MMSE Estimation for Sparse Representation Modeling
April 6th, 2009
Statistics seminar, Ecole Polytechnique, France.

Cleaning of noise from signals is a classical and long-studied problem in signal processing. Algorithms for this task necessarily rely on an a-priori knowledge about the signal characteristics, along with information about the noise properties. For signals that admit sparse representations over a known dictionary, a commonly used denoising technique is to seek the sparsest representation that synthesizes a signal close enough to the corrupted one. As this problem is too complex in general, approximation methods, such as greedy pursuit algorithms, are often employed. In this line of reasoning, we are led to believe that detection of the sparsest representation is key in the success of the denoising goal. Does this means that other competitive and slightly inferior sparse representations are meaningless? Suppose we are served with a group of competing sparse representations, each claiming to explain the signal differently. Can those be fused somehow to lead to a better result? Surprisingly, the answer to this question is positive; merging these representations can form a more accurate, yet dense, estimate of the original signal even when the latter is known to be sparse. In this talk we demonstrate this behavior, propose a practical way to generate such a collection of representations by randomizing the Orthogonal Matching Pursuit (OMP) algorithm, and produce a clear analytical justification for the superiority of the associated Randomized OMP (RandOMP) algorithm. We show that while the Maximum a-posterior Probability (MAP) estimator aims to find and use the sparsest representation, the Minimum Mean-Squared-Error (MMSE) estimator leads to a fusion of representations to form its result. Thus, working with an appropriate mixture of candidate representations, we are surpassing the MAP and tending towards the MMSE estimate, and thereby getting a far more accurate estimation, especially at medium and low SNR. Another topic covered in thistalk concerns the case of a unitary dictionary. In such a case it is well-known that the MAP estimators has a closed-form and exact solution, and OMP is accurately computing it. Can a similar result be derived for MMSE? We show that this is indeed possible, obtaining a recursive formula that computes the MMSE simply and exactly.

Joint work with Irad Yavneh and Matan Protter (CS - Technion).