Deep Energy

The success of deep learning has been due, in no small part, to the availability of large annotated data-sets. Thus, a major bottleneck in current learning pipelines is the time consuming human annotation of data. In scenarios where such input-output pairs cannot be collected, simulation is often used instead, leading to a domain-shift between synthesized and real world data. Our recent work (by Alona Golts, Daniel Freedman and me) offers an unsupervised alternative that relies on the availability of task-specific energy functions, replacing the generic supervised loss. The proposed approach, termed Deep-Energy, trains a Deep Neural Network (DNN) to approximate this minimization for any chosen input. Once trained, a simple and fast feed-forward computation provides the inferred label. This approach allows us to perform unsupervised training of DNNs with real-world inputs only, and without the need for manually-annotated labels, nor synthetically created data. The code we supply here demonstrate this on three different tasks – seeded segmentation, image matting and single image dehazing.