Talks
In this talk we consider several inverse problems in image processing, using sparse and redundant representations over trained dictionaries. Using the K-SVD algorithm, we obtain a dictionary that describes the image content effectively. Two training options are considered: using the corrupted image itself, or training on a corpus of high-quality image database. Since the K-SVD is limited in handling small image patches, we extend its deployment to arbitrary image sizes by defining a global image prior that forces sparsity over patches in every location in the image. We show how such Bayesian treatment leads to a simple and effective denoising algorithm for gray-level images with state-of-the-art denoising performance. We then extend these results to color images, handling their denoising, inpainting, and demosaicing. Following the above ideas, with necessary modifications to avoid color artifacts and over-fitting, we present stat-of-the art results in each of these applications. Another extension considered is video denoising — we demonstrate how the above method can be extended to work with 3D patches, propagate the dictionary from one frame to another, and get both improved denoising performance while also reducing substantially the computational load per pixel.