Talks

Details view List view

Dictionary Learning

Sequential Minimal Eigenvalues - An Approach to Analysis Dictionary Learning
September 1st, 2011
EUSIPCO, Barcelona, Spain, Special Session on Processing and recovery using analysis and synthesis sparse models.

Over the past decade there has been a great interest in a synthesis-based model for signals, based on sparse and redundant representations. Such a model assumes that the signal of interest can be decomposed as a linear combination of few columns from a given matrix (the dictionary). An alternative, analysis-based, model can be envisioned, where an analysis operator multiplies the signal, leading to a sparse outcome. In this work we propose a simple but effective analysis operator learning algorithm, where analysis “atoms” are learned sequentially by identifying directions that are orthogonal to a subset of the training data. We demonstrate the effectiveness of the algorithm in several experiments, treating synthetic data and real images, showing a successful and meaningful recovery of the analysis operator.

This is a joint work with Mark Plumbley (QMUL - London), Nancy Bertin (CNRS - Rennes, France), Boaz Ophir, and Ron Rubinstein (CS, Technion).
Sparse & Redundant Representation Modeling of Images: Theory and Applications
April 19-24, 2015
ICASSP 2015, "School-of-ICASSP" Session, in Brisbane Australia

In this survey talk I will walk you through a decade of fascinating research activity on “sparse and redundant representations”. We will start with a classic image processing task of noise removal and use it as a platform for the introduction of data models in general, and sparsity and redundancy as specific forces in such models. The emerging model will be shown to lead to a series of key theoretical and numerical questions, which we will handle next. A key problem with the use of sparse and redundant representation modeling is the need for a sparsifying dictionary – we will discuss ways to obtain such a dictionary by learning from examples, and introduce the K-SVD algorithm. Then we will show how all these merge into a coherent theory that can be deployed successfully to various image processing applications.

This talk was given as an invited talk in ICASSP 2015
Recent Results on the Co-Sparse Analysis Model
March 18-22, 2013
84th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Novi-Sad, Serbia

In this talk we describe the co-sparse analysis model, with emphasis on pursuit algorithms and dictionary learning for it. We present two of our recent activities on this subject: (i) A theoretical study of the Analysis-Thresholding algorithm, exposing measures of goodness for the dictionary that govern the pursuit performance; and (ii) The development of an analysis K-SVD algorithm that trains a dictionary from signal examples and its use for image denoising.

This is a joint work with Tomer Peleg and Ron Rubinstein. This talk was given as an invited talk in the workshop "Mathematical signal and image processing" organized by Gitta Kutyniok and Otmar Scherzer
Recent Results on the Co-Sparse Analysis Model
December 7th, 2012
NIPS, Lake Tahoe

In this talk we describe the co-sparse analysis model, with emphasis on pursuit algorithms and dictionary learning for it. We present two of our recent activities on this subject: (i) A theoretical study of the Analysis-Thresholding algorithm, exposing measures of goodness for the dictionary that govern the pursuit performance; and (ii) The development of an analysis K-SVD algorithm that trains a dictionary from signal examples and its use for image denoising.

This is a joint work with Tomer Peleg and Ron Rubinstein. This talk was given as an invited talk in the workshop "Analysis Operator Learning vs. Dictionary Learning: Fraternal Twins in Sparse Modeling"
The Analysis Sparse Model - Definition, Pursuit, Dictionary Learning, and Beyond (Short-Version)
May, 2012
SIAM Imaging Science Conference, Philadelphia

The synthesis-based sparse representation model for signals has drawn a considerable interest in the past decade. Such a model assumes that the signal of interest can be decomposed as a linear combination of a few atoms from a given dictionary. In this talk we concentrate on an alternative, analysis-based model, where an analysis operator — hereafter referred to as the “Analysis Dictionary” – multiplies the signal, leading to a sparse outcome. While the two alternative models seem to be very close and similar, they are in fact very different. In this talk we define clearly the analysis model and describe how to generate signals from it. We discuss the pursuit denoising problem that seeks the zeros of the signal with respect to the analysis dictionary given noisy measurements. Finally, we explore ideas for learning the analysis dictionary from a set of signal examples. We demonstrate this model’s effectiveness in several experiments, treating synthetic data and real images, showing a successful and meaningful recovery of the analysis dictionary.

