Talks
Regularization Theory
Regularization Theory
Image denoising is the most fundamental problem in image enhancement, and it is largely solved: It has reached impressive heights in performance and quality — almost as good as it can ever get. But interestingly, it turns out that we can solve many other problems using the image denoising “engine”. I will describe the Regularization by Denoising (RED) framework: using the denoising engine in defining the regularization of any inverse problem. The idea is to define an explicit image-adaptive regularization functional directly using a high performance denoiser. Surprisingly, the resulting regularizer is guaranteed to be convex, and the overall objective functional is explicit, clear and well-defined. With complete flexibility to choose the iterative optimization procedure for minimizing this functional, RED is capable of incorporating any image denoising algorithm as a regularizer, treat general inverse problems very effectively, and is guaranteed to converge to the globally optimal result.
What if we take all the overlapping patches from a given image and organize them to create the shortest path by using their mutual distances? This suggests a reordering of the image pixels in a way that creates a maximal 1D regularity. Could we repeat this process in several scales? What could we do with such a construction? In this talk we consider a wider perspective of the above line of questions: We introduce a wavelet transform that is meant for data organized as a connected-graph or as a cloud of high-dimensional points. The proposed transform constructs a tree that applies a 1D wavelet decomposition filters, coupled with a pre-reordering of the input, so as to best sparsify the given data. We adopt this transform to image processing tasks by considering the image as a graph, where every patch is a node, and vertices are obtained by Euclidean distances between corresponding patches. We show three ways to use the above ideas in practice – adopt only the patch-reordering, use the obtained wavelet transform as a sparsifying process, and a third approach were this transform is used as a regularizer. State-of-the-art image denoising, deblurring, and inpainting results are obtained with the proposed schemes.
What if we take all the overlapping patches from a given image and organize them to create the shortest path by using their mutual distances? This suggests a reordering of the image pixels in a way that creates a maximal 1D regularity Could we repeat this process in several “scales” ? What could we do with such a construction? In this talk we consider a wider perspective of the above line of questions: We introduce a wavelet transform that is meant for data organized as a connected-graph or as a cloud of high dimensional points. The proposed transform constructs a tree that applies a 1D wavelet decomposition filters, coupled with a pre-reordering of the input, so as to best sparsify the given data. We adopt this transform to image processing tasks by considering the image as a graph, where every patch is a node, and vertices are obtained by Euclidean distances between corresponding patches. State of- the-art image denoising results are obtained with the proposed scheme.
An under-determined linear system of equations Ax = b with non-negativity constraint is considered. It is shown that for matrices A with a row-span intersecting the positive orthant, if this problem admits a sufficiently sparse solution, it is necessarily unique. The bound on the required sparsity depends on a coherence property of the matrix A. It is further shown that A undergoes a conditioning stage with some degrees of freedom, which may be used to improve the coherence measure and strengthen the claimed result.
In our field, when composing a super-resolved image, two ingredients contribute to the ability to get a leap in resolution: (i) the existence of many and diverse measurements, and (ii) the availability of a model to reliably describe the image to be produced. This second part, also known as the regularization or the prior, is of generic importance, and could be deployed to any inverse problem, and used by many other applications (compression, image synthesis, and more). The well-known recent work by Baker and Kanade (’02) and the work that followed (Lin and Shum ’04, Robinson and Milanfar ’05) all suggest that while the measurements are limited in gaining a resolution increase, the prior could be used to break this barrier. Clearly, the better the prior used, the higher the quality we can expect from the overall reconstruction procedure. Indeed, recent work on super-resolution (and other inverse problems) departs from the regular Tikhonov method, and tends to the robust counterparts, such as TV or the bilateral prior (see Farsiu et. al. ’04).
A recent trend with a growing popularity is the use of examples in defining the prior. Indeed, Baker and Kanade were the first to introduce this notion to the super-resolution task. There are several ways to use examples in shaping the prior to become better. The work by Mumford and Zhu (’99) and the follow-up contribution by Haber and Tenorio (02′) suggest a parametric approach. Baker and Kanade (’02), Freeman et. al. (several contributions ’01), Nakagaki and Katzaggelos (’03) all use the examples to directly learn the reconstruction function, by observing low-res. versus high-res. pairs.
In this talk we survey this line of work and show how it can be extended in several important ways. We show a general framework that builds an example-based prior that is independent of the inverse problem at hand, and we demonstrate it on several such problems, with promising results.
Additive noise removal from a given signal (also known as de-noising) is an important stage in many applications in signal processing. Various approaches have been proposed throughout the years. This talk focuses on Bayesian smoothing and edge-preserving methods. Classical algorithms in this family are typically based on Weighted Least Squares (WLS), Robust Estimation (RE), and Anisotropic Diffusion (AD). These methods share common features such as adaptivity to the data, formation as optimization problems, and the need for iterative-based restoration. In 1998 Tomasi and Manduchi (CS, Stanford) proposed an alternative heuristic non-iterative filter for noise removal called the bilateral filter. It was shown to give similar and possibly better results compared to the abovementioned iterative approaches.
However, the bilateral filter was proposed as an intuitive tool without theoretical connection to the classical approaches. In this talk the various noise-removal techniques discussed here (WLS, RE, AD, and the bilateral filter) are presented and related theoretically to each other. In particular, it is shown that RE (and AD) could be interpreted as WLS with weights replaced after each iteration. Also, it is shown that the bilateral filter emerges from the Bayesian approach as a single iteration of the Jacobi iterative algorithm for a properly posed smoothness penalty. Based on this observation, it is shown how this new filter can be improved and extended to treat more general reconstruction problems.