3.  Alon Brifman, Yaniv Romano, and Michael Elad, Unified Single-Image and Video Super-Resolution via Denoising Algorithms, 1810.01938, October 2018.
4.  Ives Rey-Otero, Jeremias Sulam, and Michael Elad, Variations on the CSC Model, 1810.01169, October 2018.
5.  D. Simon, J. Sulam, Y. Romano, Y.M. Lu, and M. Elad, Improving Pursuit Algorithms Using Stochastic Resonance, 1806.10171, June 2018.
6.  Y. Yankelevsky and M. Elad, Finding GEMS: Multi-Scale Dictionaries for High-Dimensional Graph Signals, 1806.05356, June 2018.
7.  J. Sulam, A. Aberdam, A. Beck, and M. Elad, On Multi-Layer Basis Pursuit, Efficient Algorithms and Convolutional Neural Networks, 1806.00701, June 2018.
8.  A. Golts, D. Friedman, and M. Elad, Deep Energy: Using Energy Functions for Unsupervised Training of DNNs, 1805.12355, May 2018.
9.  T. Hong, Y. Romano, and M. Elad, Acceleration of RED via Vector Extrapolation, 1805.02158, May 2018.
10.  A. Aberdam, J. Sulam and M. Elad, Multi Layer Sparse Coding: the Holistic Way, 1804.09788, April 2018.
11.  Y. Dar, M. Elad and A.M. Bruckstein, Compression for Multiple Reconstructions, 1802.03937, February 2018
12.  Y. Dar, M. Elad and A.M. Bruckstein, System-Aware Compression, 1801.04853, January 2018.
13.  Y. Dar, M. Elad and A.M. Bruckstein, Optimized Pre-Compensating Compression, 1711.07901, November 2017.
14.  Y. Dar, M. Elad and A.M. Bruckstein, Restoration by Compression, 1711.05147, November 2017.
15.  J. Sulam, V. Papyan, Y. Romano, and M. Elad, Multi-Layer Convolutional Sparse Modeling: Pursuit and Dictionary Learning, 1708.08705, August 2017.
16.  V. Papyan, J. Sulam, and M. Elad, Working Locally Thinking Globally: Theoretical Guarantees for Convolutional Sparse Coding, 1707.06066, July 2017.
17.  Vardan Papyan, Yaniv Romano, Jereias Sulam, and Michael Elad, Convolutional Dictionary Learning via Local Processing, 1705.03239, May 2017.
18.  Dmitry Batenkov, Yaniv Romano, and Michael Elad, On the Global-Local Dichotomy in Sparsity Modeling, 1702.03446, February 2017.
19.  Yaniv Romano, Michael Elad and Peyman Milanfar, The Little Engine that Could: Regularization by Denoising (RED), 1611.02862, November 2016.
20.  Amir Adler, Michael Elad, and Michael Zibulevsky, Compressed Learning: A Deep Neural Network Approach, 1610.09615, October 2016.
21.  Yael Yankelevsky and Michael Elad, Structure-Aware Classification using Supervised Dictionary Learning, 1609.09199, September 2016.
22.  Yi Ren, Yaniv Romano, and Michael Elad, Example-Based Image Synthesis via Randomized Patch-Matching, 1609.07370, September 2016.
23.  Michael Elad and Peyman Milanfar, Style-Transfer via Texture-Synthesis, 1609.03057, September 2016.
24.  Vardan Papyan, Yaniv Romano and Michael Elad, Convolutional Neural Networks Analyzed via Convolutional Sparse Coding, 1607.08194, July 2016.
25.  Vardan Papyan, Jeremias Sulam, and Michael Elad, Working Locally Thinking Globally - Part II: Stability and Algorithms for Convolutional Sparse Coding, 1607.02009, July 2016.
26.  Vardan Papyan, Jeremias Sulam, and Michael Elad, Working Locally Thinking Globally - Part I: Theoretical Guarantees for Convolutional Sparse Coding, 1607.02005, July 2016.
27.  Amir Adler, David Boublil, Michael Elad, and Michael Zibulevsky, A Deep Learning Approach to Block-based Compressed Sensing of Images, 1606.01519, June 2016.
28.  Yaniv Romano and Michael Elad, Con-Patch: When a Patch Meets its Context, 1603.06812, June 2016.
29.  Jeremias Sulam, Boaz Ophir, Michael Zibulevsky, and Michael Elad, Trainlets: Dictionary Learning in High Dimensions, 1602.00212, May 2016.