This is a short-version of the talk below. It was given as an invited talk in the SIAM Imaging Science Conference, in the Session "Sparse and Redundant Representations for Image Reconstruction and Geometry Extraction", organized by Weihong Guo (Case Western Reserve University, USA), Philadelphia May 2012. This talk was also given in a Machine-Learning Workshop in Janelia Farm (May, 2012). Joint work with Ron Rubinstein (former PhD student), Tomer Faktor (PhD student), Remi Gribonval and Sangnam Nam (INRIA, Rennes), and Mike Davies (UEdin).
The Analysis Sparse Model - Definition, Pursuit, Dictionary Learning, and Beyond
January 16th, 2012
Mathematics and Image Analysis 2012 Workshop (MIA'12), Paris

The synthesis-based sparse representation model for signals has drawn a considerable interest in the past decade. Such a model assumes that the signal of interest can be decomposed as a linear combination of a few atoms from a given dictionary. In this talk we concentrate on an alternative, analysis-based model, where an analysis operator — hereafter referred to as the “Analysis Dictionary” – multiplies the signal, leading to a sparse outcome. While the two alternative models seem to be very close and similar, they are in fact very different. In this talk we define clearly the analysis model and describe how to generate signals from it. We discuss the pursuit denoising problem that seeks the zeros of the signal with respect to the analysis dictionary given noisy measurements. Finally, we explore ideas for learning the analysis dictionary from a set of signal examples. We demonstrate this model’s effectiveness in several experiments, treating synthetic data and real images, showing a successful and meaningful recovery of the analysis dictionary.

Invited talk. This talk was also given as keynote talk in LVA-ICA, March 13th, 2012, Tel-Aviv, and in Oberwolfach (Germany) workshop on harmonic analysis on June 13th, 2012. Joint work with Ron Rubinstein (former PhD student), Tomer peleg (PhD student), Remi Gribonval and Sangnam Nam (INRIA, Rennes), and Mike Davies (UEdin).
K-SVD Dictionary-Learning for Analysis Sparse Models
June 30th, 2011
SPARS11 - Workshop on signal processing with adaptive sparse structured representations.

The synthesis-based sparse representation model for signals has drawn a considerable interest in the past decade. Such a model assumes that the signal of interest can be decomposed as a linear combination of a  few atoms from a given dictionary. In this talk we concentrate on an alternative, analysis-based model, where an analysis operator — hereafter referred to as the “Analysis Dictionary” – multiplies the signal, leading to a sparse outcome. Our goal is to learn the analysis dictionary from a set of signal examples, and the approach taken is parallel and similar to the one adopted by the K-SVD algorithm that serves the corresponding problem in the synthesis model. We present the development of the algorithm steps, which include a tailored pursuit algorithm termed “Backward Greedy” algorithm and a penalty function for the dictionary update stage. We demonstrate its effectiveness in several experiments, treating synthetic data and real images, showing a successful and meaningful recovery of the analysis dictionary.

This is a joint work with Ron Rubinstein.
A Course on Sparse and Redundant Representation Modeling of Images - PCMI Summer-School
July 12-16, 2010
This course was given as part of the Park City (Utah) Graduate Summer School, organized by the Institute of Advanced Studies (IAS), Princeton.

This course (5 lectures) brings the core ideas and achievements made in the field of sparse and redundant representation modeling, with emphasis on the impact of this field to image processing applications. The five lectures (given as PPTX and PDF) are organized as follows:

Lecture 1: The core sparse approximation problem and pursuit algorithms that aim to approximate its solution.

Lecture 2: The theory on the uniqueness of the sparsest solution of a linear system, the notion of stability for the noisy case, guarantees for the performance of pursuit algorithms using the mutual coherence and the RIP.

Lecture 3: Signal (and image) models and their importance, the Sparseland model and its use, analysis versus synthesis modeling, a Bayesian estimation point of view.

Lecture 4: First steps in image processing with the Sparseland model – image deblurring, image denoising, image separation, and image inpainting. Global versus local processing of images. Dictionary learning with the MOD and the K-SVD.

Lecture 5: Advanced image processing: Using dictionary learning for image and video denoising and inpainting, image scale-up using a pair of learned dictionaries, Facial image compression with the K-SVD.

Sparse and Redundant Representation Modeling of Images: Theory and Applications
June 29th, 2010
Keynote talk - Curves and Surfaces, Avignon.

This survey talk focuses on the use of sparse and redundant representations and learned dictionaries for image denoising and other related problems. We discuss the the K-SVD algorithm for learning a dictionary that describes the image content efficiently. We then show how to harness this algorithm for image denoising, by working on small patches and forcing sparsity over the trained dictionary. The above is extended to color image denoising and inpainting, video denoising, and facial image compression, leading in all these cases to state of the art results. We conclude with more recent results on the use of several sparse representations for getting better denoising performance. An algorithm to generate such set of representations is developed, and our analysis shows that by this we approximate the minimum-mean-squared-error (MMSE) estimator, thus getting better results.

Single Image Super-Resolution Using Sparse Representation
April 14th, 2010
SIAM Imaging Science 2010 Conference, Chicago. Mini-Symp. on Recent Advances in Sparse and Non-local Image Regularization (organized by Gabriel Peyre, Peyman Milanfar, and Michael Elad).

Scaling up a single image while preserving is sharpness and visual-quality is a difficult and highly ill-posed inverse problem. A series of algorithms have been proposed over the years for its solution, with varying degrees of success. In CVPR 2008, Yang, Wright, Huang and Ma proposed a solution to this problem based on sparse representation modeling and dictionary learning. In this talk I present a variant of their method with several important differences. In particular, the proposed algorithm does not need a separate training phase, as the dictionaries are learned directly from the image to be scaled-up. Furthermore, the high-resolution dictionary is learned differently, by forcing its alignment with the low-resolution one. We show the benefit these modifications bring in terms of simplicity of the overall algorithm, and its output quality.