30.  Yehuda Dar, Alfred M. Bruckstein, Michael Elad, and Raja Giryes, Postprocessing of Compressed Images via Sequential Denoising, 1510.09041, March 2016.
31.  Gregory Vaksman, Michael Zibulevsky, and Michael Elad, Patch-Ordering as a Regularization for Inverse Problems in Image Processing, 1602.08510, February 2016.
32.  Arie Rond, Raja Giryes, and Michael Elad, Poisson Inverse Problems by the Plug-and-Play scheme, 1511.02500, November 2015.
33.  Alona Goltz and Michael Elad, Linearized Kernel Dictionary Learning, 1509.05634, Spetember 2015.
34.  Wen-Ze Shao and Michael Elad, Simple, Accurate, and Robust Nonparametric Blind Super-Resolution, 1503.03187, March 2015.
35.  Yaniv Romano and Michael Elad, Boosting of Image Denoising Algorithms, 1502.06220, March 2015.
36.  Wen-Ze Shao, Hai-Bo Li, and Michael Elad, Bi-l0-l2-Norm Regularization for Blind Motion Deblurring, 1408.4712, August 2014.
37.  Raja Giryes, Michael Elad, and Alfred Bruckstein, Sparsity Based Methods for Overparametrized Variational Problems, 1405.4969, May 2014.
38.  Joseph Shtok, Michael Zibulevsky, and Michael Elad, Spatially-Adaptive Reconstruction in Computed Tomography using Neural Networks, 1311.7251, November 2013.
39.  Raja Giryes and Michael Elad, Sparsity Based Poisson Denoising with Dictionary Learning, 1309.4306, September 2013.
40.  Idan Ram, Michael Elad and Israel Cohen, Image Processing using Smooth Ordering of its Patches, 1210.3832, October 2012.
41.  Raja Giryes, Sangnam Nam, Michael Elad, RГ©mi Gribonval, and Mike E. Davies, Greedy-Like Algorithms for the Cosparse Analysis Model, 1207.2456, January 2013.
42.  Idan Ram, Michael Elad, and Israel Cohen, Can we allow linear dependencies in the dictionary in the sparse synthesis framework?, 1210.3832, October 2012.
43.  Tomer Peleg and Michael Elad, Performance Guarantees of the Thresholding Algorithm for the Co-Sparse Analysis Model, 1203.2769, March 2012.
44.  Tomer Peleg, Yonina C. Eldar, and Michael Elad, Exploiting Statistical Dependencies in Sparse Representations for Signal Recovery, 1010.5734, March 2012.
45.  Idan Ram, Michael Elad, and Israel Cohen, Redundant Wavelets on Graphs and High Dimensional Data Clouds, 1111.4619, November 2011.
46.  Sangnam Nam, Mike E. Davies, Michael Elad, and RГ©mi Gribonval, The Cosparse Analysis Model and Algorithms, 1106.4987, June 2011.
47.  Idan Ram, Michael Elad, and Israel Cohen, Generalized Tree-Based Wavelet Transform, 1011.4615, February 2011.
49.  Joseph Shtok, Michael Zibulevsky, and Michael Elad, Spatially-Adaptive Reconstruction in Computed Tomography Based on Statistical Learning, 1004.4373, April 2010.
50.  Joseph Shtok and Michael Elad, Analysis of Basis Pursuit Via Capacity Sets, 1004.4329, April 2010.
51.  Raja Giryes, Michael Elad, and Yonina C. Eldar, The Projected GSURE for Automatic Parameter Tuning in Iterative Shrinkage Methods, 1003.3985, March 2010.
52.  Javier Turek, Irad Yavneh, Matan Protter, and Michael Elad, On MMSE and MAP Denoising Under Sparse Representation Modeling Over a Unitary Dictionary, 1003.3984, March 2010.
53.  Zvika Ben-Haim, Yonina C. Eldar, and Michael Elad, Coherence-Based Performance Guarantees for Estimating a Sparse Vector Under Random Noise, 0903.4579, March 2009.

Lecture Notes

1.  M. Elad, Mathematical Methods for Engineering, (in Hebrew), Technion 2006.
2.  M. Elad, Elementary Course in Signal and Image Processing, (in Hebrew), Technion 2005.
3.  M. Elad, Introduction to Image Processing, (in Hebrew), Lecture Notes, Technion 1999.
4.  M. Elad, Numerical Methods in Optimization, (in Hebrew), Lecture Notes, Technion 1998.
Publications: ConferencesJournal PapersOther