This is a joint work with Roman Zeyde and Matan Protter (CS - Technion).
Sparse and Redundant Representation Modeling for Image Processing
December 11th, 2008
Computaitonal Algebraic Statistics, Theory and Applications (CASTA), Kyoto, Japan.

In this talk we describe applications such as image denoising and beyond using sparse and redundant representations. Our focus is on ways to perform these tasks with trained dictionaries using the K-SVD algorithm. As trained dictionaries are limited in handling small image patches, we deploy these within a Bayesian reconstruction procedure by forming an image prior that forces every patch in the resulting image to have a sparse representation.

Invited talk. Joint work with Michal Aharon (CS - Technion, Guillermo Sapiro (UMN), Julien Mairal (Inria - France), and Matan Protter (CS - Technion).
Image Denoising and Beyond via Learned Dictionaries and Sparse Representations
June 26th, 2008
Tel-Aviv University, Approximation Seminar, the Mathemathics department.

In this survey talk we focus on the use of sparse and redundant representations and learned dictionaries for image denoising and other related problems. We discuss the the K-SVD algorithm for learning a dictionary that describes the image content effectively. We then show how to harness this algorithm for image denoising, by working on small patches and forcing sparsity over the trained dictionary. The above is extended to color image denoising and inpainitng, video denoising, and facial image compression, leading in all these cases to state of the art results. We conclude with very recent results on the use of several sparse representations for getting better denoising performance. An algorithm to generate such set of representations is developed, and our analysis shows that by this method we approximate the minimum-mean-squared-error (MMSE) estimator, thus getting better results.

This talk survesy a wide group of papers, with statement of recent results obtained with Irad Yavneh.
Denoising and Beyond via Learned Dictionaires and Sparse Representations
December 17th, 2006
Israel Computer Vision Day, 2006. Interdisciplinary center, Herzlia.

In this talk we consider several inverse problems in image processing, using sparse and redundant representations over trained dictionaries. Using the K-SVD algorithm, we obtain a dictionary that describes the image content effectively. Two training options are considered: using the corrupted image itself, or training on a corpus of high-quality image database. Since the K-SVD is limited in handling small image patches, we extend its deployment to arbitrary image sizes by defining a global image prior that forces sparsity over patches in every location in the image. We show how such Bayesian treatment leads to a simple and effective denoising algorithm for gray-level images with state-of-the-art denoising performance. We then extend these results to color images, handling their denoising, inpainting, and demosaicing. Following the above ideas, with necessary modifications to avoid color artifacts and over-fitting, we present stat-of-the art results in each of these applications. Another extension considered is video denoising — we demonstrate how the above method can be extended to work with 3D patches, propagate the dictionary from one frame to another, and get both improved denoising performance while also reducing substantially the computational load per pixel.

Joint work with Michal Aharon and Matan Protter - the CS department, the Technion, Julien Mairal and Guilermo Sapiro, ECE department, University of Minnesota, Minneapolis, USA.
Image Denoising via Learned Dictionaries and Sparse Representations
June 21st, 2006
IEEE Comnputer Society Conference on Computer Vision and Pattern Recognition (CVPR).

We address the image denoising problem, where zero mean white and homogeneous Gaussian additive noise should be removed from a given image. The approach taken is based on sparse and redundant representations over a trained dictionary. The proposed algorithm denoises the image, while simultaneously training a dictionary on its (corrupted) content using the K-SVD algorithm. As the dictionary training algorithm is limited in handling small image patches, we extend its deployment to arbitrary image sizes by defining a global image prior that forces sparsity over patches in every location in the image. We show how such Bayesian treatment leads to a simple and effective denoising algorithm, with state-of-the-art performance, equivalent and sometimes surpassing recently published leading alternative denoising methods.

Joint work with Michal Aharaon.
The K-SVD: Design of Dictionaries for Sparse and Redundant Representation of Signals
August 2nd, 2005
SPIE meeting, San-Diego, CA. Invited Talk.

In recent years there is a growing interest in the study of sparse representation for signals. Using an over-complete dictionary that contains prototype signal-atoms, signals are described as sparse linear combinations of these atoms. Recent activity in this field concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done by either selecting pre-specified transforms, or by adapting the dictionary to a set of training signals. Both these techniques have been considered in recent years, however this topic is largely still open. In this presentation we address the latter problem of designing dictionaries, and introduce the K-SVD algorithm for this task. We show how this algorithm could be interpreted as a generalization of the K-Means clustering process, and demonstrate its behavior in both synthetic tests and in applications on real data. The accompanying paper also describes its generalization to non-negative matrix factorization problem that suits signals generated under an additive model with positive atoms.

Joint work with Michal Aharon and Alfred M. Bruckstein.